
Citation: tom Wörden, H.;

Spreckelsen, F.; Luther, S.; Parlitz, U.;

Schlemmer, A. Mapping Hierarchical

File Structures to Semantic Data

Models for Efficient Data Integration

into Research Data Management

Systems. Data 2024, 9, 24. https://

doi.org/10.3390/data9020024

Academic Editor: Kamran Sedig

Received: 15 August 2023

Revised: 8 December 2023

Accepted: 18 December 2023

Published: 26 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

data

Article

Mapping Hierarchical File Structures to Semantic Data
Models for Efficient Data Integration into Research Data
Management Systems
Henrik tom Wörden 1 , Florian Spreckelsen 1 , Stefan Luther 2,3,4,5 , Ulrich Parlitz 2,3,4

and Alexander Schlemmer 2,4,*

1 Indiscale GmbH, 37083 Göttingen, Germany; h.tomwoerden@indiscale.com (H.t.W.);
f.spreckelsen@indiscale.com (F.S.)

2 Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany;
stefan.luther@ds.mpg.de (S.L.); ulrich.parlitz@ds.mpg.de (U.P.)

3 Institute for the Dynamics of Complex Systems, Georg-August-Universität, 37077 Göttingen, Germany
4 German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, 37075 Göttingen, Germany
5 Institute of Pharmacology and Toxicology, University Medical Center Göttingen, 37075 Göttingen, Germany
* Correspondence: alexander.schlemmer@ds.mpg.de

Abstract: Although other methods exist to store and manage data in modern information technology,
the standard solution is file systems. Therefore, keeping well-organized file structures and file
system layouts can be key to a sustainable research data management infrastructure. However,
file structures alone lack several important capabilities for FAIR data management: the two most
significant being insufficient visualization of data and inadequate possibilities for searching and
obtaining an overview. Research data management systems (RDMSs) can fill this gap, but many
do not support the simultaneous use of the file system and RDMS. This simultaneous use can have
many benefits, but keeping data in RDMS in synchrony with the file structure is challenging. Here,
we present concepts that allow for keeping file structures and semantic data models (in RDMS)
synchronous. Furthermore, we propose a specification in yaml format that allows for a structured
and extensible declaration and implementation of a mapping between the file system and data
models used in semantic research data management. Implementing these concepts will facilitate the
re-use of specifications for multiple use cases. Furthermore, the specification can serve as a machine-
readable and, at the same time, human-readable documentation of specific file system structures. We
demonstrate our work using the Open Source RDMS LinkAhead (previously named “CaosDB”).

Keywords: research data management; FAIR; file structure; file crawler; semantic data model

1. Introduction

Data management for research is part of an active transformation, which is required
in order meet the needs of increasing amounts of complex data. Furthermore, the FAIR
guiding principles [1] for scientific data, which are an elementary part of numerous data
management plans, funding guidelines and data management strategies of research or-
ganisations (e.g., [2,3]), require scientists to review and enhance their established data
management workflows.

One particular focus of this endeavor is the introduction and expansion of research
data management systems (RDMSs). These systems help researchers organize their data
during the whole data management life cycle, especially by increasing findability and
accessibility [4]. Furthermore, semantic data management approaches [5] can increase
the reuse and reproducibility of data that are typically organized in file structures. As it
was pointed out in [4], one major shortcoming of file systems is the lack of rich metadata
features, which additionally limits search options. Typically, RDMSs employ database

Data 2024, 9, 24. https://doi.org/10.3390/data9020024 https://www.mdpi.com/journal/data

https://doi.org/10.3390/data9020024
https://doi.org/10.3390/data9020024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/data
https://www.mdpi.com
https://orcid.org/0000-0002-5549-578X
https://orcid.org/0000-0002-6856-2910
https://orcid.org/0000-0001-7214-8125
https://orcid.org/0000-0003-3058-1435
https://orcid.org/0000-0003-4124-9649
https://doi.org/10.3390/data9020024
https://www.mdpi.com/journal/data
https://www.mdpi.com/article/10.3390/data9020024?type=check_update&version=2

Data 2024, 9, 24 2 of 15

management systems (DBMSs) to store data and meta data, but the degree to which data is
migrated, linked, or synchronized into these systems can vary substantially.

The import of data into an RDMS typically requires the development of data integra-
tion procedures that are tied to the specific workflows at hand. While very few standard
products exist [6], in practice, mostly custom software written in various programming
languages and making use of a high variety of different software packages are used for data
integration in scientific environments. There are two main workflows for integrating data
into RDMSs: Manual input of data (e.g., using forms [7]) or facilities for the batch import
of data sets. The automatic methods often include data import routines for predefined
formats, like tables in Excel or CSV format [8,9]. Some systems include plugin systems to
allow for a configuration of the data integration process [10]. Sometimes, data files have
to be uploaded using a web front-end [11] and are afterwards attached to objects in the
RDMSs. In general, developing this kind of software can be considered very costly [6], as it
is highly dependent on the specific environment. Data import can still be considered one of
the major bottlenecks for the adaption of an RDMS.

There are several advantages for using an RDMS over organization of data in classical
file hierarchies. There is a higher flexibility in adding metadata to data sets, while these
capabilities are limited for classical file systems. The standardized representation in an
RDMS improves the comparability of data sets that possibly originate from different file
formats and data representations. Furthermore, semantic information can be seamlessly
integrated, possibly using standards like RDF [12] and OWL [13]. The semantic information
allows for advanced querying and searching, e.g., using SPARQL [14]. Concepts like
Linked Data [15,16] and FAIR Digital Objects (FDO [17]) provide overarching concepts
for achieving more standardized representations within RDMSs and for publication on
the web. Specifically, the FDO concept aims at bundling data sets with a persistent digital
identifier (PID) and its meta data to self-contained units. These units are designed to be
machine-actionable and interoperable, so that they have the potential to build complex and
distributed data processing infrastructures [17].

