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Abstract: Although hundreds of datasets have been published since the beginning of the coronavirus
pandemic, there is a lack of centralized resources where these datasets are listed and harmonized to
facilitate their applicability and uptake by predictive modeling approaches. Firstly, such a centralized
resource provides information about data owners to researchers who are searching datasets to develop
their predictive models. Secondly, the harmonization of the datasets supports simultaneously taking
advantage of several similar datasets. This, in turn, does not only ease the imperative external
validation of data-driven models but can also be used for virtual cohort generation, which helps
to overcome data sharing impediments. Here, we present that the COVID-19 data catalogue is a
repository that provides a landscape view of COVID-19 studies and datasets as a putative source to
enable researchers to develop personalized COVID-19 predictive risk models. The COVID-19 data
catalogue currently contains over 400 studies and their relevant information collected from a wide
range of global sources such as global initiatives, clinical trial repositories, publications, and data
repositories. Further, the curated content stored in this data catalogue is complemented by a web
application, providing visualizations of these studies, including their references, relevant information
such as measured variables, and the geographical locations of where these studies were performed.
This resource is one of the first to capture, organize, and store studies, datasets, and metadata related
to COVID-19 in a comprehensive repository. We believe that our work will facilitate future research
and development of personalized predictive risk models for COVID-19.

Keywords: COVID-19; data catalogue; personalized risk model; predictive models

1. Introduction

COVID-19 is a potentially fatal respiratory illness that predominantly affects the
lungs, but can also damage several other organs, such as the heart, brain, liver, and
kidneys [1]. A wide spectrum of research studies has analyzed COVID-19-related risk
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factors [2–4] and treatments [5–7]. While most people recover from COVID-19 without
needing hospital treatment, COVID-19 can be fatal in older individuals (≥60 years) as
well as persons with certain medical conditions (e.g., diabetes, hypertension, obesity,
etc.), often requiring hospital-based treatment such as oxygen supplementation for these
individuals [8,9]. Nonetheless, the fatal progression of the disease in younger patients
as well as in re-infected patients is also being observed [10], and the human response to
COVID-19 infection appears to be very heterogeneous [11]. This heterogeneity among
infected individuals calls for modeling approaches that can predict the risk of a given
patient with the ultimate goal of preventing and personalizing their treatment.

Data-driven personalized models have the potential to predict individualized risks
as they can identify more relevant and informative patient-specific risk factors based on
previously generated patient-level data [12]. However, there are several factors that need
to be considered about the preexisting data in order to build personalized predictive
models, such as adequate sample size, relevant endpoints, the types of variables, and the
longitudinal aspect of data points [13]. Experimental results show that with increasing
training data, the accuracy and robustness of data-driven models can be improved, which
in turn could lead to better predictions and the use of these models in day-to-day clinical
practice [14,15]. Thus, the first step in building personalized COVID-19 predictive models
is to generate a detailed overview of the available trial and study data suited for the training
of COVID-19 personalized models.

From the start of the COVID-19 pandemic, various data catalogues (i.e., services or
tools that manage various datasets in a central metadata directory) have been established,
such as COVIC [16], openICPSR (https://www.openicpsr.org/openicpsr/search/studies,
accessed on 27 November 2020), the Microsoft Azure COVID-19 data catalogue (https://
azure.microsoft.com/de-de/services/open-datasets/catalog/bing-covid-19-data, accessed
on 27 November 2020), the Amazon COVID-19 data catalogue (https://aws.amazon.
com/data-exchange/covid-19, accessed on 27 November 2020), and the World Bank data
catalogue (https://datacatalog.worldbank.org, accessed on 27 November 2020). While, the
studies listed in the aforementioned data catalogues focus on general information such as
hospital capacities, participant mobility, and social distances, they ignore relevant features
that are critical for building predictive models (e.g., biomarkers). Moreover, the number of
collected studies in these data catalogues is either limited (<100 datasets) as, for example,
in the Microsoft Azure COVID-19 data catalogue that has 35 studies, or limited to a specific
data source as, for example, COVIC, which exclusively contains clinical trial data. For these
reasons, although the organization of this information and published data are critical for
predicting and better understanding COVID-19 epidemiology, they are not suitable for
training and developing personalized predictive models as they lack longitudinal data
points and clinical variables from hospitalized patients or they include a limited range
of variables.

To address these shortcomings, we collected and curated COVID-19 datasets from clin-
ical trials, publications, and other global initiatives, building a comprehensive COVID-19
data catalogue as a source to bring together published findings within the context of study
information, study design, and other related variables, which could inform risk-modeling
approaches. We collected information from around 500 studies (conducted between January
2020 and January 2021), which not only include general study information, such as the
number of patients, study location, and patient outcomes, but also contain more specific
information for each individual study, including measurement class (e.g., intensive unit
care (ICU), clinical, laboratory), the measured features of a particular class (e.g., oxygen
saturation, lymphocyte), and study type (e.g., observational, interventional).

