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Abstract: Organ-on-a-chip (OOC) technology has emerged as a groundbreaking approach for emu-
lating the physiological environment, revolutionizing biomedical research, drug development, and
personalized medicine. OOC platforms offer more physiologically relevant microenvironments,
enabling real-time monitoring of tissue, to develop functional tissue models. Imaging methods are
the most common approach for daily monitoring of tissue development. Image-based machine
learning serves as a valuable tool for enhancing and monitoring OOC models in real-time. This
involves the classification of images generated through microscopy contributing to the refinement of
model performance. This paper presents an image dataset, containing cell images generated from
OOC setup with different cell types. There are 3072 images generated by an automated brightfield
microscopy setup. For some images, parameters such as cell type, seeding density, time after seeding
and flow rate are provided. These parameters along with predefined criteria can contribute to the
evaluation of image quality and identification of potential artifacts. This dataset can be used as a
basis for training machine learning classifiers for automated data analysis generated from an OOC
setup providing more reliable tissue models, automated decision-making processes within the OOC
framework and efficient research in the future.

Dataset: https://doi.org/10.5281/zenodo.10203721

Dataset License: CC-BY-SA

Keywords: organ-on-a-chip; image dataset; tissue evaluation; image-based machine learning

1. Summary

Organ-on-a-chip (OOC) technology is a rapidly advancing field that merges microflu-
idic and in vitro cell culture techniques to model tissue. These systems are designed to
control cell culture conditions and therefore mimic key aspects of human physiology. OOC
technology offers the flexibility to change critical variables such as flow rate, shear stress,
oxygen gradient and drug concentration or other compound exposure in a dynamic en-
vironment [1]. Additionally, in contrast to different 2D cell culture model systems, this
technology allows mimicking of cell–cell, cell–extracellular matrix interactions, vascular-
ization, mechanical stress, and the development of different diseases [2]. Subsequently,
this microfluidic device can provide a constant flow that creates shear stress since shear
stress is a well-known factor important for functional tissue development, for instance,
results suggest that in gut-on-chip models, flow stress regulates Wnt antagonist Dickkopf-1
and Frizzled-9 receptors that induce villi and crypt formation into these models, therefore
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recapitulating the intestinal phenotype [3]. Furthermore, dynamic systems often replicate
in vivo physiological conditions more closely, which can lead to more physiologically rele-
vant results [4]. For instance, when subjected to dynamic conditions, 3D organoids derived
from patients with high-grade serous ovarian cancer exhibited heightened sensitivity to
paclitaxel [5]. This is promising technology also in the case of personalized medicine
and drug development as it can be used to develop or select therapeutics personalized
for individual patients and therefore identify drug candidates with a greater probability
of success and thus shorten the clinical trial timeline [6]. OOC technology has shown
great potential in cancer research by providing a platform to replicate the human tumor
microenvironment in vitro [7]. It has been used to model early stages of cancer metastasis
and intravasation of tumor cells into the vasculature, angiogenesis, and progression from
early to advanced lesions involving epithelial–mesenchymal transition (EMT), tumor cell
invasion, and metastasis [8].

Cell seeding density and daily monitoring play crucial roles in the development of
functional models in cell culture. Furthermore, cell culture conditions vary widely for
each cell type, emphasizing the importance of understanding the specific requirements for
different cell types and the impact of seeding density on their behavior and function [9].
Overall, both cell seeding density and daily monitoring are critical factors in the develop-
ment of functional models in cell culture, influencing cell behavior, and differentiation [10].
To monitor tissue, imaging methods can be used. Furthermore, the monitoring can be
automated by means of machine learning (ML) methods, the use of which has been steadily
increasing in various fields, including science and medicine [11]. Hence, ML can be used to
analyze data and imaging generated within the OOC model. For instance, image-based
machine learning can be used to monitor and improve performance of OOC models by
classifying microscopy images acquired in real time [12]. Deep neural networks (DNNs),
a group of ML methods that have achieved state-of-the-art results on perceptual tasks,
are widely used tools for image classification and automated analysis; using them can
increase the speed of the cell imaging process and improve the research process [13]. A
DNN-based monitoring system for an OOC setup can provide a faster way to analyze
data generated by OOC models and can help to develop more reliable tissue models with
real-time monitoring and automated decision making. In particular, automating the setup
for growing OOC by means of implementing ML methods would allow that process to
be continuously monitored without human intervention. The present dataset provides an
opportunity to train ML-based classifiers including DNN on a diverse dataset of real-world
OOC microscopy images.