1.1. Using File Systems and RDMSs Simultaneously

Despite the advantages mentioned above, RDMSs have still failed to gain a widespread
adoption. One of the key problems in the employment of an RDMS in an active research
environment is that a full transition to such a system is very difficult: Most digital scientific
workflows are in one or multiple ways dependent on classical hierarchical file systems [4].
Examples include data acquisition and measurement devices, data processing and analysis
software, and digitized lab notes and material for publications. The complete transition to
an RDMS would require developing data integration procedures (e.g., extract transform
load (ETL) [6,18] processes) for every digital workflow in the lab and to provide interfaces
for in- and output to any other software involved in these workflows.

As files on classical file systems play a crucial role in these workflows, our aim is
to develop a robust strategy to use file systems and an RDMS simultaneously. Rather
than requiring a full transition to an RDMS, we want to make use of the file system as
an interoperability layer between the RDMS and any other file-based workflow in the
research environment.

There are two important tasks that need to be solved and that are the main focus of
this article:

1. There must be a method to keep data and meta data in the RDMS synchronized
with data files on the file system. Using that method, the file system can be used as
interoperability layer between the RDMS and other software and workflows. Our
approach to solving this issue is discussed in detail in Section 2.1. One key component
of the synchronization method is the definition of identity for data in the RDMS,
which is discussed in Section 2.3.

2. The high variety of different data structures found on the file system needs an adaptive
and flexible approach for data integration and synchronization into the RDMS. We

Data 2024, 9, 24 3 of 15

discuss our solution for this task in Section 2.2.1 where we present a standardized
but highly configurable format for mapping information from files to a semantic
data model.

Apart from the main motivation, described above, we have identified several ad-
ditional advantages of using a conventional folder structure simultaneous to an RDMS:
Standard tools for managing the files can be used for backup (e.g., rsync), versioning (e.g.,
git), archiving, and file access (e.g., SSH). Functionality of these tools does not need to
be re-implemented in the RDMS. Furthermore, the file system can act as a fallback in
cases where the RDMS might become unavailable. This methodology, therefore, increases
robustness. As a third advantage, existing workflows relying on storing files in a file system
do not need to be changed, while the simultaneous findability within an RDMS is available
to users.

The concepts described in this article can be used independent of a specific RDMS
software. However, as a proof-of-concept, we implemented the approach as part of the file
crawler framework that belongs to the LinkAhead [19,20] project (CaosDB was recently
renamed LinkAhead.). The crawler framework is released as Open Source software under
AGPLv3 (see Appendix A).

1.2. Example Data Set

We will illustrate the problem of integrating research data using a simplified example
that is based on the publication of [21]. This example will be used in Section 2 to demon-
strate our data integration concepts. Examples for more complex data integration, e.g., for
data sets found in the neurosciences (BIDS [22] and DICOM [23]) and in the geosciences,
can be found online (see Appendix B). Although the concept is not restricted to data stored
on file systems, we will assume for simplicity here, that the research data are stored on a
standard file system with a well-defined file structure layout:

ExperimentalData/
2020_SpeedOfLight/

2020-01-01_TimeOfFlight
README.md
...

2020-01-02_Cavity
README.md
...

2020-01-03
README.md
...

The above listing replicates an example with experimental data from [21] using a
three-level folder structure:

• Level 1 (ExperimentalData) stores rough categories for data, in this data acquired
from experimental measurements.

• Level 2 (2020_SpeedOfLight) is the level of project names, grouping data into inde-
pendent projects.

• Level 3 stores the actual measurement folders, which can also be referred to as “scien-
tific activity” folders in the general case. Each of these folders could have an arbitrary
substructure and store the actual experimental data along with a file README.md,
containing meta data.

The generic use case of integrating data from file systems involves the following
sub tasks:

1. Identify the required data for integration into the RDMS. This can possibly involve
information contained in the file structure (e.g., file names, path names, or file exten-
sions) or data contained in the contents of the files themselves.

Data 2024, 9, 24 4 of 15

2. Define an appropriate (semantic) data model for the desired data.
3. Specify the data integration procedure that maps data found on the file system (in-

cluding data within the files) to the (semantic) data in the RDMS.

A concrete example for this procedure including a semantic data model is provided
in Section 2.2. We discuss in Section 1.1 that there are already many use cases that can
benefit from the simultaneous use of the file system and RDMS. Therefore, it is important
to implement reliable means for identifying and transferring the data not only once, as a
single “data import”, but allowing for frequent updates of existing or changed data. Such
an update might be needed if an error in the raw data has been detected. It can then be
corrected on the file system and the changes need to be propagated to the RDMS. Another
possibility is that data files that are actively worked on have been inserted into the RDMS.
A third-party software is used to process these files and, consequently, the information
taken from the files has to be frequently updated in the RDMS.

We use the term “synchronization” here to refer to the possible insertion of new
data sets and to update existing data sets in the same procedure. To avoid confusion, we
want to explicitly note here that we are not referring to bi-directional synchronization.
Bi-directional synchronization means that information from RDMS that is not present in
the file system can be propagated back to the file system, which is not possible in our
current implementation. Although ideas exist to implement bi-directional synchronization
in the future, in the current work (and also the current software implementation), we focus
on the uni-directional synchronization from the file system to the RDMS. Extensions to
bi-directional synchronization will be discussed in the outlook in Section 3.4.2.

1.3. LinkAhead

In this section, LinkAhead and its data model will be briefly introduced, as this soft-
ware will be used for demonstrating our data integration concept. LinkAhead was designed
as an RDMS mainly targeted at active data analysis. So, in contrast to electronic lab note-
books (ELNs), which have a stronger focus on data acquisition, and data repositories,
which are used to publish data, data in LinkAhead are assumed to be actively worked on
by scientists on a regular basis. Its scope for single instances (which are usually operated
on-premises) ranges from small work groups to whole research institutes. Independent of
any RDMS, data acquisition typically leads to files stored on a file system. The LinkAhead
crawler synchronizes data from the file system into the RDMS. LinkAhead provides multi-
ple interfaces for interacting with the data, such as a graphical web interface and an API that
can be used for interfacing the RDMS from multiple programming languages. LinkAhead
itself is typically not used as a data repository, but the structured and enriched data in
LinkAhead serves as a preparation for data publication and data can be exported from the
system and published in data repositories. The semantic data model used by LinkAhead is
described in more detail in Section 1.3.1. LinkAhead is an open source software, released
under AGPLv3 (see Appendix A).