The resulting COVID-19 data catalogue provides a comprehensive and interactive view
of results from an extensive, systematic search and curation effort of several hundreds of
global initiatives, clinical trial registries, and scientific articles. We prioritized the collected
studies based on different criteria, including (i) number of patients, (ii) data availability,
(iii) measured variables (e.g., ICU, clinical, laboratory), (iv) one-time measurements (cross-
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sectional data) or multiple-time measurements (longitudinal data). Next, based on the study
rank, the corresponding principal investigators (PIs) were contacted to acquire the datasets
of interest. Since the data structure and format of a study are defined based on the study’s
goal and the available resources, they are not compatible with each other, nor are they
directly usable for downstream applications. Thus, in the last step, the acquired datasets
were harmonized, normalized, and curated to be applicable for machines to develop and
train COVID-19 personalized predictive models. Finally, the presented resource lays the
groundwork for modeling approaches that support the identification of patient-specific
risk factors, which can ultimately improve our understanding of the disease.

2. Materials and Methods

The major objective of this work was to generate a comprehensive data catalogue that
contains the data and variables necessary to model the individual progression of COVID-19.
To reach our goal, we designed a workflow with five main steps, namely: (1) study
selection, (2) data investigation and quality assessment, (3) data acquisition, (4) data
curation, harmonization, and variable mapping, and (5) dataset preparation (Figure 1). The
corresponding activities of each step are described in Sections 2.1–2.5.
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The workflow represented in Figure 1 includes five major steps from study selection
to the preparation of datasets for machine learning pipelines. Detailed explanations of each
step are described in the corresponding subsections below.

2.1. Study Selection

Studies included in our data catalogue were identified via four different routes:
global initiatives, clinical trial repositories, publications, and data repositories. The cata-
logue is available at https://github.com/SCAI-BIO/covid-data-catalogue (accessed on 7
June 2023).

https://github.com/SCAI-BIO/covid-data-catalogue
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Global initiatives
These encompass (i) COVID-Analytics (https://covidanalytics.io/dataset, accessed

on 27 November 2020), a group of researchers from the MIT Operations Research Center,
(ii) COVID-NMA (https://covid-nma.com/, accessed on 27 November 2020), (iii) COVID-
evidence (https://covid-evidence.org/database, accessed on 27 November 2020), a contin-
uously updated database of worldwide evidence on interventions for COVID-19, (iv) the
COVID-19 Data Catalogue (https://datacatalog.worldbank.org/story/covid-19-data, ac-
cessed on 27 November 2020), (v) the Global Health Drug Discovery Institute (GHDDI)
(http://www.ghddi.org/, accessed on 27 November 2020), a transformative drug discov-
ery and translational platform, and (vi) CORONAWHY (https://www.coronawhy.org/,
accessed on 27 November 2020), a globally distributed, volunteer-powered research orga-
nization attempting to assist the medical community in answering key questions related
to COVID-19.

2.1.1. Clinical Trials Repositories

Clinical trial repositories include Clinical Trials Map (HeiGIT) (https://apps.heigit.
org/covid-19-map-of-hope/clinical_trials.html, accessed on 27 November 2020), Chinese
Clinical Trial Registry (ChiCTR) (http://www.chictr.org.cn/abouten.aspx, accessed on 27
November 2020), and the WHO-International Clinical Trials Registry Platform (ICTRP)
(https://www.who.int/clinical-trials-registry-platform, accessed on 27 November 2020),
a meta-repository of registered trial information from more than 20 registries worldwide.
The ICTRP provided structured information for 4957 COVID-19-related trials (retrieved on
14 August 2020), including the number of participants, contact address, intervention, and
study type. However, not all of the trials are relevant for us as we need those that provide
longitudinal data on COVID-19 progression for at least more than 100 participants. Based on
these minimum criteria, we classified the trials into highly relevant, relevant, less relevant,
and not relevant, of which only the first three trial types were added to our data catalogue.
The classes and their corresponding criteria are summarized below. The complete list of
criteria as well as different outcome measures is provided in Supplementary Table S1.

Highly relevant: Studies with at least 2 outcome measures, high participant rates,
interventional studies, studies with longitudinal data, and those with our outcome
of interest (e.g., studies containing data of ICU or respiratory intermediate care unit
(RICU) participants).

Relevant: Studies with 1 or 2 outcome measures or with a target outcome of medium
interest (e.g., identification of COVID-19, mortality).

Less relevant: Studies with highly specific subject groups (e.g., pregnant women,
cancer patients, healthcare workers).

Not relevant: Studies with no follow-up, very short time frames, cross-sectional
studies, and studies with no target outcomes.

We would like to highlight that studies that met two or more criteria were ranked
based on the combination of the criteria. Moreover, for the relevant studies that were
identified, information on the (expected) completeness of the study and the data of contact
persons (typically the PI) were also collected.

As the ICTRP platform does not contain all the details required to select relevant
studies (e.g., contact data, outcome measure, and study status) and is seldom updated after
the first registration, information was also collected from the individual registries included
in the ICTRP. For example, in order to identify clinical trials described in the ChiCTR
(http://www.chictr.org.cn, accessed on 27 November 2020), we first identified all studies
with a Chinese clinical trial repository ID (ChiCTR followed by 10 digits) described in the
ICTRP as of 27 November 2020 (https://www.who.int/clinical-trials-registry-platform,
accessed on 27 November 2020), which resulted in 789 COVID-19-related clinical trials. The
ChiCTR was used to obtain additional information for criteria missing from the ICTRP,
such as secondary outcomes. The following steps were applied to narrow the list of studies
from 789 studies (selected based on relevant criteria):

https://covidanalytics.io/dataset
https://covid-nma.com/
https://covid-evidence.org/database
https://datacatalog.worldbank.org/story/covid-19-data
http://www.ghddi.org/
https://www.coronawhy.org/
https://apps.heigit.org/covid-19-map-of-hope/clinical_trials.html
https://apps.heigit.org/covid-19-map-of-hope/clinical_trials.html
http://www.chictr.org.cn/abouten.aspx
https://www.who.int/clinical-trials-registry-platform
http://www.chictr.org.cn
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1. Nearly all studies that specified the different participant subgroups provided the
number of subjects in each of them (e.g., intervention group: 80; control group: 80),
and we considered the total number of participants as the sum of participants across
all subgroups. Thus, we were able to select a subset of 288 studies out of a total of 789,
with at least 100 or more participants, to satisfy the criteria described above.

