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Abstract: As one of the most important topics in contemporary computer vision research, object
detection has received wide attention from the precision agriculture community for diverse applica-
tions. While state-of-the-art object detection frameworks are usually evaluated against large-scale
public datasets containing mostly non-agricultural objects, a specialized dataset that reflects unique
properties of plants would aid researchers in investigating the utility of newly developed object
detectors within agricultural contexts. This article presents AriAplBud: a close-up apple flower bud
image dataset created using an unmanned aerial vehicle (UAV)-based red–green–blue (RGB) camera.
AriAplBud contains 3600 images of apple flower buds at six growth stages, with 110,467 manual
bounding box annotations as positive samples and 2520 additional empty orchard images containing
no apple flower bud as negative samples. AriAplBud can be directly deployed for developing object
detection models that accept Darknet annotation format without additional preprocessing steps,
serving as a potential benchmark for future agricultural object detection research. A demonstration
of developing YOLOv8-based apple flower bud detectors is also presented in this article.

Dataset: https://osf.io/wexu7/.

Dataset License: CC BY 4.0 DEED

Keywords: classification; CNN; deep learning; drone; open-source; orchard; precision agriculture;
RGB; UAV; YOLOv8

1. Summary

Object detection is the computer vision task of simultaneously localizing and classify-
ing objects in images [1]. The advent of deep convolutional neural networks (CNNs) in the
past decade has enabled the convenient identification of numerous image object types with
one single algorithm [2], which could be extremely challenging, if not impossible, using
traditional rule-based image processing techniques. Due to their promising potential, object
detectors have been widely implemented in various disciplines [3], including agriculture.
Agricultural studies utilizing object detectors typically fall into the realm of precision
agriculture, with goals of minimizing agricultural inputs and maximizing agricultural
outputs [4,5].

Supervised deep learning generally requires large volumes of ground truth data for
model development, and CNN-based object detection is no exception. Image annotations
such as bounding boxes and pixel masks can be extremely time-consuming to prepare;
hence, large public datasets with readily available annotations are commonly used as
benchmarks to test newly developed algorithms. Some well-known examples include Ima-
geNet [6], MS COCO [7], PASCAL VOC [8], etc. However, such public datasets might not be
sufficient to fully reveal the utility of object detectors in agriculture, as botanical objects can
naturally have complex structures, high distribution density, and ambiguous characteristics,
unlike artificial objects. Hence, dedicated agricultural benchmark datasets would be more
suitable for evaluating object detector performance in plant-related identification tasks.
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In the current literature, very few agricultural datasets intended for benchmarking
object detectors remain available in public repositories. MTDC [9], created by Zou et al.,
is a time series maize tassel detection dataset. The image sequences were collected from
four experimental fields across China from 2010 to 2015 using a digital camera with a fixed
position and angle, covering six maize cultivars. The dataset in total includes 361 images
with three different resolutions, 3456 × 2304, 3648 × 2736, and 4272 × 2848, and was
annotated by 13,562 bounding boxes. Dang et al. released a 12-class cotton field weed
dataset consisting of 5648 RGB images and 9370 bounding boxes, which was initially named
DeepCottonWeeds [10] but renamed later as CottonWeedDet12 [11]. The weed images were
captured using hand-held smartphones and digital cameras at Mississippi State University
research farms from June to September of 2021. MinneApple [12], prepared by Hani et al.,
is an apple fruit detection and segmentation dataset comprising 1001 images annotated
by 41,325 polygons. The images have a resolution of 1280 × 720, and were extracted
from smartphone videos collected in the Horticultural Research Center of University of
Minnesota from June of 2015 to September of 2016. Given the vast diversity of potential
object detection research topics in agriculture, encompassing various types of crops, weeds,
plant organs, diseases, and even manmade objects, substantial future efforts by the re-
search community are still in need to enrich the comprehensiveness of public agricultural
benchmark datasets.