1.3.1. Data Models in LinkAhead

The LinkAhead data model is basically an object-oriented representation of data
which makes use of four different types of entities: RecordType, Property, Record and
File RecordTypes, and Properties define the data model, which is later used to store
concrete data objects, which are represented by Records. In that respect, RecordTypes and
Properties share a lot of similarities with ontologies, but have a restricted set of relations,
as described in more detail in [19]. Files have a special role within LinkAhead as they
represent references to actual files on a file system, but allow for linking them to other
LinkAhead entities and, e.g., adding custom properties.

Properties are individual pieces of information that have a name, description, op-
tionally a physical unit, and can store a value of a well-defined data type. Properties are
attached to RecordTypes and can be marked as “obligatory”, “recommended”, or “sug-
gested”. In case of obligatory Properties, each Record of the respective RecordType is

Data 2024, 9, 24 5 of 15

enforced to set the respective Properties. Each Record must have at least one RecordType
and RecordTypes can have other RecordTypes as parents. This is known as (multiple)
inheritance in object-oriented programming languages.

In Figure 1, an example data model is shown in the right column in a UML-like
diagram: There are three RecordTypes (Project, Person, and Experiment), each with
a small set of Properties (e.g., an integer Property called “year” or a Property re-
ferring to records of type Person called “responsible”). The red lines with a diamond
show references between RecordTypes, i.e., where RecordTypes are used as Properties in
other RecordTypes.

Person

.
├── DataAnalysis
│ └── 2019_ElementaryCharge
└──

└── 2020_SpeedOfLight
 ├── 2020-01-01_TimeOfFlight
 ├── 2020-01-02_Cavity
 └── 2020-01-03
 └── README.md

description: An example directory
responsible: Florian Spreckelsen
...

Project

Experiment

year: Integer
identifier: Text

Project: Project
date: Datetime
identifier: Text
description: Text
responsible: Person

lastName: Text
firstName: Text
emailAddress: Text
phoneNumber: Integer

ExperimentalData

Figure 1. Mapping between file structure and data model. Blue lines indicate which pieces of
information from the file structure and file contents are mapped to the respective properties in the
data model.

2. Results

We solved the issues described in Section 1.1 using a modular crawler system, which
is discussed extensively in this section. The main task of the crawler is to automatically
synchronize information found in the file system to the semantic RDMS. The modularity
of the crawler is achieved by providing a flexible configuration of synchronization and
mapping rules in a human- and machine-readable YAML format. Using these configuration
files (which we will refer to as CFoods), it is possible to adapt the crawler to heterogeneous
use cases. These crawler definitions will be described in Section 2.2. We assumed that a
semantic data model that is appropriate for the data structures has been created. As an
example, we discuss the data model that is shown in Figure 1 in the right column.

In order to be able to synchronize information from the file system with the RDMS,
a specification of the identity of the objects is needed. This will allow us to check which
objects are already present in the RDMS and, therefore, need an update instead of an insert
operation. Our concept, which is similar to unique keys in relational database management
systems, will be discussed in Section 2.3. Our implementation of the procedure, the
LinkAhead crawler, makes use of these concepts in order to integrate data into the RDMS.
Based on the example we introduced in Section 1.2, we will illustrate in the following
sections how the information from the file system will be mapped onto semantic data in
the RDMS.

Data 2024, 9, 24 6 of 15

2.1. The LinkAhead Crawler

Figure 2 provides an overview over the complete data integration procedure with the
LinkAhead crawler. In Step 1, the scanner uses the YAML crawler definition (Section 2.2)
to match converters to a given file system tree. From the information that is matched, a list
of LinkAhead Records with Properties is created. In Step 2, the crawler checks which of
these Records are already contained in LinkAhead in order to separate the list of Records
into a list of new Records and a list of changed Records. In order to complete this check,
it makes use of a given definition of Identifiables (Section 2.3). In Step 3 both lists are
synchronized with the LinkAhead server, i.e., all Records from the list of new Records are
inserted into LinkAhead and all Records from the list of changed Records are updated.
The data model (Section 1.3.1) is needed to write a valid YAML crawler definition and to
create the definition of Identifiables (Section 2.3). Furthermore, it is used by the LinkAhead
server directly.

Scanner

Crawler

YAML Crawler
Definition(Cfood)

used by

used by used by used by

used by Check for presence
and differences in

Filesystem

scans

List of LinkAhead Records
with Properties

... to create

... to create

Identifiables Definition
LinkAhead

List of new LinkAhead Records

List of changed LinkAhead Records

INSERTUPDATE

Data Model

1

2 3

Figure 2. Overview of the complete data integration procedure. See Section 2.1.

2.2. Mapping Files and Layouts into a Data Model

Suppose we have a hierarchical structure of some kind that contains certain infor-
mation and we want to map this information onto our object-oriented data model. The
typical example for the hierarchical structure would be a folder structure with files, but
hierarchical data formats like HDF5 [24,25] files (or a mixture of both) would also fit the
use case.

Figure 1 illustrates what such a mapping could look like in practice using the file
structure introduced in Section 1.2:

• ExperimentalData contains one subfolder 2020_SpeedOfLight, storing all data from
this experimental series. The experimental series is represented in a RecordType
called Project. The Properties “year” (2020) and “identifier” (SpeedOfLight) can be
directly filled from the directory name.

• Each experiment of the series has its dedicated subfolder, so one Record of type
Experiment will be created for each one. The association to its Project, which is
implicitly clear in the folder hierarchy, can be mapped to a reference to the Project
Record created in the previous step. Again, the Property “date” can be set from the
directory name.

• Each experiment contains a file called README.md storing text and metadata about
the experiment, according to the standard described in Section 1.2. In this case, the
“description” Property for the Experiment Record created in the previous step will
be set from the corresponding YAML value. Furthermore, a Person Record with
Properties firstName = Florian and lastName = Spreckelsen will be created. Finally
the Person Record will be set as the value for the property “responsible” of the
Experiment Record.