2. Studies canceled/retracted for any reason (e.g., due to a lack of participants) were
removed from the list of target studies (i.e., 47 studies were removed in total).

3. Sequential, cross-sectional, and dose comparison studies were excluded, as were
studies with a factorial study design.

4. The remaining clinical trials (233) were checked and ranked in terms of relevance as
per the criteria described above.

Of the studies obtained from the ChiCTR, 32 studies were noted as highly relevant
for AI-based risk modeling as of 1 December 2021. One limitation of the ChiCTR was
the absence of information on study completeness. To overcome this limitation, trial
identifiers were cross-checked in EUROPE PMC and PubMed: if publications on these
trials could be found, we considered the studies to have intermediate results and took them
into consideration. The publications retrieved also contained review articles discussing
several trials, including the trial originally searched. These articles were removed and only
the ones directly describing a particular study were considered as trial publications. In
many cases, results may be published at a later date or may not be published at all. In
addition, although longitudinal trials may not yet be completed, they may contain valuable
intermediate results.

By comparing the trials from the ICTRP with the ones selected earlier (i.e., based on
sources used in previously described efforts, such as our text mining approach), we noted
that 25 CHiCTR trials were already included in the data catalogue, of which 13 would
have been excluded when applying our abovementioned criteria (i.e., either the number
of subjects was below 100 or the study design was sequential), 3 were marked as highly
relevant, and 6 as relevant.

Additionally, we have collected publications that refer to COVID-19 clinical trial
information. This more comprehensive search for publications on completed clinical trials
was conducted by our in-house text mining tool, SCAIView, using the clinical trial identifier
tagger with a text mining approach. We have generated a clinical trial identifier tagger
that enabled us to search for all clinical trial IDs, e.g., clinicaltrials.gov: NCT + 8 numbers
(e.g., NCT04299152) or Chinese clinical trial registry: ChiCTR + 10 numbers. Using this
clinical trial identifier tagger, we have searched the CORD19 corpus and Medline 2020. As
a result, we obtained 12,247 publications that refer to 4540 studies from 17 different clinical
trial repositories. Several papers referring to multiple studies and 4442 publications in
CORD19 containing literature on clinical trials from before 2020 were removed. Additional
search criteria, such as “clinical outcome”, were also added in SCAIView. Please see the
Supplementary Materials.

Overall, we have manually inspected each of these trials and selected 298 studies that
could potentially be used for AI application based on the number of participants (more
than 100), completion date (or intermediate results available before September 2021), and
study type (e.g., longitudinal).

2.1.2. Publications

From the start of the pandemic, a wide spectrum of studies that focus on different
aspects, such as COVID-19-related risk factors [17] and its treatment [9], have been pub-
lished. However, we aimed to gather studies that are useful in developing predictive risk
models in which the collection of longitudinal data is one of their main characteristics.
Thus, to narrow down the publication search domain, we defined longitudinal data as one
of our main keywords. In addition, in order to minimize false positive hits, we used ‘risk
modeling’ and ‘prediction analysis’ as other keywords. Taken together, we applied the
search paradigms ‘longitudinal data’, ‘prediction analysis’, ‘risk modeling’, ‘COVID-19’,
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and ‘SARS-CoV-2’ to PubMed in order to identify work that was done in the context of
COVID-19 risk prediction modeling.

In parallel to the collection of studies with any of the abovementioned keywords, we
also searched for publications in PubMed applying the search paradigms ‘serology’ and
‘serological profiling’ to specifically identify COVID-19-related articles with serological
information. We set the goal of collecting serological surveys and investigating their meta-
data because these data are important for evaluating relevant factors, such as the extent and
duration of immunity to SARS-CoV-2 infection or possible cross-immunity. Furthermore,
serological data are required to determine seroprevalence and to detect previously unde-
tected asymptomatic infections. Another pertinent aspect is the investigation of serological
details such as the study design, laboratory methods, and outcome measures in relation to
demographic factors in order to predict the risk of infection and the severity of the disease
for different populations in society.

2.1.3. Data Repositories

Studies included in our data catalogue were also identified through major data reposi-
tories, including Lean European Open Survey on SARS-CoV-2-infected patients (LEOSS),
BBMRI-ERIC, and European Clinical Research Infrastructure Network (ECRIN).

(1) LEOSS (https://leoss.net/, accessed on 27 November 2020) is a clinical patient registry
for patients infected with SARS-CoV-2 established by the joint effort from the EITaF
and the German Society for Infectious Diseases. It comprises patient data from the
LEOSS cohort, including patients on whom invasive ventilation was performed, and
variables such as age, gender, month of diagnosis, outcome, and the presence of
administered vasopressor agents.