Frost is one of the most devastating natural disasters to agriculture worldwide [13].
However, current orchard frost protection methods remain rudimentary [14], and research
regarding modernized precise frost management is lacking, even though technologies such
as unmanned aerial vehicles (UAVs) and thermal imaging are becoming more accessible and
affordable. Aiming to innovate an autonomous aerial sensing solution that can determine
orchard local heating needs during frost events based on plant developmental stages [15,16],
AriAplBud, an aerial apple flower bud red–green–blue (RGB) image dataset, was created,
and is presented in this article. The dataset images were captured using a UAV over
an apple orchard on nine dates, covering six unique apple flower bud growth stages
from dormancy to senescence (Figure 1). Over 110,000 bounding box annotations were
prepared on 3600 images in Darknet format. The subsequent article sections describe the
data collection, image annotation, and dataset format of AriAplBud in detail, provide a
YOLOv8-based model development demonstration using AriAplBud, and finally discuss
the characteristics of AriAplBud.
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Figure 1. Randomly selected AriAplBud sample images from different data collection dates. Figure 1. Randomly selected AriAplBud sample images from different data collection dates.

In addition to the aforementioned public agricultural datasets [9–12], the open-sourcing
of AriAplBud is intended to promote and accelerate deep learning-based computer vision
research in agriculture. To date, the dataset has been utilized in three journal publica-
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tions [15,17,18] and one dissertation [19] regarding CNN-based apple flower bud classifi-
cation. One of the most widely adopted object detection frameworks, YOLO [20,21], was
utilized and investigated in the studies, representing state-of-the-art object detectors. As a
brief summary, the previous research topics included:

• Network size influence on YOLOv4 performance [15];
• YOLOv4 sensitivity analysis regarding white noise, motion blur, hue shift, saturation

change, and intensity change of test images, and dataset size, annotation quality,
negative sample presence, image sequence, and image distortion level of training
datasets [18];

• YOLOv7 and YOLOv4 accuracy comparison under varying levels of training image
annotation quality [17].

2. Dataset Creation
2.1. Orchard Location

The data collection apple orchard of AriAplBud was located at the Russell E. Larson
Agricultural Research Center of Penn State (40.707918◦ N, 77.954370◦ W), which no longer
exists. The apple orchard had dimensions of 25 m by 15 m, consisting of two apple cultivars,
namely, Jonagold and Daybreak Fuji. Each cultivar had 32 trees planted in two rows, with
an approximate 1.7 m tree spacing and 2.7 m tree height (Figure 2).
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2.2. Data Collection

A Matrice 600 Pro (DJI, Shenzhen, China) was used as the sensor carrying UAV for data
collection, and a Zenmuse Z30 (DJI, Shenzhen, China) was selected as the RGB camera to
capture the apple flower bud close-up images due to its exceptional optical zoom capability.
Eight data collection sessions were conducted in April and May of 2020. During the flight
missions, the UAV was manually controlled to hover above the apple trees at an above-
ground level (AGL) of 10 m or 15 m so as to not cause disturbance to the tree canopies, and
fly through the entire orchard at a speed no faster than 0.1 m/s to ensure image quality.
The data collection sessions typically lasted 40 to 90 min, during which roughly 600 to
1100 images were captured per session with the camera zoomed in 30 times at a 90◦ pitch
angle. Later, in September, an additional data collection session was conducted to capture
empty orchard images containing no apple flower buds as negative training samples. Data
collection dates and corresponding growth stages are presented in the next section.