Data 2024, 9, 24 7 of 15

2.2.1. YAML Definitions

Figure 3 illustrates the modular design of the crawler: Data acquisition and other
scientific activities can lead to heterogeneous file structures involving very different data
formats. The crawler uses crawler specifications (CFoods) that define how these structures
are interpreted and synchronized with LinkAhead. We explain this description using an
example of CFood in this section. CFood is designed to make use of the example file structure
shown in Section 1.2.

Data Acquisition

csv

npy

xlsx
h5

tiff

ExperimentalData/

File System

DataAnalysis/

h5
npy

SimulationData/

py
svg

txt

Experiment-CFood

Crawler

Analysis-CFood

Simulation-CFood

Experiment

Comment: Text

Analysis

sourceExperiment: Experiment
sourceSimulation: Simulation

Simulation

Publ ication

sourceAnalysis: Analysis

Figure 3. Illustration of the data synchronization procedure using a crawler: Data acquisition
(possibly including computer simulations or data produced during data analysis) leads to a variety
of files in different formats on the file system. Crawler plugins (“CFoods”) are designed in a way that
they understand the local structures on the file system. The file tree is traversed, possibly opening
files and extracting (meta) data in order to transform them into a semantic data model that is then
synchronized with the RDMS, as described in Section 2.3. The figure was previously published in [26].

As we pointed out in Section 1.1, one major challenge is allowing for adapting the
data integration to very different and potentially very heterogeneous use cases. Therefore,
we designed a special syntax in YAML format for configuring the mapping which were
just described in a machine-readable form. We call this description of rules for the crawler
the crawler definition or CFood. For the example file structure the corresponding YAML file
would look like this:

ExperimentalData_Dir:
type: Directory
match: ExperimentalData
subtree:

Project_Dir:
type: Directory
match: (?P<year>[0-9]{4,4})_(?P<name>.*)
records:

Project:
year: $year
name: $name

subtree:
Experiment_Dir:

type: Directory
match: >-

Data 2024, 9, 24 8 of 15

(?P<date>[0-9]{4,4}_[0-9]{2,2}_[0-9]{2,2})(_(?P<identifier>.*))?
records:

Experiment:
Project: $Project
date: $date
identifier: $identifier

subtree:
Readme_File:

type: MarkdownFile
match: README.md
subtree:

description:
type: DictTextElement
match_value: (?P<description>.*)
match_name: description
records:

Experiment:
description: $description

responsible_single:
type: DictTextElement
match_name: responsible
match_value: ((?P<first_name>.+))?(?P<last_name>.+)
records:

Person:
first_name: $first_name
last_name: $last_name

Experiment:
Person: $Person

The YAML structure mimics the hierarchical structure of a file tree. The crawler operates by
successively matching Converters to files, folders, and possibly other StructureElements.
We use the term StructureElement to specify any piece of information that is derived from
some part of the file structure and that can be matched by a Converter. If a converter
matches, Records are created corresponding to the entries under the records in the crawler
definition. Afterwards, the crawler proceeds by processing sub-elements, like sub-folders,
using the converters defined under subtree.

In the given example, the following converters can be found:

• ExperimentalData_Dir, Project_Dir, Experiment_Dir, all of type Directory. These
converters match names of folders against the regular expression given by match.
When matching, converters of this type yield sub-folders and -files for processing of
converters in the section subtree.

• Readme_File is of type MarkdownFile and allows for processing of the contents of the
YAML header by converters given in the subtree section.

• description and responsible_single are two converters of type DictTextElement
and can be used to match individual entries in the YAML header contained in the
markdown file.

There are many more types of standard converters included in the LinkAhead crawler.
Examples include converters for interpreting tabular data (in Excel or CSV format),
JSON [27,28] files, or HDF5 [24,25] files. Custom converters can be created in Python
using the LinkAhead crawler Python package. There is a community repository online
where community extensions are collected and maintained (see Appendix C).

2.2.2. Variables

Variables begin with a dollar sign and can be used in multiple occasions within the
CFood, e.g., for setting properties of Records. These variables and their values are set during

Data 2024, 9, 24 9 of 15

multiple operations within the crawling procedure: Variables that are part of a matched
regular expression will be available. For example, $year is set from the match entry of the
Converter Project_Dir. Record definitions within the crawler definition will be available
as variables, e.g., the records section of Project_Dir creates a variable $Project, which
will later be used as the value of a Property of Record Experiment created in the records
section of Experiment_Dir. More details about the syntax will be made available in the
official documentation of the LinkAhead crawler software (see Appendix D).

2.2.3. Scanner

We call the subroutines that gather information from the file system by applying the
crawler definition to a file hierarchy the process of scanning. The corresponding module
of the crawler software is called the Scanner. The result of a scanning process is a list of
LinkAhead Records, where the values of the Properties are set to the information found.
In the example shown in Figure 1, the list will contain at least two Project Records with
names “ElementaryCharge” and “SpeedOfLight”; three Experiment Records with dates
“2020-01-01”, “2020-01-02”, “2020-01-03”; and one Person Record for “Florian Spreck-
elsen”. The remaining steps in the synchronization procedure are to split this list into a
list of Records that need to be newly inserted and a list of Records that need an update.
Section 2.3 describes how the updates are distinguished from the insert operations.
Section 2.4 describes the final process of carrying out the transactions.

2.3. Identifiables

In order to determine which of the Records that have been generated during the
scanning procedure in Section 2.2.3 are already present in the RDMS, the crawler needs
information on how to determine identity of Records. For this purpose, we implemented a
concept that is similar to unique keys, which are used in the context of relational database
management systems. For each RecordType, we define a set of Properties that can be
used to uniquely identify a single Record.

Using the example from Figure 1, we can claim that each Person in our RDMS can
be uniquely identified by providing a “firstName” and a “lastName”. It is important to
point out that the definition of identities for RecordTypes can vary highly depending on
the usage scenario and environment: There might, of course, be many cases where this
example definition is not sufficient, because people can have the same first and last names.