2. Data Description

The dataset consists of 3072 images of cells cultured in an OOC setup and a single
spreadsheet with the metadata about these images. The cells in the dataset belong to the
following six cell lines:

• A549 (human lung adenocarcinoma alveolar basal epithelial cells, CCL-185, ATCC,
Manassas, VA, USA);

• Caco-2 (colorectal adenocarcinoma epithelial cells, HTB-37, ATCC);
• HPMEC (human pulmonary microvascular endothelial cells; 3000, ScienCell, Carlsbad,

CA, USA);
• HUVEC (human umbilical vein endothelial cells, CRL-1730, ATCC);
• NHBE (normal human bronchial epithelial cells, CC-2541, Lonza, Basel, Switzerland);
• HSAEC (human small airway epithelial cells, PCS-301-010, ATCC).

For each cell image, there is a class label ‘good’ or ‘bad’, which corresponds to the
assessment of the quality of the sample by four experts in cell biology. Images containing
artifacts (deformation of channel walls, air bubbles, out of focus or blurry images) that
impair the evaluation of cells are classed as “bad”. Images classified as “bad” are also where
cell morphology and density do not correspond to cell line and cultivation conditions. The
rest of the images are deemed to be of acceptable quality and therefore classificatory “good”
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is assigned. In case of discrepancy between raters, opinion of the majority was considered
as final or an additional rater was attracted, if needed. The distribution of cell images by
cell lines and ‘good’/’bad’ classes are given in Table 1, while representative images of A549
and HPMEC cell lines with class label ‘good’/‘bad’ in Figure 1.

Table 1. Distribution of cells by cell lines and ‘good’/’bad’ classes.

Cell Line ‘Good’ ‘Bad’

A549 537 238
Caco-2 109 237

HPMEC 798 664
HUVEC 15 92
NHBE 33 105

HSAEC 163 81
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Figure 1. Representative images of A549 and HPMEC cell lines from lung cancer on a chip model
classified with ‘good’/’bad’ label. Scale bar: 100 µm.

Furthermore, cell images are grouped by the time that has passed since their seed-
ing. There are four such groups, namely, 0–1 days, 2–3 days, 4 days, and >4 days. The
distribution of cell images by cell lines and time after seeding is provided in Table 2.

Table 2. Distribution of cells by cell lines and time after seeding.

Cell Line 0–1 Days 2–3 Days 4 Days >4 Days

A549 235 67 83 390
Caco-2 36 117 11 182

HPMEC 463 452 109 438
HUVEC 16 52 0 39
NHBE 16 44 9 69

HSAEC 86 50 27 81
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2.1. Folder Structure

The dataset is structured to make it ready for training and validating machine learning
models. Therefore, it is split into the three main subsets, train (~70% of the data), val
(~10% of the data), and test (~20% of the data). The split of the data into these subsets is
proportionally representative of the ‘good’/’bad’ classes, cell lines, and grouping by time.
Furthermore, the subfolders within the above three main folders represent these divisions
in the following way:

OOC_image_dataset
\- train
\- good
\- cell_type_A549
\- 0–1_days
\- 2–3_days
\- 4_days
\- 4+_days

\- cell_type_CACO
\- . . .

\- cell_type_HPMEC
\- . . .

\- cell_type_HSAEC
\- . . .

\- cell_type_HUVEC
\- . . .

\- cell_type_NHBE
\- . . .