2.3. Image Annotation

Traditionally, apple flower buds are classified into nine growth stages, including silver
tip, green tip, half-inch green, tight cluster, first pink, full pink, first bloom, full bloom,
and petal fall [22]. Since plant growth is a continuous gradual process, apple flower buds
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transitioning from one growth stage to another often lack distinct characteristics, and
certain stages were observed to be rather challenging to distinguish in the captured images.
As a result, a six-class system was adopted during image annotation by combining sliver
tip and green tip as tip, first pink and full pink as pink, and first bloom and full bloom as
bloom. To help further reduce the difficulty and improve the objectivity and consistency
of the image annotation process, the following annotation guidelines were specified and
implemented for AriAplBud:

• Annotate an apple flower bud as a tip when the leaves of the flower bud are not open
at all;

• Annotate an apple flower bud as a half-inch green when the leaves of the flower bud
are open but the florets of the flower bud are not visible;

• Annotate an apple flower bud as a tight cluster when the florets of the flower bud are
visible but show no pink color;

• Annotate an apple flower bud as a pink when the florets of the flower bud show pink
color, or annotate an apple flower as a pink when the petals of the flower have yet
turned mostly white;

• Annotate an apple flower as a bloom when the petals of the flower are mostly white or
at least one petal is attached to the receptacle of the flower;

• Annotate an apple flower bud as a petal fall when no petals are attached to the
receptacles of all the flowers, or annotate an apple flower as a petal fall when no petals
are attached to the receptacles of the flower;

• For stages at or before tight cluster, include the entire apple flower bud in a
bounding box;

• For stages at or after pink, exclude the apple flower bud leaves from a bounding box;
• For stages at or before tight cluster, each bounding box should contain only one apple

flower bud;
• For bloom stage, each bounding box should contain only one apple flower;
• For pink and petal fall stages, annotate the flowers that belong to the same apple

flower bud and are relatively close to each other in one bounding box; otherwise,
annotate each flower with one bounding box;

• When knowing an apple flower bud or an apple flower exists, but the complete shape
of it cannot be identified due to image blurriness or dense flower bud distribution, do
not annotate;

• When in doubt whether an apple bud is a vegetative or flower bud, do not annotate.

Due to resource constraints, only 450 images were randomly selected from each of the
first eight dates for image annotation. In total, 3600 images were annotated by the author
and four trained research assistants in Darknet format using the open-source annotation tool
YOLO-Label [23], and all the flower bud annotations were double-checked and reannotated
when necessary by the author to ensure their style consistency, accuracy, and complete-
ness. Table 1 lists the image annotation numbers of different growth stages at each data
collection date.

Table 1. Annotated apple flower bud numbers in AriAplBud at different data collection dates.

Date 19 April
2020

23 April
2020

28 April
2020

2 May
2020

7 May
2020

13 May
2020

16 May
2020

21 May
2020

25
Septem-
ber 2020

Total

Tip 146 342 15 1 0 0 1 0 0 505
Half-inch

green 460 845 84 0 0 0 0 0 0 1389

Tight
cluster 2479 10,842 5931 514 1 0 0 0 0 19,767

Pink 64 691 5898 10,796 4966 2899 622 30 0 25,966
Bloom 0 0 2 643 19,905 13,074 7928 2239 0 43,791

Petal fall 0 0 0 0 7 4376 7754 6912 0 19,049

Total 3149 12,720 11,930 11,954 24,879 20,349 16,305 9181 0 110,467
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3. Dataset Description

AriAplBud includes 3600 positive samples containing at least one apple flower bud
and 2520 negative samples containing no apple flower bud, for a total of 6120 images
saved in JPG format with a resolution of 1920 × 1080. The negative sample number was
intentionally determined to be 70% of the positive sample number, so that equal positive
and negative training sample numbers can be achieved when 70% of the positive samples
are used for model development.

AriAplBud images are stored in nine folders depending on when they were captured,
and the folder names represent the data collection dates of the images within the folders. For
example, the folder name “041920” represents a data collection date of 19 April 2020. The
first eight folders from “041920” to “052120” each contain 450 annotated positive samples,
and the last folder, “092520”, contains the 2520 negative samples. Within each folder, the
images were named by appending a four-digit suffix identification number to their folder
name. For example, the first image in the folder “042820” was named as “042820_0001.jpg”,
and the last image in the folder “050720” was named as “050720_0450.jpg”. Such a naming
convention gives unique names to all the images in AriAplBud and allows them to be
placed in the same folder when desired.