In this case, we would define the identity of RecordType Person by declaring that
the set of the properties “firstName” and “lastName” is the Registered Identifiable
for RecordType Person. We use the term “Identifiable” here, because we want to avoid
confusions with the concept of “unique keys”, which shares some similarities, but are
also different in some important aspects. Furthermore, the RDMS LinkAhead also makes
use of unique keys as part of its usage of a relational database management system in
its back-end. During scanning, Identifiables are filled with the necessary information.
In our example from Figure 1, “firstName” will be set to “Florian” and “lastName” to
“Spreckelsen”. We refer to this entity as the Identifiable. Subsequently, this entity is used
to check whether a Record with these property values already exists in LinkAhead. If there
is no such Record, a new Record is inserted. This Record can of course have much more
information in the form of properties attached to it, like an “emailAddress”, which is not
part of the Identifiable. If such a Record already exists in LinkAhead, it is retrieved.
We refer to the retrieved entity as Identified Record. This entity will then be updated
as described in Section 2.4. The terminology, which we introduce here, is summarized in
Figure 4.

To summarize the concept of Identifiables:

• An Identifiable is a set of properties that is taken from the file system layout or the
file contents, which allow for uniquely identify the corresponding object in the RDMS;

• The set of properties is tied to a specific RecordType;
• They may or may not contain references to other objects within the RDMS;

Data 2024, 9, 24 10 of 15

• Records can of course contain much more information than what is contained in the
Identifiable. This information is stored in other Properties, which are not part of
the Identifiable.

Person

lastName: Text
fi rstName: Text
EmailAddress: Text
PhoneNumber: Integer

RecordType

lastName: Text
fi rstName: Text

Person

Registered Identifiable Identifiable

Person

lastName = Spreckelsen
firstName = Florian

Identified Record

Person
lastName = Spreckelsen
firstName = Florian
EmailAddress = f.spreckelsen@indiscale.com
PhoneNumber: NA

Information from scanner Retrieved Record from CaosDB

Figure 4. Terminology used in the context of defining identity for Records: For each RecordType
that is used in the synchronization procedure, its identity needs to be defined in what we call the
Registered Identifiable. The scanner will fill the values of the properties of the Registered
Identifiable and, in that process, create an Identifiable. This Identifiable can be used by the
crawler to run a query on LinkAhead. If a Record matching the properties of the Identifiable
already exists in LinkAhead, it will be retrieved and used, as described in Section 2.4, to update the
Record. Otherwise, a new Record will be inserted.

2.3.1. Ambigiously Defined Identifiables

Checking the existence of an Identifiable in LinkAhead is achieved using a query. If this
query returns either zero or exactly one entity, Identifiables can be uniquely identified.
In case the procedure returns two or more entities, this indicates that the Identifiable
is not designed properly and that the provided information is not sufficient to uniquely
identify an entity. One example might be that there are in fact two people with the same
“firstName” and “lastName” in the RDMS. In this case, the Registered Identifiable
needs to be adapted. The next paragraph discusses the design of Identifiables.

2.3.2. Proper Design of Identifiables

The general rule for designing Identifiables should be to register the minimum
amount of information that needs to be checked to uniquely identify a Record of the
corresponding type. If too much (unneeded) information is included, it is no longer
possible to update parts of the Record using information from the file system, as small
changes will already lead to a Record with a different identity. If, on the other hand,
too little information is included in the Identifiable, the Records might be ambigu-
ously defined, or might become ambiguous in the future. This issue is discussed in the
previous paragraph.

To provide an example, we discuss a hypothetical Record of RecordType Experiment
that stores information about a hypothetical experiment carried out in a work group
with multiple laboratories. Let us assume that there is only equipment available for one
experiment per laboratory and that the maximum number of experiments is one per
day. A reasonable set of minimum information for the identifiable could be the date of
the experiment and the room number of the laboratory, as it uniquely identifies each
experiment. Additional properties, like name of the experimenter, should not be added
to the Identifiable, as it would reduce flexibility in, e.g., corrections or updates of the
respective Records.

2.4. Inserts and Updates

The final step in the crawling procedure is the propagation of the actual transactions
into the RDMS. This is illustrated in Figure 2 as Step 3. As described in Section 2.3,
Identifiables can be used to separate the list of Records, which were created by the
scanner in Step 1, into a list of new Records and a list of changed Records. The list of new
Records can just be inserted into the RDMS. For the list of changed Records, each entity
is retrieved from the server first. Each of these Records is then overwritten with the new

Data 2024, 9, 24 11 of 15

version of the Record, as it was generated by the scanner. Afterwards, the Records are
updated in RDMS.

3. Discussion

In Section 2, we presented a concept for data integration that allowed for using the file
system simultaneously with an RDMS for managing heterogeneous scientific data using
a modularized crawler. It was discussed that the YAML crawler definitions provided a
standardized configuration that could be adapted to very different use cases.

In this section, we discuss some important design decisions, benefits of the approach,
and limitations.

3.1. YAML Specifications as an Abstraction Layer for Data Integration

In Figure 1, our approach to map the data found on the file system to a semantic data
model was presented along with a formalized syntax in YAML. This syntax was designed
to be an abstraction of common data integration tasks, like matching directories, files, and
their contents, but to still be flexible enough to allow for the integration of very complex
data or very rare file formats.

One advantage of using an abstraction layer that is a compromise between very
specific source code for data integration and highly standardized routines is that crawler
specifications can be re-used in a greater variety of scenarios. Because the hierarchical
structure of the YAML crawler specification corresponds to the hierarchical structure of file
systems and file contents, it is much simpler to identify similarities between different file
structures, than it would be with a plain data integration source code. Furthermore, the
crawler specifications are machine-readable and, therefore, open the possibility for much
more complex applications.

3.2. Primary Source of Information

Our update procedure synchronizes data from the file system into the RDMS uni-
directionally, so we can state that the file system is the single source of truth. Another
possibility would have been to implement merges between entities generated from the file
system information and entities present in the RDMS. This would have allowed for editing
entities simultaneously on the file system and in the RDMS, and to obtain a merged version
after the crawling procedure. However, we decided against this and chose a single source
of information approach. In practice, merges can become really complicated and having
a clearly defined source of information makes the procedure much more transparent and
predictable to users. Furthermore, we found that use cases involving simultaneous edits of
entities on the file system and in the RDMS are rather rare, so we decided against adding
this additional complexity into our software.