(2) BBMRI-ERIC (https://www.bbmri-eric.eu/, accessed on 27 November 2020) is a
European research infrastructure for biobanking integrating information and associ-
ated samples from over 60 organizations in 20 countries to store all types of human
biological samples, such as blood, tissue, cells, or DNA.

(3) ECRIN (https://ecrin.org/, accessed on 27 November 2020) is a nonprofit organi-
zation that regulates multinational clinical trials by linking scientific partners and
networks across Europe.

In general, studies that evaluated different measurement categories, such as ICU,
clinical, and laboratory, in a longitudinal manner were included in the data catalogue.
However, some studies with cross-sectional data may also have been included considering
the outcome of the study.

2.2. Data Investigation and Quality Assessment

The metadata information contained in the resulting data catalogue was manually
extracted by ten independent curators and added to the data catalogue template. The
spectrum of curated metadata covers numerous fields, including study reference and title,
study location, the number of subjects, study type, data type, study duration, existence of a
variable category, and measured variables for a particular category (the full list of metadata
is available at https://github.com/SCAI-BIO/covid-data-catalogue (accessed on 7 June
2023)). The data catalogue template was predefined based on the initial set of 15 studies.
However, new fields were subsequently added to accommodate the information extracted
from additional studies. Furthermore, we conducted a quality control step where entries
were reviewed by multiple curators to exclusively retain those studies that fulfilled our
criteria, including data availability, the number of subjects, phase of the study (completed
studies in the context of clinical trials), contact information availability, useful data in the
context of the measured variables and the number of follow-up measurements.

2.3. Data Acquisition

The studies included in the data catalogue were divided into 3 priority levels based
on various criteria, including (i) the number of patients, (ii) data availability, (iii) measured
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variables (e.g., ICU, clinical, laboratory), and (iv) the number of follow-up measurements.
Studies with longitudinal data, a substantial number of patients (e.g., 1000 or more),
variable types, including ICU, clinical, and laboratory features, and data availability were
assigned the highest priority level. Similarly, the studies with longitudinal data, patients
within a range of one hundred to one thousand, variable types such as ICU, clinical, and
laboratory features, and data availability were assigned the second highest priority level,
while the remaining studies were considered as the third priority. Then, based on the
study rank, the corresponding PI(s) of the studies with the highest priority were contacted
in the first round and the other two priorities were contacted in the second and third
rounds, respectively.

2.4. Data Curation, Harmonization, and Variable Mapping

From the start of the COVID-19 pandemic, numerous regional, national, and interna-
tional studies have been performed, each of which provides important insights into the
disease. To develop a robust personalized predictive risk model, these studies should be
semantically interoperable and the data points used by these datasets need to be normal-
ized. However, a global standard data model that comprises all COVID-19-related terms is
not available as of now. Therefore, we have used three controlled vocabularies to establish
the interoperability and mapping towards various datasets and data points, namely, the
German Corona Consensus Dataset (GECCO) [18], the COVID-19 Ontology [19], and the
Corona Virus Vocabulary (COVOC) (https://github.com/EBISPOT/covoc/raw/master/
covoc.owl, accessed on 27 November 2020).

However, assessing this interoperability is not straightforward as the studies inves-
tigated neither followed a common naming system for variables nor represented values
of the same measurement in an equal manner. For example, variable names in individual
datasets may be in different languages based on the origin of the study. Moreover, units of
measurements in different datasets may also differ. For example, while hemoglobin may be
measured based on a mole per volume in one dataset, it may be measured based on grams
per deciliter in another dataset. In addition, even if an overlap does exist between two
variables, they may not be the same. For instance, while in a dataset the age of a sample
might be explicitly mentioned, in another dataset it is implicit in the date of birth and thus
must be inferred to enable data interoperability.

To enable a meaningful and comparable assessment of data interoperability, harmo-
nization and variable mappings have been performed in two steps:

1. Variable name normalization: All non-English variable names were translated into
English using common translators. Next, a native speaker checked whether the
original variable names and their translations were correct.

2. Variable mapping: Mapping of variables was performed in a semi-automatic way.
First, the variables of datasets were mapped using the tidystringdist string-matching
package in the R programming language. The tidystringdist package calculates the
distance between variables (all against all) of datasets (pairwise) in the range of
zero (completely similar) and 1 (completely different). Next, the variables whose
distance was more than 0.25 were filtered. This threshold was selected after a manual
investigation of the variable mapping results of multiple datasets. We found that
the proportion of correct mapped variables with a distance less than 0.25 was the
highest among all other tested thresholds. Then, the mapped variables were manually
investigated by a trained curator to check whether they indicated the same concept
(flagged 1, otherwise 0). Finally, the number of mapped variables that were flagged as
1 was considered as an interoperability score of two datasets.

After the harmonizing and variable mapping procedure, the mapped and unmapped
variables were added to our variable mapping catalogue. Using this catalogue, we have
extended the ontology that reuses the provided GECCOplus data model and dataset
(https://art-decor.org/art-decor/decor-project--covid19f, accessed on 27 November 2020).
Using this ontology, we enable data stewards or data scientists to map variables from

https://github.com/EBISPOT/covoc/raw/master/covoc.owl
https://github.com/EBISPOT/covoc/raw/master/covoc.owl
https://art-decor.org/art-decor/decor-project--covid19f
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new clinical datasets to concepts in our data model via the web-based INDAST Tool
(http://coperimo.mevis.fraunhofer.de/ (accessed on 7 June 2023)). The main goal of the
INDAST Tool is to provide a platform for sharing and harmonizing new clinical datasets
(not only in the COVID-19 context) as input for machine learning pipelines.