Along with each JPG image file in all the folders, there is also a corresponding TXT text
file with an identical file name, containing the apple flower bud annotations for the image.
For the negative samples in the folder “092520”, the text files are simply empty, indicating
that no apple flower bud exists in the images. Similarly to the JPG image numbers, the first
eight folders from “041920” to “052120” contain 450 text files, and the last folder, “092520”,
contains 2520 text files. The apple flower bud annotations are in standard Darknet format,
which defines a bounding box annotation in an image by a row vector of five values:

• <object_class> <x_center> <y_center> <x_width> <y_height>,

where:

• <object_class> is the zero-based index for apple flower bud growth stage, ranging from
0 to 5 as an integer and representing tip, half-inch green, tight cluster, pink, bloom,
and petal fall, respectively;

• <x_center> is the bounding box center horizontal position relative to image width,
ranging from 0 to 1 as a floating-point number;

• <y_center> is the bounding box center vertical position relative to image height,
ranging from 0 to 1 as a floating-point number;

• <x_width> is the bounding box width relative to image width, ranging from 0 to 1 as a
floating-point number;

• <y_height> is the bounding box height relative to image height, ranging from 0 to 1 as
a floating-point number.

Accordingly, the number of row vectors in a text file indicates the number of bounding
box annotations in the corresponding image. Using the image “041920_0041.jpg” as an
example, the annotation file “041920_0041.txt” comprises:

• 2 0.342578 0.346720 0.172656 0.305221
• 2 0.569531 0.209505 0.137500 0.255689
• 2 0.471094 0.212182 0.101563 0.210174
• 1 0.589453 0.896252 0.078906 0.089692

In total, there are four bounding box annotations in the image, including three tight
clusters and one half-inch green, as shown in Figure 3. Note that the apple buds facing
away in the image were intentionally left unannotated according to the specified annotation
guidelines, as their florets needed to be observed to confirm whether they were flower buds
instead of vegetative buds.
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4. Dataset Utilization

As a demonstration, this section provides a brief tutorial on developing apple flower
bud classifiers with AriAplBud using the state-of-the-art object detection framework
YOLOv8 [24] in Google Colab (Google LLC, Mountain View, CA, USA). Google Colab,
at the time of writing, provides free access to GPU, which can significantly speed up the
model training process. The tutorial below assumes a runtime of Python 3 environment
and an available T4 GPU hardware accelerator. The Colab notebook containing relevant
Python code is provided in Supplementary Materials.

4.1. Preparation

Download the entire dataset through the provided link as a ZIP file. Rename the ZIP
file as “AriAplBud.zip” and upload it to Google Drive (Google LLC, Mountain View, CA,
USA). The zip file should contain the nine subfolders from “041920” to “092520” where all
the images are stored. Mount Google Drive to Google Colab so that Google Colab has access
to the dataset and can save trained model weights to Google Drive permanently. As Google
Colab can experience significant slowdowns when reading files from Google Drive, download
the ZIP file from Google Drive to Google Colab and unzip the file in Google Colab.

Create a folder named “YOLOv8” in Google Drive and change the working directory
to the folder. Create three TXT text files containing the image paths for training, validation,
and test datasets. Adopting the 70–20–10 rule, the training dataset should consist of a
randomly selected 70% of the positive samples from the first eight subfolders, combined
with all the negative samples from the last subfolder. The validation dataset should consist
of a randomly selected 20% of the positive samples. The test dataset should consist of the
remaining 10% of the positive samples. Create two YAML configuration files for model
training and testing, which should contain the paths to the three text files and the apple
flower bud growth stage names.

4.2. Model Development

Ultralytics (Ultralytics Inc., Los Angeles, CA, USA) provides convenient YOLOv8
Python API for model training, evaluation, and prediction. Pretrained weights for five
different YOLOv8 model sizes are also available, ranging from 3.2 to 68.2 million param-
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eters based on the MS COCO dataset: YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and
YOLOv8x. Load weights by specifying the desired YOLOv8 model version. Start model
training by minimally specifying model training configuration file path. Evaluate model
performance by minimally specifying model test configuration file path. Make predictions
on an image using a trained model by minimally specifying the image path.