\- bad
\- cell_type_A549
\- . . .
\- cell_type_CACO

\- . . .
\- cell_type_HPMEC

\- . . .
\- cell_type_HSAEC
\- . . .

\- cell_type_HUVEC
\- . . .

\- cell_type_NHBE
\- . . .

\- val
\- good
\- . . .
\- bad
\- . . .

\- test
\- good
\- . . .

\- bad
\- . . .

2.2. Metadata

The metadata for each image consists of a class label (‘good’ or ‘bad’), the name of the
cell line, and the time after seeding. As it follows from Section 2.1, these metadata for a
particular image can be retrieved from its location in the folder structure; in addition to
that, the metadata are also stored in the spreadsheet OOC_datasheet.xlsx, in which each
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row starts with image’s ID, which is the same as the file name (without file extension) of
a respective image. It should be mentioned that the spreadsheet provides more precise
time after seeding values than the ones that can be retrieved from the folder structure: for
instance, for the images taken on the first day after seeding, the hour after seeding, when
the image was taken is typically provided; for images taken later on, a specific day after
seeding is given. Furthermore, for some of the cell samples, their seeding density (in cells
per mL) is provided, and for some other cell samples, flow rate is indicated.

3. Methods
3.1. Cell Lines

All cell lines were kept at 37 ◦C in a humidified atmosphere containing 5% CO2.
A549 cell line were cultured in high glucose DMEM (41965062, Gibco, Carlsbad, CA,

USA), supplemented with 10% FBS (F7524, Sigma Aldrich, Burlington, VT, USA) and 0.1%
primocin (ant-pm-2, Invivogen, San Diego, CA, USA).

Caco-2 cell line was cultured in low glucose DMEM with sodium pyruvate (11880028,
Gibco), supplemented with 10% FBS (F7524, Sigma Aldrich), 1% GlutaMax (A1286001,
Thermo Fisher, Waltham, MA, USA) and 0.1% primocin (ant-pm-2, Invivogen).

HPMEC cells were cultured in EGM-2 Endothelial Cell Growth Medium-2 BulletKit,
without addition of heparin solution (CC-3162, Lonza, Basel, Switzerland).

HUVEC cells were cultured in EGM-2 Endothelial Cell Growth Medium-2 BulletKit
(CC-3162, Lonza).

NHBE cell line was cultured in PneumaCult Ex-Plus basal medium (05041, Stemcell
Technologies, Vancouver, BC, Canada), supplemented with PneumaCult Ex-Plus 50Xsup-
plement, hydrocortisone solution (07925, StemCell), and 0.1% GA1000 (CC-4083, Lonza).

HSAEC cell line was cultured in Vascular cell basal medium (PCS-100-030, ATCC,
Manassas, VA, USA), supplemented with Bronchial epithelial cell medium growth kit
(PCS-300-040, ATCC) and 0.1% GA1000 (CC-4083, Lonza).

3.2. Microfluidic Device Development

The microfluidic chips used in this study were supplied by Cellbox Labs (Riga, Latvia)
(Figure 2). These chips feature a vertically stacked design channel. Chips were manufac-
tured using injection molding and were constructed from cyclic olefin copolymer (COC)
with a porous track-etched polyester (PET) membrane. For the experiments, a membrane
with 0.8 × 106 pores per cm2 was used, with each pore having a diameter of 3 µm and a
thickness of 20 µm.
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3.3. OOC Model Development

To obtain data, cells were cultivated in an OOC setup. For all chip experiments, cell
culture media were equilibrated for 24 h at 37 ◦C in a humidified atmosphere containing 5%
CO2 before use. Prior to cell seeding, chips were sterilized under a UV lamp within laminar
flow hood, followed by 30 min 70% ethanol sterilization. Following the sterilization steps,
chips were coated with 100 µg/mL Matrigel® solution and incubated at 37 ◦C for 30 min.
Afterwards, the chip membranes was rinsed with respective cell media and cells were
seeded. For cell seeding procedure, different protocols were used for each cell line.