2.5. Dataset Preparation for Machine Learning Pipelines

The ability to build a generalizable, (personalized) predictive machine learning model
based on given data is dependent on a number of criteria (Table 1). In this table, we
define several important criteria and assess the AI readiness of the acquired datasets based
on them.

Table 1. AI-readiness criteria. This table summarizes the criteria that are used to evaluate the AI
readiness of the dataset.

Dataset

Criteria
Quality

Low Medium High

Number of patients - - -

Completeness of data - - -

Number of features in relation to the number
of patients - - -

Event rate (i.e., the fraction of patients with
complete longitudinal follow-up and, thus,
recorded events)

- - -

Objectiveness of the clinical outcome (i.e., is
clinical outcome a subjective or
physician-dependent variation?)

- - -

For the general support of downstream AI tasks and dataset AI-readiness evaluation,
we performed basic data cleaning and preprocessing and compiled a data dictionary. See
details in the Supplementary Materials.

2.6. Visualization and COVID-19 Data Viewer

We have developed an interface to facilitate access to the curated metadata of the
datasets included in the COVID-19 data catalogue. This interface summarizes the most
important metadata, such as measured features, and provides a means to obtain access
to the datasets. The web application was implemented in Python using Flask and several
JavaScript libraries for visualization purposes including D3.js, DataTables, and DataMaps.

3. Results
3.1. Data Catalogue Content

The data catalogue includes information on around 500 studies that were extracted
from different sources:

Global initiatives. In total, 287 studies were collected from the global initiatives’
sources (COVID-Analytics: 202, COVID-NMA: 64, COVID-Evidence: 21) in which after
curation (i.e., omitting duplicates and studies without contact information), 224 studies
were added to our data catalogue (Figure 2).

Three main sources including global initiatives, clinical trials, and publications were
investigated. Over 7000 studies were investigated, from which, following curation, around
500 studies were added to the data catalogue.

Clinical trials. Until 27 November 2020, around 6800 clinical trials were registered
in different registers worldwide, e.g., ClinicalTrials.gov: 3327, ChiCTR: 762, CTRI: 514,
IRCT: 337 (Figure 2). After extracting information from all these clinical trials such as the
number of participants, contact address, study type (e.g., interventional, observational),
study phase (e.g., recruiting, completed), and data type (cross-sectional, longitudinal),

http://coperimo.mevis.fraunhofer.de/
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207 trials were selected to be added to our data catalogue. The chosen trials were selected
based on multiple criteria, including: (i) a minimum of 100 participants, (ii) the availability
of clinical/ICU data, (iii) the availability of longitudinal data, and (iv) the completeness of
the studies.

Data 2024, 9, x FOR PEER REVIEW 9 of 19 
 

 

3. Results 
3.1. Data Catalogue Content 

The data catalogue includes information on around 500 studies that were extracted 
from different sources:  

Global initiatives. In total, 287 studies were collected from the global initiatives’ 
sources (COVID-Analytics: 202, COVID-NMA: 64, COVID-Evidence: 21) in which after 
curation (i.e., omitting duplicates and studies without contact information), 224 studies 
were added to our data catalogue (Figure 2).  

 
Figure 2. Number of studies from different sources included in the data catalogue. 

Three main sources including global initiatives, clinical trials, and publications were 
investigated. Over 7000 studies were investigated, from which, following curation, 
around 500 studies were added to the data catalogue. 

Clinical trials. Until 27 November 2020, around 6800 clinical trials were registered in 
different registers worldwide, e.g., ClinicalTrials.gov: 3327, ChiCTR: 762, CTRI: 514, IRCT: 
337 (Figure 2). After extracting information from all these clinical trials such as the number 
of participants, contact address, study type (e.g., interventional, observational), study 
phase (e.g., recruiting, completed), and data type (cross-sectional, longitudinal), 207 trials 
were selected to be added to our data catalogue. The chosen trials were selected based on 
multiple criteria, including: (i) a minimum of 100 participants, (ii) the availability of 
clinical/ICU data, (iii) the availability of longitudinal data, and (iv) the completeness of the 
studies.  

Publications. Altogether, 145 studies were gathered from PubMed, bioRxiv, and 
medRxiv using different combinations of SARS-CoV-2, COVID-19, machine learning, 
survival analysis, longitudinal data, and clinical data keywords. Out of the 145 studies, 
121 remaining after curation were added to our data catalogue (i.e., omitting duplicate 
studies, those with missing contact information, and studies with explicit mentions that 
the data cannot be shared) (Figure 2).  

3.2. Studies Overview  
Not all studies included in the data catalogue addressed the same study goal, thus, 

the same variables were not consistently observed across these studies. For example, while 
some studies were designed to answer specific questions on interventions and included 

Figure 2. Number of studies from different sources included in the data catalogue.

Publications. Altogether, 145 studies were gathered from PubMed, bioRxiv, and
medRxiv using different combinations of SARS-CoV-2, COVID-19, machine learning, sur-
vival analysis, longitudinal data, and clinical data keywords. Out of the 145 studies,
121 remaining after curation were added to our data catalogue (i.e., omitting duplicate
studies, those with missing contact information, and studies with explicit mentions that the
data cannot be shared) (Figure 2).