4.3. Results

A YOLOv8n model and a YOLOv8x model were developed using AriAplBud as a
proof of concept of this tutorial. Batch sizes of 64 and 16 for YOLOv8n and YOLOv8x,
respectively, and an epoch number of 300 were adopted during model training, keeping the
rest model hyperparameters as default. Table 2 shows the performances of the two models
for each apple flower bud growth stage based on average precision at 50% intersection over
union (IoU) (AP50) and mean AP at 50% IoU (mAP50) [8].

Table 2. Test dataset AP50s and mAP50s of YOLOv8n and YOLOv8x models developed
using AriAplBud.

Growth Stage YOLOv8n AP50 YOLOv8x AP50

Tip 0.524 0.579
Half-inch green 0.542 0.617

Tight cluster 0.886 0.872
Pink 0.772 0.765

Bloom 0.863 0.874
Petal fall 0.600 0.657

mAP50 0.698 0.727

Despite being developed on the same training dataset and having approximately
20 times more parameters, YOLOv8x did not outperform YOLOv8n by a significant margin
overall. YOLOv8x achieved AP improvements of 0.055 or 10% for tip, 0.075 or 14% for
half-inch green, 0.011 or 1% for bloom, and 0.057 or 10% for petal fall, and a 0.029 or 4%
mAP50 improvement over YOLOv8n. Meanwhile, YOLOv8x underperformed YOLOv8n
for tight cluster and pink by 0.014 and 0.007 or 2% and 1% in terms of AP50, respectively.
Similarly, this phenomenon was also observed in previous research, where an increased
YOLOv4 network size detrimentally affected model performance on AriAplBud [15]. As
noted in the current literature [25,26], shallow networks could exhibit better performance
than deep networks, despite having fewer parameters. In general, larger models require
longer training durations, bigger datasets, and more careful hyperparameter tuning to
reach their optimal performance. The few classes of AriAplBud might not be sufficient for
YOLOv8x to fully demonstrate its sophistication on complex image pattern recognition over
the simpler YOLOv8n model. Nonetheless, although YOLOv8n and YOLOv8x attained
comparable results according to AP50 and mAP50, YOLOv8x was able to make most apple
flower bud detections with much higher confidence, suggesting a stronger model learning
ability (Figure 4).

Comparing the results with those from a prior YOLOv7 study on AriAplBud [17], it
is interesting to observe that YOLOv8 did not show apparent superiority over YOLOv7.
Specifically, using YOLOv8x as an example, which has approximately 85% more parameters
than YOLOv7 [21], YOLOv8x outperformed YOLOv7 for bloom and petal fall by 0.7% and
3%, but underperformed YOLOv7 for tight cluster and pink by 4% and 3%, in terms of
AP50. Such a finding indicates the necessity of future research that exhaustively compares
modern object detection models, developed with identical agricultural datasets such as
AriAplBud and evaluated with identical hyperparameters such as confidence threshold
and non-maximum suppression (NMS) threshold, to identify the best-performing object
detectors for agriculture.
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ing into five to eight flowers [27], AriAplBud contains the most amount of bloom instances 

Figure 4. Apple flower bud detection result comparison between YOLOv8n and YOLOv8x using
sample images at different growth stages from the AriAplBud test dataset.

5. Dataset Characteristics

Being a large, multi-date, multi-growth stage, complex agricultural dataset created
by a UAV, AriAplBud has some noteworthy characteristics that can be interpreted as
limitations. This section aims to provide additional insights into AriAplBud to help guide
further image annotation improvements or image selections for smaller but higher-quality
subdatasets within AriAplBud in future studies.