To create a gut-on-a-chip model, Caco-2 and HUVEC cell lines were used to mimic ep-
ithelial and endothelial cell layers. The bottom membrane was seeded with HUVECs
(9 × 106 cells/mL); afterwards the chip was inverted and incubated in a cell culture
incubator for 2 h. After incubation, Caco-2 cell line was seeded in the top channel
(2 × 106 cells/mL) and incubated at 37 ◦C for 2 h. Next, the chips were connected to
a microfluidic setup and respective cell media was perfused in both channels, at flow rate
2 µL/min in top and 1.66 µL/min in bottom, respectively.

To develop lung cancer on a chip, A549 and HPMEC were used. Firstly, the HPMEC
cell line was seeded in the bottom channel (6 × 106 cells/mL, 9 × 106 cells/mL), the
chip was inverted and incubated in the cell culture incubator for 5 h. Afterwards, the
chips were connected to a microfluidic setup and bottom channels were perfused with
HPMEC media for 5 days with altering flow rate 2 µL/min, 1.66 µL/min, 1.71 µL/min or
1.74 µL/min. After 5 days of HPMEC culture, A549 cells were seeded in the top channel
(1 × 106 cells/mL, 10 × 106 cells/mL, 9 × 106 cells/mL, 2.6 × 106 cells/mL) and incubated
for 2 h in cell culture incubator. After cell seeding, chips were connected to microfluidic
setup and flow of media was applied at flow rate 2 µL/min, 2.33 µL/min or 2.77 µL/min.

For lung on a chip modeling, two different epithelial cell lines were used. In case
of NHBE, cells were seeded in the top channels at concentration of 2 × 106 cells/mL,
4 × 106 cells/mL, whilst HSAEC cells were seeded at concentration of 1 × 106 cells/mL,
1.5 × 106 cells/mL, 1.47 × 106 cells/mL, 6 × 106 cells/mL, 10 × 106 cells/mL and incubated
for 2 h in cell culture incubator. Subsequently, chips were connected in microfluidic setup
and respective cell media was perfused at flow rate 2 µL /min. After 5 days of culture,
chips were switched to air–liquid interface (ALI) for 7 days and cultured in PneumaCult
ALI Complete Base Medium (05001, Stemcell Technologies), supplemented with heparin
solution (07980, Stemcell Technologies), hydrocortisone solution (07925, Stemcell Technolo-
gies) and 0.1% GA1000 (CC-4083, Lonza). Next, the HPMEC cell line was seeded in the
bottom channel as previously described and cultivated in ALI for another 4 days. Data was
generated only before ALI, since presence of the air within the epithelial cell channel can
alter transparency and therefore the imaging process.

Different flow rates (ranging from 1 to 2.77 µL/min) and cell seeding density were
used depending on cell type, since these are critical parameters for cell cultivation. A
syringe pump (ISPLab02, Baoding Shenchen Precision Pump Co., Ltd., Baoding, China)
was used to maintain laminar media flow within the channels in an infusion regimen. Each
cell type parameter such as seeding density, flow rate and time after cell seeding, was
summarized together with respective images for each channel in one dataset.

3.4. Data Generation

For imaging, an automated brightfield microscopy setup developed by Cellbox Labs
was used. This setup consists of a high-resolution camera, IM Compact (IC10-05q32MU3101)
from Opto GmbH, and precise control of the chip’s movement which was achieved using
a precision XYZ motion system from Zaber Technologies systems. This motion system
consisted of three units that enabled versatile manipulation of the chip holder, allowing
movement between channels, within a channel, and adjustments in the chip holder’s height
along the Z-axis. Live imaging and the subsequent acquisition of images were carried out
using the OptoViewer software (Opto Viewer Version: 2.0.0.2359) by Opto GmbH, while
the movement of the XYZ stage was controlled using the Zaber Launcher software (Zaber
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Launcher 1.6.11) provided by Zaber Technologies systems. For each cell type, parameters
such as seeding density, flow rate and the time after cell seeding were consolidated with
corresponding images for each channel into a dataset. A “good” or a “bad” class label was
assigned to each image by an expert in cell biology.