3.2. Studies Overview

Not all studies included in the data catalogue addressed the same study goal, thus,
the same variables were not consistently observed across these studies. For example, while
some studies were designed to answer specific questions on interventions and included
drugs as important variables, other studies investigated COVID-19 risk factors, and thus,
other types of variables, such as demographics and comorbidities, were considered in them.
Figure 3 displays different types of variables that were measured in the studies included in
the data catalogue. While clinical and laboratory variable types are the two most commonly
measured variables, imaging variables are the least common.

As shown in Figure 3, the clinical and laboratory variables are the two most measured
features from over 150 studies.

Similarly, several associated COVID-19 clinical and laboratory variables, such as
blood oxygen saturation, respiratory rate, neutrophils, lymphocytes, platelets and D-dimer
have been reported [20,21]. However, not all of them were measured across the studies
that are included in our data catalogue. The charts below (Figures 4 and 5) display the
number of studies in which not only these variables but also some other important variables
were observed.
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Figure 5. Distribution of different laboratory variables from over 50 rank one and two priori-
tized studies.

As we can see in Figure 4, the X-axis shows the more common clinical variables, and
the Y-axis shows the number of studies in which these variables were measured. Heart
rate and body temperature are the two most measured features from over 150 studies, with
measurements observed in 10 collected studies.

In Figure 5, the X-axis shows common laboratory variables while the Y-axis shows the
number of studies in which each of the variables was measured.
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3.3. Data Acquisition Outcome

Study contacts (PIs) of collected studies were contacted in two rounds. In the first
round, a data request email was sent (organized via a professional CRM system) to
552 contacts, of which 319 were from China. As we received a limited response from
the contacts of each of these studies, we performed a second round of email campaigning
to 225 PIs who had not responded in the first round. In a third attempt, study contacts from
50 studies from rank one and two studies based on specific study regions (i.e., USA and
European countries) and number of participants (i.e., more than 100) were prioritized and
contacted directly via email. Overall, from the 552 data collection requests that were sent,
only 15 replies were received, and the acquisition of exclusively 4 datasets was successful.

3.4. Summary of Harmonization and Variable Mapping

While a wide range of studies have been performed since the start of the pandemic, not
all of them have had the same goal and study design, and thus, their measured variables
are different. For example, while in LEOSS and Medical Information Mart for Intensive
Care (MIMIC) [22] studies, a wide range of features, such as clinical, ICU, laboratory, drug,
and comorbidities have been measured in other studies, such as data from COVID-19
patients from the Aachen and Frankfurt university clinics, ICU and laboratory features
are the main measured features. To better assess the interoperability of the collected
studies, we harmonized and mapped the corresponding variables of the studies to GECCO,
COVOC, and the COVID-19 ontology (see Section 2.4). Table 2 represents the overview of
interoperability evaluation by summarizing the number of features in individual studies
and the number of common concepts between certain pairs of studies.

Table 2. Overview of the number of concepts in individual studies and the number of common
concepts between pairs of studies.

Dataset Total Number of
Concepts Dataset Total Number of

Concepts
Common
Concepts

GECCO 967 LEOSS 2125 313

GECCO 967 Aachen 96 25

GECCO 967 COVID-19
Ontology 2268 162

GECCO 967 Coronavirus
Vocabulary 455 76

GECCO 967 Erlangen 530 18

GECCO 967 Frankfurt 74 4

GECCO 967 MIMIC 10,981 212

GECCO 967 MC-19 106 24

GECCO 976 Aachen 96 25

LEOSS 2125 Aachen 96 0

Erlangen 530 Aachen 96 16

Frankfurt 74 Aachen 96 8

Erlangen 530 Aachen 96 16

3.5. Dataset Preparation for Machine Learning Pipelines

As a showcase, Table 3 summarizes the AI-readiness evaluation of one of the acquired
datasets, Major Determinants of COVID-19-Associated Pneumonia study (MC-19), by inves-
tigating some of its main characteristics (Figures 6–9). The procedure for the preprocessing
of the dataset from this study is provided in the Supplementary Materials.
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Table 3. AI-readiness evaluation table for the MC-19 dataset.

MC-19

Criteria
Quality

Low Medium High

Number of patients x

Completeness of data x

Number of features in relation to the number
of patients x

Event rate (i.e., the fraction of patients with
complete longitudinal follow-up and, thus,
recorded events)

x

Objectiveness of the clinical outcome (i.e., is
clinical outcome a subjective or
physician-dependent variation?)

x
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MC-19, sponsored by the Catholic University of the Sacred Heart in Italy, is an obser-
vational study (case-control) to assess if samples with negative tests in laboratory testing
for COVID-19 suffering from pneumonia are positive in the serology for SARS-CoV-2.
Moreover, the investigators aimed to identify patients with initially negative laboratory
tests for COVID-19 with the help of serology measurements and CT scans.

Sample size and event rate: We visualized the longitudinal hospitalization of the
patients and thus, by extension, the patient hospitalization outcome (i.e., discharged or
died) over the course of hospitalization. While the hospitalization time was less than
14 days for most patients, some stayed up to 50 days in the hospital (Figure 6).

The chart illustrates the duration of hospitalization (in days) for patients in the MC-19
study and, thereby, inherently patient hospitalization outcomes (i.e., discharged or died).
For most patients, hospitalization time was less than 14 days.