5.1. Class Imbalance

Due to the late first data collection date, AriAplBud does not capture many tip and
half-inch green instances. On the other hand, as each apple flower bud has the potential
of growing into five to eight flowers [27], AriAplBud contains the most amount of bloom
instances (Figure 5). Relatively speaking, in AriAplBud, there are roughly 86 times more
bloom instances than the tip instances, and 31 times more than the half-inch green instances.
When using AriAplBud for object detector benchmarking, results of tight cluster, pink,
bloom, and petal fall can reflect model performance when training instances are sufficient,
while results of tip and half-inch green might reveal model’s learning ability from scarce
training instances.
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Figure 5. Annotation number comparison between all apple flower bud growth stages in AriAplBud.

5.2. Annotation per Image

The positive samples in AriAplBud have a wide range of annotations per image.
Figure 6 illustrates the bar chart depicting the distribution of annotation per image and
their corresponding frequency. The distribution ranges from 1 to 112 annotations per image,
and peaks at 14 annotations per image with an 89 frequency. Generally, annotation per
image is negatively correlated with frequency, indicating there are more images with a
lower number of annotations than those with a higher number of annotations in AriAplBud.
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Figure 6. Bar chart showing annotation per image distribution of AriAplBud positive samples.

Unlike images with sparse object distributions, images with large annotation numbers
are generally more difficult and time-consuming to annotate, and arguably more challeng-
ing for object detectors to perform complete and accurate object identifications on. In the
case of AriAplBud, many annotations per image translates to a dense apple flower bud
distribution, which comes with occluded flower buds and deformed flower shapes. While
AriAplBud as a dataset can assist in benchmarking various object detection frameworks,
case studies of high-difficulty images from AriAplBud might provide additional insights
into the differences between object detector behaviors when faced with complex scenes
(Figure 7).
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Figure 7. Two sample images from AriAplBud, “050220_0450.jpg” and “050720_0085.jpg”, containing 
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5.3. Bounding Box Size 
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whose distribution among all 110,467 annotations can be found in Figure 8. 

 

Figure 8. Box plot of AriAplBud annotation size in terms of normalized bounding box area. 
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annotations have a size smaller than 0.027, which is equivalent to 55,965 pixels at the image 

resolution of 1920 × 1080, and a tiny quantity of large bounding box annotations exists in 
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numerous studies in the current literature have investigated improving YOLO frameworks 

for dedicated small object detection tasks [28–35]. In that sense, the large number of small-
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Figure 7. Two sample images from AriAplBud, “050220_0450.jpg” and “050720_0085.jpg”, containing
1 and 112 annotations, respectively.

5.3. Bounding Box Size

The bounding box annotation size varies substantially in different AriAplBud images,
whose distribution among all 110,467 annotations can be found in Figure 8.
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Figure 8. Box plot of AriAplBud annotation size in terms of normalized bounding box area.

Regarding normalized bounding box area expressed in between 0 and 1, 97% of the
annotations have a size smaller than 0.027, which is equivalent to 55,965 pixels at the
image resolution of 1920 × 1080, and a tiny quantity of large bounding box annotations
exists in AriAplBud (Figure 9). As small objects are known to pose challenges to object
detectors, numerous studies in the current literature have investigated improving YOLO
frameworks for dedicated small object detection tasks [28–35]. In that sense, the large
number of small-sized annotations in AriAplBud, particularly when the images are resized
to standard input resolutions such as 512 × 512 or 640 × 640 for CNNs, can help targetedly
assess an algorithm’s effectiveness in detecting micro-scale objects.
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Figure 9. Two sample images from AriAplBud, “050220_0435.jpg” and “050720_0128.jpg”, containing
the smallest and largest bounding box annotations, respectively.

