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Abstract: Audio-image representations for a multimodal human action (MHAiR) dataset contains six
different image representations of the audio signals that capture the temporal dynamics of the actions
in a very compact and informative way. The dataset was extracted from the audio recordings which
were captured from an existing video dataset, i.e., UCF101. Each data sample captured a duration of
approximately 10 s long, and the overall dataset was split into 4893 training samples and 1944 testing
samples. The resulting feature sequences were then converted into images, which can be used for
human action recognition and other related tasks. These images can be used as a benchmark dataset
for evaluating the performance of machine learning models for human action recognition and related
tasks. These audio-image representations could be suitable for a wide range of applications, such as
surveillance, healthcare monitoring, and robotics. The dataset can also be used for transfer learning,
where pre-trained models can be fine-tuned on a specific task using specific audio images. Thus, this
dataset can facilitate the development of new techniques and approaches for improving the accuracy
of human action-related tasks and also serve as a standard benchmark for testing the performance of
different machine learning models and algorithms.

Keywords: human action recognition; image representations; multimodal dataset; computer vision

1. Introduction

The recent progress in deep learning architectures, coupled with enhancements in
Graphics Processing Unit (GPU) hardware and software stacks, has significantly empow-
ered the handling of computationally demanding tasks, including Multimodal Human
Action Recognition (MHAR). Analyzing human activities in a multimodal information
context is a challenging endeavor that necessitates substantial computational resources [1].
This has emerged as a prominent research issue in the field of computer vision. Human
Action Recognition (HAR) involves the process of categorizing human actions depicted
in a sequence of images, essentially entailing the classification of objectives pursued by
individuals across a series of image frames.

Video modality inherently holds spatial information, which lends itself well to Con-
volutional Neural Network (CNN)-based classification architectures. In the pursuit of
more effectively encompassing the multimodal facets of action data, a contemporary ap-
proach involves the integration of data from various modalities, including optical flow,
RGB difference, and warped optical flow. Audio is a lightweight signal in comparison
to video data. However, image-based representations are optimal for vision models in
machine learning, specifically for convolution neural network-based vision models. Fur-
ther, features from spectral centroid-based representations are visually favorable when
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compared to convolution-based methods. Spectral Centroids provide a compact and in-
formative representation of the audio signal that captures the discriminative features and
temporal dynamics of human actions. Therefore, the dataset described in this manuscript
was generated during the process of screening diverse image-based representations for
action sequences for multimodal fusion with video data. This dataset can thus be used
to analyze critical features from the action sequences in the image form. This dataset ex-
tends our previous publication [2] which outperforms state-of-the-art methods producing
an accuracy of 91.2% by focusing on multimodal representations of action sequences to
present critical features in audio from different perspectives, as captured from each action
sample. These datasets were also used as a pre-requisite requirement in developing an
intelligent multimodal action recognition system for classifying actions using deep learning
algorithms based on acoustic and video modality. To the best of our knowledge, MHAiR is
the first audio-image representation dataset for multimodal human recognition that uses
image-based representations of audio to leverage CNN and transformer-based architectures
for improving action recognition. The key contributions of our work can be summarized
as follows:

• We introduce (Multimodal Audio-image Representations), MHAiR, a new multimodal
lightweight dataset.

• We build a new feature representation strategy to select the most informative candidate
representations for audio-visual fusion.

• We achieve state-of-the-art or competitive results on standard public benchmarks,
validating the generalizability of our proposed approach through extensive evaluation.

Value of Data

There are several ways in which this dataset can be valuable compared to the original
dataset and in serving other novel use cases. The distinguished characteristics of this
dataset are the following:

• It provides a significant reduction in dimensionality. The spectral centroid images
represent the frequency content of the audio signal over time, which is a lower-
dimensional representation of the original video dataset. This can make it easier and
faster to process the data and extract meaningful features.

• It is robust against visual changes. The spectral centroid images are based on the
audio signal, which is less affected by visual changes such as changes in lighting
conditions or camera angles. This makes the dataset more robust to visual changes
and can improve the accuracy of human action analysis.