While MC-19 has 319 samples, hospitalization outcome was only recorded for 304 sam-
ples (i.e., event rate = 95%); thus, the further downstream data-driven modeling would be
limited to 304 samples. Although meaningful findings could be extracted from a dataset
with only hundreds of samples, due to the limited sample size, the findings may not be
reliable and affect the model’s generalizability. For example, investigating MC-19 shows
a high risk of fatality in samples with a body mass index (BMI) lower than 20 and higher
than 30 (Figure 7), which has also been shown in other studies [23]. However, due to the
limited number of patients with the aforementioned BMI in MC-19, this finding cannot
be generalized.

The bars in the figure depict the percentage of patients for a range of BMIs, while the line
graph displays information on the fatality rate for these patients. The fatality rate for patients
with a BMI less than 20 or greater than 30 is the highest among all other BMI ranges.
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Data completeness: A wide range of variables, including drug, demographics, lab-
oratory, serology, imaging, ICU, and clinical variables were measured for this study
(Figures 8 and 9). We investigated the proportion of missing values for some of the longitu-
dinal (Figure 8) and static variables (Figure 9). While the proportion of missing values in
static variables except “smoking” and “pneumonia” is not considerable, the proportion for
longitudinal variables is significant. For example, measurements for “hemoglobin”, “hema-
tocrit”, and “Sio2” were not taken in half of the patient’s hospitalization time in almost 50%
of patients. This much missing data could make a dataset unsuitable for applying statistics
and further disease modeling.

From Figure 8 we can see that hemoglobin, hematocrit, and Sio2 were not measured
in half of the patient’s hospitalization time in almost 50% of patients. However, PAS, PAD,
and Fio2 were measured for more than half of the patient’s hospitalization time in almost
95% of patients.

In Figure 9, the X-axis shows static variables, and the Y-axis shows the number of
missing values for each variable. Smoking and pneumonia status are missing for more than
30% of patients.

The first effort to aggregate cohorts: As the final target for making datasets ready
for advanced algorithms is the aggregation of several cohorts to generate a consistent
but expanded dataset for modeling applications, we attempted to integrate two of the
sampled cohorts (MC-19 and Presurv [24]) into a new one (Merged). This effort required
the fulfillment of several criteria to be technically and ethically successful. First, only
“matchable” variables were mapped and considered for aggregation (38 variables). Second,
patient identifiers and all related demographic variables remained unchanged during
the merging process. Third, visit dates were altered, removing their time notations and
transforming them to an additional variable, “hospitalization days” (i.e., days spent in
hospital since initial hospitalization). Finally, we annotated the provenance to maintain
track of the original entries. With these basic principles in mind, we generated the Merged
cohorts. Our expectation of the Merged cohort may sound counterintuitive: we could not
expect, for instance, a reduction in the absolute number of missing values, though we did
expect a more coherent and less dispersed distribution of variable values, which we indeed
found, as summarized in Table 4. Indeed, measuring the absolute distribution around
the median (MAD), we found that the Merged cohort was more coherent and with fewer
outliers than the original individual cohorts for more than 58% of the aggregated variables.
Naturally, for half of the variables, Merged showed a lower MAD value than MC-19, while
for the other half of the variables, Merged was more coherent with respect to the Presurv
cohort. These values were somewhat surprising as, while we could anticipate that variable
ranges would be less dispersed in the Merged cohort with respect to the original individual
ones, we did not expect that they would be to the degree we observed. How much this
behavior is general and extendable to all cohorts is beyond the scope of the present paper
and we will perform a deeper analysis of this in the future.

Table 4. Summary of MAD values for matched numeric variables of differing provenance.

Sr. Term
MAD (Median Absolute Deviations) Statistics

MC-19 Merged Presurv

1 Hospitalization days 10.4 10.4 3.0

2 Eosinophils count 0.1 0.1 0.0

3 Total proteins 8.9 7.4 6.8

4 Procalcitonin 0.2 0.1 0.1

5 Alkaline phosphatases 28.6 28.2 26.7
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Table 4. Cont.

Sr. Term
MAD (Median Absolute Deviations) Statistics

MC-19 Merged Presurv

6 Hematocrit 6.1 5.5 4.7

7 Eosinophils percentage 1.2 0.9 0.1

8 Monocyte count 0.2 0.2 0.2

9 Sodium 4.4 4.3 4.2

10 Platelets count 123.1 118.6 101.6

11 Gamma-glutamyl
transpeptidase 32.6 26.7 22.2

12 Interleukin 6 35.6 28.7 25.8

13 Neutrophil count 3.7 4.3 4.7

14 Monocytes percentage 2.2 2.8 4.3

15 Ferritin 570.1 678.9 706.0

16 Neutrophils percentage 12.6 15.9 17.6

17 Lymphocytes percentage 10.1 12.0 12.9

18 Potassium 0.6 0.6 0.7

19 pH 0.0 0.1 0.7

20 WBC 4.2 4.6 4.7

21 RBC 0.7 0.7 0.7

22 HCO3 3.0 3.4 3.7

Table 4 reports a set of 22 variables present in each of the cohorts (58% of 38 total
numeric variables). Lower MAD deviations from the median signify that cohort aggregation
helped make variables more coherent or closer to the median.