5.4. Annotation Error

Three types of annotation errors exist in AriAplBud: unintentional annotation, in-
complete annotation, and false annotation. When annotators accidentally draw minuscule
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bounding boxes on images but fail to notice and remove them, unintentional annotations
are created. Although by a negligible amount, AriAplBud does contain unintentional
annotations (Figure 10). Due to their dense spatial distribution, apple flower buds are
often difficult to identify from a 2D camera’s point of view, as they can appear occluded,
deformed, defocused, or inconspicuous. Hence, unannotated apple flower buds can be
found in AriAplBud images with large numbers of annotations (Figure 10), even though all
the image annotations have been double-checked by the author. As discussed in Section 2.3,
since apple tree development throughout a growing season happens in a progressive man-
ner, specific annotation guidelines were created for AriAplBud to assist with the image
annotation process. However, subjective decisions still frequently arose when determining
the growth stage of an apple flower bud. This occurred particularly for transitional sce-
narios such as a half-inch green slightly unfurling its leaves, a tight cluster displaying a
hint of light pink, a pink shifting from pinkish to whitish hues, or a bloom shedding a few
petals. Additionally, growth stages of blurred apple flower buds could be more difficult
to identify, and apple vegetative buds could be mistaken as apple flower buds, especially
before tight cluster stage. As such, false annotations are present in AriAplBud, and in a
sense are inevitable for complex agricultural datasets. For AriAplBud to be an error-free
agricultural benchmarking dataset, future community efforts on annotation-checking and
repreparing the dataset are still in need.
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Figure 10. Regions of three sample images from AriAplBud, “052120_0222.jpg”, “042320_0068.jpg”,
and “051320_0017.jpg”, where an unintentional annotation inside a petal fall annotation, an unanno-
tated tight cluster, and a falsely annotated bloom as petal fall can be observed.

5.5. Annotation Style Inconsistency

Among the six growth stages in AriAplBud, pink and petal fall are the two special
cases where not all annotations have the same style. During tip, half-inch green, and tight
cluster, each apple flower bud including its leaves was annotated by one bounding box.
During bloom, each apple flower was annotated by one bounding box. During pink, in
general, each apple flower bud was annotated by one bounding box, including all its florets
and excluding its leaves (Figure 11). The inclusion of leaves during pink would not only
involve time-consuming identifications of leaves belonging to the same apple flower bud,
but also lead to substantially sized bounding boxes. However, for situations where only
one floret of an apple flower bud has transitioned into bloom while the rest florets remain
as pink, which was traditionally referred to as the first bloom or king bloom stage [22], the
pink florets were annotated by individual bounding boxes rather than just one bounding
box, preventing nested bloom bounding boxes inside pink bounding boxes (Figure 11).
Additionally, pink florets belonging to the same apple flower bud could be spaced apart
and difficult to identify, and were thus annotated individually to avoid unnecessarily large
bounding boxes (Figure 11).
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bounding boxes were often made subjectively, achieving accurate predictions akin to 

ground truth necessitates object detectors to comprehend not just the AriAplBud annota-

tions, but also the annotators’ underlying thought processes when determining the most 

appropriate annotation style for each unique apple flower bud. 

5.6. Image Similarity 

Although AriAplBud does not contain identical images, it does feature a considerable 

quantity of similar-looking images (Figure 13). Such images were usually taken in quick 

succession with minor UAV positional changes. To efficiently capture high-quality close-up 

images of apple flower buds, all data collection flight missions were manually and meticu-

lously controlled for minimal UAV flying speeds as well as periodic and frequent image 

saving. Theoretically, when images bearing resemblance are divided into both training and 

test datasets, it can lead to biased and inflated model metrics during final model evaluation, 

akin to the issue of data leakage [36]. Creating subdatasets, comprising dissimilar images 

from AriAplBud, can be a strategy to mitigate overestimations of model performance. Irre-

spective of the images contained within AriAplBud, the dataset remains a viable tool to rate 

various object detectors. However, it is important to note that the relative ranking of model 

Figure 11. Regions of three sample images from AriAplBud, “050220_0359.jpg”, “050220_0440.jpg”,
and “050220_0406.jpg”, with different pink annotation styles.