We considered it best practice to not edit entities generated by the crawler in the RDMS
directly, but to use references to these entities instead. This could be enforced by LinkAhead
by automatically setting the entities generated by the crawler as read-only for other users.
LinkAhead entities are protected against accidental data loss using versioning of entities.

3.3. Documentation of Data Structures and File Hierarchies

The approach we presented here purposefully relies on a manual definition of the
semantic data model and a careful definition of the synchronization rules. Sometimes, it
has been criticized that this can involve a lot of work. A frequent suggestion is to instead
apply machine learning techniques/artificial intelligence methods to organize data and
make it more findable. However, it is important to highlight that the manual design
and documentation of file structures and file hierarchies actually has several beneficial
side effects.

One of the main goals of managing and organizing data is to enable researchers to
better understand, find, and re-use their data [1]. A semantic data model created by hand
results in researchers understanding their data. Data organized by artificial intelligence

Data 2024, 9, 24 12 of 15

is very likely not represented in a way that is easily understood by the researcher and
it probably does not incorporate the same meaning. The process of designing the data
models and rules for synchronization is a creative process that leads to optimized research
workflows. In our experience, researchers highly benefit from the process of structuring
their own data management.

One disadvantage of machine learning methods is that many of them rely on large
amounts of training data for being accurate and efficient. Often, these data are not available
and therefore a manual step that is likely to be equally time-consuming to the design of the
data model and synchronization rules is necessary.

As a practical outcome, the data documentation created in the form of crawler defi-
nitions can be used to create data management plans, which are nowadays an important
requirement for institutions and funding agencies. Although we think that the design of
the process should be, in part, manual, integrating artificial intelligence in the form of
assistants is possible. An example for such an assistant could be an algorithm that generates
a suggested crawler definition based on existing data, which then could be corrected and
expanded on by the researcher.

3.4. Limitations
3.4.1. Deletion of Files

One important limitation of the approach presented here is that deletions on the file
system are not directly mapped to the RDMS, i.e., the records stemming from deleted
files will persist in the RDMS and have to be deleted manually. This design decision
was intended as it allows for complex distributed workflows. One example is that two
researchers from the same work group work on two different projects with independent
file structures. Using our approach, it is possible to run the crawler on two independent
file trees and thereby update different parts of the RDMS, without having to synchronize
the file systems before.

Future implementations of the software could make use of file system monitoring to
implement proper detection of deleted files. Another possibility would be to signal the
deletion of files and folders by special files (e.g., special names or contents) that trigger an
automatic deletion by the crawler.

3.4.2. Bi-Directional Synchronization

A natural extension of the concepts presented here would be a crawler that allows for
bi-directional synchronization. In addition to inserts and updates that are propagated from
the file structure to the RDMS, changes in RDMS would also be detected and propagated
to the file system, leading to the creation and updating of files. While some parts of these
procedure, like identifying changes in RDMS, can be implemented in a straight-forward
way, the mapping of information to existing file trees can be considered quite complex and
raises several questions. While the software in its current form needs only read-only access
to the file system, in a bi-directional scenario, read–write–access is required, so that more
care has to be taken to protect the users from unwanted data loss.

4. Conclusions

In this article, we present a structured approach for data integration from file systems
into RDMS. Using a simplified example, we have shown how this concept is applied practi-
cally and we have published an Open Source software framework as one implementation
of this concept (see Appendix A). In multiple active data management projects (some of
them are mentioned in the Appendix B), we found that this mixture of a standardized defi-
nition of the data integration with the possibility to extend them with flexible custom code
allows for a rapid development of data integration tools and facilitates the re-use of data
integration modules. In these projects, we experienced that using the standardized YAML
format that was presented in Section 2.2.1 highly facilitated the integration of data sets,
especially in cases where data were stored in non-standardized directory layouts. We were

Data 2024, 9, 24 13 of 15

also able to re-use our CFoods, which only required minor adaptions when transferring
them to a different context. To foster re-usability, we set up a community repository for
CFoods (see Appendix C).

Our current focus for the software is on transferring the concept to multiple differ-
ent use cases in order to make the crawler more robust and to identify the limitations
and usability issues. Furthermore, the bi-directional synchronization that was discussed
in Section 3.4.2 and an assistant for creating CFoods that is based on machine learning
(discussed in Section 3.3) are currently under investigation as possible next features.

Author Contributions: conceptualization, A.S., H.t.W. and F.S.; software, A.S., H.t.W. and F.S.;
resources, A.S., H.t.W., U.P., S.L. and F.S.; writing—original draft preparation, A.S., H.t.W. and F.S.;
writing—review and editing, A.S., H.t.W., U.P., S.L. and F.S.; supervision, A.S. and H.t.W.; project
administration, H.t.W. and S.L.; funding acquisition, A.S., U.P. and S.L. All authors have read and
agreed to the published version of the manuscript.

Funding: A.S., U.P., and S.L. acknowledge financial support from the Volkswagen Stiftung within
the framework of the project “Global Carbon Cycling and Complex Molecular Patterns in Aquatic
Systems: Integrated Analyses Powered by Semantic Data Management”. S.L. acknowledges financial
support from the DZHK and DFG SFB 1002 Modulary Units in Heart Failure, and the Else Kröner-
Fresenius Foundation (EKFS).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank Birte Hemmelskamp-Pfeiffer for providing information on
https://dataportal.leibniz-zmt.de, accessed on 2 January 2024.