3.6. COVID-19 Datasets Visualization

The COVID-19 data viewer (https://www.coperimoplus.eu/en/data-models/data.
html, accessed on 27 November 2020) summarizes the most important metadata, such
as measured features, and facilitates accessing the datasets and visualizing the relative
number of collected studies in the data catalogue based on their geographic location
(Figure 10). Based on the geographic distribution of studies, the number of collected studies
from European countries, such as Sweden and Russia, as well as countries from South
America, such as Brazil, is greater compared with other locations. Furthermore, we released
the underlying data at https://github.com/SCAI-BIO/covid-data-catalogue (accessed on
7 June 2023).

The relative number of studies in each country is highlighted in blue. The underlying
data are available at https://github.com/SCAI-BIO/covid-data-catalogue/blob/main/
data/general.tsv (accessed on 7 June 2023).

https://www.coperimoplus.eu/en/data-models/data.html
https://www.coperimoplus.eu/en/data-models/data.html
https://github.com/SCAI-BIO/covid-data-catalogue
https://github.com/SCAI-BIO/covid-data-catalogue/blob/main/data/general.tsv
https://github.com/SCAI-BIO/covid-data-catalogue/blob/main/data/general.tsv
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4. Discussion

Our data catalogue provides information on around 500 studies on COVID-19, iden-
tified from manuscripts, clinical trials, and global initiatives. The organization of these
studies supports the development of personalized predictive models and the broad inves-
tigation of disease risk factors, which, in turn, may lead to opportunities for therapeutic
interventions. The data catalogue involved significant curation, harmonization, and eval-
uation of datasets that were not free of challenges. The challenges are discussed in three
main groups, including sociological and technical and AI-readiness evaluation.

Ethical and sociological challenges: While we submitted data access requests to more
than 500 PIs, only a handful of them shared their data. There were multiple reasons why
we could not get access to some of the cohorts. First, the majority of data owners did not
reply to our inquiries despite the multiple follow-up emails sent over the course of several
months and even despite attempts to connect via business networks and social media.
Second, legal issues during the data sharing process hindered our access to datasets. Third,
ethical considerations also hampered access to datasets. Participant data can potentially be
associated with their identity and, accordingly, data sharing poses a risk of identification
of participants as well as stigmatization and discrimination, which ultimately prevents
data owners from sharing their data. Hence, the privacy interests of participants are also
important considerations to be made.

Technical challenges: The lack of interoperability across datasets impedes the develop-
ment of harmonized datasets as each of the datasets was established without the use of
controlled vocabularies for consistent feature naming. Thus, even if the same feature was
collected in two studies, it would be referred to in different terms, severely impeding the
direct comparison of datasets and validation of findings across disparate cohorts.

AI-readiness evaluation: The readiness of a dataset for AI purposes can be evaluated
based on multiple criteria, each of which is highly situation-dependent. For example, while
hundreds of samples can lead to a good performance using a simple linear AI algorithm
aimed at predicting the true relationship between patient-specific characteristics and the
endpoint, a nonlinear AI algorithm, such as neural networks, may require thousands of
samples. Moreover, the number of samples in a dataset should be representative of the
entire disease population. Thus, modeling approaches that are based on a few hundred
samples might not represent the heterogeneity of the entire population. Given these two
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aforementioned points, while the MC-19 dataset can be used for simple time-to-event
models, it might not be practical to be used with powerful AI algorithms for personalized
predictive models as it has a limited number of samples. In addition, it is important to
consider the completeness of the data as it is generally consistent over all the features in a
dataset. Thus, removing missing values, imputing missing values, and removing features
with a high number of missing values would be three potential solutions. While the first
solution (i.e., removing missing values) may influence the number of features in relation
to the number of patient criteria, the second option (i.e., imputation) could lead to model
inaccuracy and affect the model robustness. Removing the features with a high proportion
of missing values could also lead to losing a lot of information, which, in turn, causes
model unreliability. The applicability of MC-19 with approximately 50% missing values
specifically for variables with follow-up measurements highly depends on the type of the AI
algorithm. In contrast, one recent study [25] aimed at predicting COVID-19 mortality using
the LEOSS dataset—a dataset containing relatively fewer missing values (less than 50%)
and a broad range of modalities (i.e., demographics, clinical, drugs, laboratory, imaging,
comorbidities)—resulted in an AUC of approximately 80%. Taken together, for a dataset
to be “AI-ready”, which might need a lot of preprocessing work, is highly subjective, and
different factors should be taken into consideration.

5. Conclusions

In summary, the presented data catalogue organizes knowledge in the field of COVID-19
and provides a comprehensive overview of hundreds of studies, bringing together data
from various studies so that researchers can understand what has been measured, in what
population, and under what clinical context. The catalogue can be used for data-driven
COVID-19 model development, such as personalized predictive models. This first version of
the COVID-19 data catalogue involved significant curation and harmonization of information
from disparate studies. The data catalogue is complemented by a comprehensive web appli-
cation that provides interactive visualizations and tools to query the catalogued knowledge.

As this resource expands to capture all known data around COVID-19, we aim to
facilitate dataset interoperability by developing a comprehensive COVID-19 common data
model, which could support the alignment and mapping of variables by providing easy-to-
follow guidelines and a dedicated interface for retrospective data harmonization. This in
turn would facilitate more formal meta-analyses so that robust conclusions may be drawn
around the state of the field, leading to new hypotheses for future studies.

Supplementary Materials: The following supporting information can be downloaded at: https://
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