4. Application Example

To demonstrate how the organ-on-a-chip dataset can be used for training ML models,
we conducted an experiment with MobileNetV3 [14]. MobileNetV3 is a DNN classifier,
which is primarily meant for the use on mobile and edge devices, as it is lightweight and
fast; however, despite its small size, it has demonstrated a remarkably good performance
on benchmark datasets. To leverage the advantages of transfer learning, we used an
implementation of this DNN pretrained on the ImageNet dataset [15] available in the Keras
library. To accommodate the needs of the experiment, the foundational model was modified
in the following way:

• The input layer was changed from 224 × 224 to 600 × 600 pixels to capture the
morphology of input images in greater detail;

• After the input layer, we added the data augmentation layers that would apply random
rotations, flips and contrast adjustments to the input images during the training to
augment the training data and decrease the risk of overfitting;

• The top layers were extended with a GlobalAveragePooling2D layer, a BatchNormal-
ization layer with a subsequent dropout rate of 0.2, and a final dense output layer
with a single neuron activated by the sigmoid function to implement binary (‘good’ vs.
‘’bad’) classification.

The summary of the model is provided in Figure 3.
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Figure 3. Summary of DNN architecture.

The DNN model was trained on the central crops of the images with the crop size
of 600 × 600 pixels, which matched the size of the input layer of the model; furthermore,
cropping images eliminated the difference in the image size in the dataset. The training
procedure consisted of two stages. During the first stage, only the top layers of the model
were trained for 30 epochs using the Adam optimizer with a learning rate of 0.0001 and
a decay rate of 0.0001. During the second stage, the last 15 layers of the model were
unfrozen, and the model was trained for 170 more epochs with a decreased (to prevent
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overfitting) learning rate of 0.00001. For the second training stage, we included an early
stopping callback, which would interrupt the training and save the best model if there was
no improvement in the model accuracy on the validation dataset for 30 epochs. After the
training, the model was evaluated on the test dataset. The loss and the accuracy of the
model during the experiment are shown in Figure 4A and 4B, respectively. Evaluation
of the model on the test dataset yielded the accuracy of binary classification of 0.81, with
precision = 0.79 and recall = 0.78.
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The confusion matrix, illustrating the distribution of predicted classes against the true
classes, is presented in Figure 4C. To assess the achieved accuracy, we compare it to that
of a naive classifier that would assign all instances to the largest class in the dataset; as
the accuracy of the naive classifier would be 0.56, we conclude that the accuracy achieved
with our model is substantially higher, which demonstrates that ML classifiers can be
successfully trained on the organ-on-a-chip dataset.

A possible approach to improving the performance of such classifiers on the present
dataset in the future is to adjust their hyperparameters (e.g., the number of layers on the
top of the foundational model and the number of neurons in each such layer) further,
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as we implemented only minor modifications in the foundational model in the present
work. Furthermore, it may be expedient to use the means of dealing with the uneven class
distribution in the dataset (e.g., using a weight for each class when training the classifier)
and the non-uniform image intensity (e.g., by normalizing them), as these features of the
data are known to have an impact on the performance of DNN models. The subjectivity
introduced by human raters will inevitably lead to variability in image classification.
Although not avoidable, this variability can be mitigated by increasing the dataset and
implementing intercalibration between raters, as well as by setting up and agreeing upon
guidelines for image classification. Variability could also be reduced by enhancing image
quality either by avoiding technical artifacts or recognizing them before even starting cell
cultivation, for example, by performing microscopy imaging of empty chips.

5. Patents

Cellbox Labs chip designs, manufacturing materials, and fabrication and bonding
technology are patent-pending, and have been filed as European Patent Office (EP) and
Patent Cooperation Treaty (PCT) applications EP4198119A1 and WO2023111127A1, respec-
tively. Subsequently, accurate details of the fabrication and bonding parameters cannot be
disclosed until the granting of the patent.
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