Likewise, during petal fall, in general, each apple flower bud was annotated by one
bounding box, including all its flowers and excluding its leaves (Figure 12). However,
flowers belonging to the same apple flower bud could be dispersed and challenging to
recognize; hence, they were also annotated individually (Figure 12).
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Figure 12. Regions of two sample images from AriAplBud, “051620_0045.jpg” and “051620_0043.jpg”,
with different petal fall annotation styles.

The annotation style inconsistency of AriAplBud undoubtedly increases the com-
plexity of the dataset. As the decisions of annotating pinks and petal falls using one or
multiple bounding boxes were often made subjectively, achieving accurate predictions
akin to ground truth necessitates object detectors to comprehend not just the AriAplBud
annotations, but also the annotators’ underlying thought processes when determining the
most appropriate annotation style for each unique apple flower bud.

5.6. Image Similarity

Although AriAplBud does not contain identical images, it does feature a considerable
quantity of similar-looking images (Figure 13). Such images were usually taken in quick
succession with minor UAV positional changes. To efficiently capture high-quality close-
up images of apple flower buds, all data collection flight missions were manually and
meticulously controlled for minimal UAV flying speeds as well as periodic and frequent
image saving. Theoretically, when images bearing resemblance are divided into both
training and test datasets, it can lead to biased and inflated model metrics during final
model evaluation, akin to the issue of data leakage [36]. Creating subdatasets, comprising
dissimilar images from AriAplBud, can be a strategy to mitigate overestimations of model
performance. Irrespective of the images contained within AriAplBud, the dataset remains
a viable tool to rate various object detectors. However, it is important to note that the
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relative ranking of model accuracies based on any benchmark dataset is inherently tied to
the characteristics of the dataset.
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pear relatively larger compared with those gathered on subsequent dates (Figure 15). 

Figure 13. Two sample images from AriAplBud, “042320_0076.jpg” and “042320_0077.jpg”, with very
similar visual appearances.

5.7. Positive and Negative Sample Dissimilarity

Given the typically crowded clustering of flower buds in apple tree canopies during
the bud developmental stages, capturing negative samples on the first eight data collection
dates was proven challenging when observing from the UAV’s top-view perspective. Hence,
the positive and negative samples of AriAplBud were gathered at varying dates, leading
to distinctive image appearances (Figure 14). As previous research has demonstrated
that incorporating the negative samples from AriAplBud during training provided no
tangible benefits to YOLOv4 model performance [18], the notable dissimilarities between
the positive and negative samples might be the primary factor restricting the negative
samples’ efficacy in aiding object detectors to comprehend apple flower bud characteristics.
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captured with a five-month interval.

5.8. Flight Height Inconsistency

The initial UAV flight altitude for the first data collection session was set at 10 m AGL,
but subsequently adjusted to 15 m AGL from the second data collection session onwards.
The decision to modify the altitude stemmed from the observation that at 10 m, the UAV-
induced turbulence was inadequately controlled during the second data collection session,
causing movement in tree structures as they grew vegetatively, as well as compromised
image quality. Notably, many apple flower buds captured on the first data collection date
appear relatively larger compared with those gathered on subsequent dates (Figure 15).
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Figure 15. Two sample images from AriAplBud, “041920_0051.jpg” and “042320_0008.jpg”, contain-
ing differently sized tight clusters due to UAV flight altitude variations.

5.9. Blurred Image

AriAplBud comprises a collection of images exhibiting varying degrees of blurriness,
resulting from the relative motions between the UAV and the apple trees during data
collection (Figure 16). A blurred apple flower bud was annotated regardless, as long as the
annotators were able to recognize its growth stage.
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5.10. Artificial Object

It is worth mentioning that AriAplBud often captures components of a trellis system
used in the apple orchard to espalier the fruit trees, such as wooden posts, metal wires, and
interlocking chain ties (Figure 17).
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/data9020036/s1, Google Colab AriAplBud YOLOv8 Python tutorial.
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