Conflicts of Interest: A.S. and H.t.W. are co-founders of IndiScale GmbH, a company providing
commercial services for LinkAhead. Furthermore, H.t.W. and F.S. are employees of IndiScale GmbH.
A.S. is external scientific advisor for IndiScale GmbH. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the
decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

BIDS Brain Imaging Data Structure
CQL CaosDB Query Language
CSV Comma-Separated Values
DICOM Digital Imaging and Communications in Medicine
ELN Electronic Lab Notebook
ETL Extract Transform Load
FAIR Findable, Accessible, Interoperable and Reusable
FDO FAIR Digital Object
HDF5 Hierarchical Data Format
JSON JavaScript Object Notation
LD Linked Data
md Markdown
OWL Web Ontology Language
PID Persistent Digital Identifier
RDF Resource Description Framework
RDMS Research-data management system
SPARQL SPARQL Protocol and RDF Query Language
SQL Structured Query Language
SSH Secure Shell
YAML YAML Ain’t Markup Language

https://dataportal.leibniz-zmt.de

Data 2024, 9, 24 14 of 15

Appendix A. Supporting Software

The following software projects can be used to implement the workflows described in
the article:

• Repository of the LinkAhead-Open Source project: https://gitlab.com/linkahead,
accessed on 2 January 2024.

• Repository of the LinkAhead-Crawler: https://gitlab.com/linkahead/linkahead-
crawler, accessed on 2 January 2024.

The installation procedures for LinkAhead and the crawler framework are provided in
their respective repositories. Also a docker container is available for the instant deployment
of LinkAhead.

Appendix B. Example Crawlers

There is a documented example available online at (https://gitlab.com/linkahead/
crawler-extensions/documented-crawler-example, accessed on 2 January 2024) that demon-
strates the application of the crawler to example data. This can also be used as a template
for the development of custom crawlers. We are currently aware of one public instance
of LinkAhead, which makes use of a complex crawler based on the crawler framework
described in this article. It is provided by “ZMT-Leibniz Centre for Tropical Marine Re-
search” and can be accessed online: https://dataportal.leibniz-zmt.de/, accessed on 2
January 2024.

Appendix C. Community Repository for Crawler Extensions

In order to foster the re-usability of crawler definitions, we are building a community
repository for crawler extensions, which can be found at: https://gitlab.com/linkahead/
crawler-extensions, accessed on 2 January 2024.

Appendix D. Software Documentation

The official documentation for LinkAhead, including an installation guide, can be
found at: https://docs.indiscale.com, accessed on 2 January 2024. The documentation
for the crawler framework that is presented in this article can be found at: https://docs.
indiscale.com/caosdb-crawler/, accessed on 2 January 2024.

References
1. Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.W.; da Silva Santos,

L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018.
[CrossRef] [PubMed]

2. Deutsche Forschungsgemeinschaft. Guidelines for Safeguarding Good Research Practice. Code of Conduct, 2022. Available in
German and in English. Available online: https://zenodo.org/records/6472827 (accessed on 10 August 2023) [CrossRef].

3. Ferguson, L.M.; Bertelmann, R.; Bruch, C.; Messerschmidt, R.; Pampel, H.; Schrader, A.C.; Schultze-Motel, P.; Weisweiler, N.L.
Good (Digital) Research Practice and Open Science Support and Best Practices for Implementing the DFG Code of Conduct “Guidelines
for Safeguarding Good Research Practice”; Helmholtz Open Science Briefing. Version 2.0; Helmholtz Open Science Office: Leipzig,
Germany, 2022.

4. Gray, J.; Liu, D.T.; Nieto-Santisteban, M.; Szalay, A.; DeWitt, D.J.; Heber, G. Scientific data management in the coming decade.
Acm Sigmod Rec. 2005, 34, 34–41. [CrossRef]

5. Samuel, S. Integrative Data Management for Reproducibility of Microscopy Experiments. In The Semantic Web; Blomqvist, E.,
Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O., Eds.; Springer International Publishing: Cham, Switzerland, 2017;
pp. 246–255.

6. Vaisman, A.; Zimányi, E. Data Warehouse Systems; Springer: Berlin/Heidelberg, Germany, 2014. [CrossRef]
7. Barillari, C.; Ottoz, D.S.; Fuentes-Serna, J.M.; Ramakrishnan, C.; Rinn, B.; Rudolf, F. openBIS ELN-LIMS: An open-source database

for academic laboratories. Bioinformatics 2016, 32, 638–640. [CrossRef] [PubMed]
8. Hewera, M.; Hänggi, D.; Gerlach, B.; Kahlert, U.D. eLabFTW as an Open Science tool to improve the quality and translation of

preclinical research. F1000Research 2021, 10, 292. [CrossRef] [PubMed]
9. Suhr, M.; Lehmann, C.; Bauer, C.R.; Bender, T.; Knopp, C.; Freckmann, L.; Öst Hansen, B.; Henke, C.; Aschenbrandt, G.; Kühlborn,

L.K.; et al. Menoci: Lightweight extensible web portal enhancing data management for biomedical research projects. BMC
Bioinform. 2020, 21, 582. [CrossRef] [PubMed]

https://gitlab.com/linkahead
https://gitlab.com/linkahead/linkahead-crawler
https://gitlab.com/linkahead/linkahead-crawler
https://gitlab.com/linkahead/crawler-extensions/documented-crawler-example
https://gitlab.com/linkahead/crawler-extensions/documented-crawler-example
https://dataportal.leibniz-zmt.de/
https://gitlab.com/linkahead/crawler-extensions
https://gitlab.com/linkahead/crawler-extensions
https://docs.indiscale.com
https://docs.indiscale.com/caosdb-crawler/
https://docs.indiscale.com/caosdb-crawler/
http://doi.org/10.1038/sdata.2016.18
http://www.ncbi.nlm.nih.gov/pubmed/26978244
https://zenodo.org/records/6472827
https://doi.org/10.5281/zenodo.6472827
http://dx.doi.org/10.1145/1107499.1107503
http://dx.doi.org/10.1007/978-3-642-54655-6
http://dx.doi.org/10.1093/bioinformatics/btv606
http://www.ncbi.nlm.nih.gov/pubmed/26508761
http://dx.doi.org/10.12688/f1000research.52157.3
http://www.ncbi.nlm.nih.gov/pubmed/34381592
http://dx.doi.org/10.1186/s12859-020-03928-1
http://www.ncbi.nlm.nih.gov/pubmed/33334310

Data 2024, 9, 24 15 of 15

10. Bauch, A.; Adamczyk, I.; Buczek, P.; Elmer, F.J.; Enimanev, K.; Glyzewski, P.; Kohler, M.; Pylak, T.; Quandt, A.; Ramakrishnan, C.;
others. openBIS: A flexible framework for managing and analyzing complex data in biology research. BMC Bioinform. 2011,
12, 468. [CrossRef] [PubMed]

11. Dudchenko, A.; Ringwald, F.; Czernilofsky, F.; Dietrich, S.; Knaup, P.; Ganzinger, M. Large-File Raw Data Synchronization for
openBIS Research Repositories. In Challenges of Trustable AI and Added-Value on Health; IOS Press: Washington, DC, USA, 2022;
p. 409.

12. McBride, B. The resource description framework (RDF) and its vocabulary description language RDFS. In Handbook on Ontologies;
Springer: Berlin/Heidelberg, Germany, 2004; pp. 51–65.

13. OWL 2 Web Ontology Language Document Overview, 2nd ed.; World Wide Web Consortium: Boston, MA, USA, 2012; p. 7.
14. Pérez, J.; Arenas, M.; Gutierrez, C. Semantics and Complexity of SPARQL. ACM Trans. Database Syst. 2009, 34, 1–45. [CrossRef]
15. Bizer, C.; Heath, T.; Ayers, D.; Raimond, Y. Interlinking Open Data on the Web. In Proceedings of the 4th European Semantic Web

Conference, Innsbruck, Austria, 3–7 June 2007; p. 2.
16. Bizer, C.; Heath, T.; Berners-Lee, T. Linked Data—The Story So Far. In Semantic Services, Interoperability and Web Applications:

Emerging Concepts; IGI Global: Hershey, PA, USA, 2011; p. 26.
17. De Smedt, K.; Koureas, D.; Wittenburg, P. FAIR Digital Objects for Science: From Data Pieces to Actionable Knowledge Units.

Publications 2020, 8, 21. [CrossRef]
18. Vassiliadis, P. A Survey of Extract–Transform–Load Technology. Int. J. Data Warehous. Min. (IJDWM) 2009, 5, 75. [CrossRef]
19. Fitschen, T.; Schlemmer, A.; Hornung, D.; tom Wörden, H.; Parlitz, U.; Luther, S. CaosDB—Research Data Management for

Complex, Changing, and Automated Research Workflows. Data 2019, 4, 83. [CrossRef]
20. Hornung, D.; Spreckelsen, F.; Weiß, T. Agile Research Data Management with Open Source: CaosDB. 2023. Available online:

https://www.inggrid.org/article/id/3866/ (accessed on 2 January 2024).
21. Spreckelsen, F.; Rüchardt, B.; Lebert, J.; Luther, S.; Parlitz, U.; Schlemmer, A. Guidelines for a Standardized Filesystem Layout for

Scientific Data. Data 2020, 5, 43. [CrossRef]
22. Gorgolewski, K.J.; Auer, T.; Calhoun, V.D.; Craddock, R.C.; Das, S.; Duff, E.P.; Flandin, G.; Ghosh, S.S.; Glatard, T.; Halchenko,

Y.O.; et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci.
Data 2016, 3, 160044. [CrossRef] [PubMed]

23. Mildenberger, P.; Eichelberg, M.; Martin, E. Introduction to the DICOM standard. Eur. Radiol. 2002, 12, 920–927. [CrossRef]
[PubMed]

24. Koranne, S., Hierarchical Data Format 5 : HDF5. In Handbook of Open Source Tools; Springer: Boston, MA, USA, 2011; pp. 191–200.
[CrossRef]

25. Folk, M.; Heber, G.; Koziol, Q.; Pourmal, E.; Robinson, D. An overview of the HDF5 technology suite and its applications. In
Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases, Uppsala, Sweden, 25 March 2011; pp. 36–47.

26. Schlemmer, A. Mapping Data Files to Semantic Data Models Using the CaosDB Crawler; Zenodo: Geneva, Switzerland, 2021.
[CrossRef]

27. Pezoa, F.; Reutter, J.L.; Suarez, F.; Ugarte, M.; Vrgoč, D. Foundations of JSON schema. In Proceedings of the 25th International
Conference on World Wide Web, Montreal, QC, Canada, 11–15 April 2016; pp. 263–273.

28. Bray, T. The Javascript Object Notation (Json) Data Interchange Format; Technical Report; 2014. Available online: https://datatracker.
ietf.org/doc/rfc7159/ (accessed on 10 August 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1186/1471-2105-12-468
http://www.ncbi.nlm.nih.gov/pubmed/22151573
http://dx.doi.org/10.1145/1567274.1567278
http://dx.doi.org/10.3390/publications8020021
http://dx.doi.org/10.4018/jdwm.2009070101
http://dx.doi.org/10.3390/data4020083
https://www.inggrid.org/article/id/3866/
http://dx.doi.org/10.3390/data5020043
http://dx.doi.org/10.1038/sdata.2016.44
http://www.ncbi.nlm.nih.gov/pubmed/27326542
http://dx.doi.org/10.1007/s003300101100
http://www.ncbi.nlm.nih.gov/pubmed/11960249
http://dx.doi.org/10.1007/978-1-4419-7719-9_10
http://dx.doi.org/10.5281/zenodo.8246645
https://datatracker.ietf.org/doc/rfc7159/
https://datatracker.ietf.org/doc/rfc7159/

	Introduction
	Using File Systems and RDMSs Simultaneously
	Example Data Set
	LinkAhead
	Data Models in LinkAhead

	Results
	The LinkAhead Crawler
	Mapping Files and Layouts into a Data Model
	YAML Definitions
	Variables
	Scanner

	Identifiables
	Ambigiously Defined Identifiables
	Proper Design of Identifiables

	Inserts and Updates

	Discussion
	YAML Specifications as an Abstraction Layer for Data Integration
	Primary Source of Information
	Documentation of Data Structures and File Hierarchies
	Limitations
	Deletion of Files
	Bi-Directional Synchronization

	Conclusions
	Supporting Software
	Example Crawlers
	Community Repository for Crawler Extensions
	Software Documentation
	References