• It offers standardization as spectral centroid images can be standardized to a fixed
size and format, which can make it easier to compare and combine data from diverse
sources. This can be useful for tasks such as cross-dataset validation and transfer
learning. Hence, this dataset can serve as a standard benchmark for evaluating
performance of different machine learning algorithms for human action analysis based
on audio signals.

• It is suitable for privacy-oriented applications such as surveillance or healthcare
monitoring, which may require analysis of human actions without capturing original
visual information. Spectral centroid images provide a privacy-preserving alternative
that can still enable effective analysis in applications where audio can be fused and
aligned with non-visual sensory datasets such as HH105 and HH1251 .

• Dataset versatility can facilitate the exploration of different approaches and the de-
velopment of newer techniques for various applications and an extension of the
existing ones.

• Audio images, derived from sound data, when fused with visual data can enhance
interpretation, improve noise reduction, augment AR/VR experiences, refine content-
based multimedia retrieval, and assist in healthcare applications like telemedicine. How-

1 https://casas.wsu.edu/datasets/ (accessed on 19 January 2024)

https://casas.wsu.edu/datasets/
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ever, effective fusion requires advanced algorithms and careful attention to challenges
such as data alignment, synchronization, and fusion model selection.

The structure of this paper is organized as follows. Section 2 discusses related works.
Section 3 describes the key characteristics of the dataset. Section 4 elaborates on the process
of extraction of distinct modalities and rationale behind feature extraction in the context of
multimodal human action recognition. Section 5 provides an analysis and comparison of a
downstream task to establish a benchmark for our proposed dataset, and Section 6 presents
the conclusion of this paper.

2. Related Works
2.1. Multimodal Recognition Methods

Feature extraction is a process of yielding critical information from raw instances,
which in turn contributes to the learning process. Temporal Segment Network (TSN) is
used as a feature extractor based on its temporal pooling of frame-level features, where it is
rigorously used as an efficient video feature extractor for different problems. The Gate-Shift
Module (GSM) can turn a 2D CNN into a highly efficient spatio-temporal feature extractor.
For example, when TSN is plugged into GSM [3], an accuracy improvement of 32% is
achieved. Furthermore, Yang et al. [4] used TSN with a soft attention mechanism to capture
important frames from each segment. Moreover, Zhang et al. [5] have used the TSN model
as a feature extractor with ResNet101 for efficient behavior recognition of pigs.

Recently, TSN has been adapted as a backbone in video understanding scenarios [6–10], and
it is typically used in conjunction with a succeeding module. In [10], TSN was employed
as a 2D CNN backbone to learn motion dynamics in videos. However, IRV2 has been
used for feature extraction from images [11], helping with different image restoration
and enhancement tasks [12,13]. In another work, Liu et al. [14] addressed a limitation in
existing skeleton-based gesture recognition methods by introducing temporal-dependent
adjacency matrices. This innovative approach enhanced the ability of GCN to model
temporal information.

2.2. Audio-Image Representations

This subsection describes the six different image representations of audio signals.

2.2.1. Waveplot

A waveplot is a specialized graphical representation predominantly utilized in the
field of signal processing and music technology for the analysis of audio data. This plot
renders the temporal progression of an audio signal’s amplitude, offering a vivid depiction
of the audio properties and their fluctuations over time. In the construction of a waveplot,
the horizontal axis, or the x-axis, symbolizes the dimension of time, while the vertical axis,
or the y-axis, stands for amplitude. The fluctuations in the wave’s amplitude, captured
over time, generate an illustrative portrayal of the auditory characteristics of the sound,
including its loudness and periods of silence. However, it is crucial to acknowledge that
a waveplot, while informative, lacks the specificity to offer insights into an audio file’s
frequency content or pitch. For acquiring a more nuanced understanding of an audio
file, analysts often resort to the usage of other types of plots such as spectrograms or
mel spectrograms. These advanced graphical representations are capable of illuminating
frequency-related information. The waveform provides a visual representation of the audio
signal’s temporal structure. This can be especially useful for recognizing actions that have
distinct audio patterns or start and end abruptly. For example, the visual representation of
waveform for a clapping action shows sharp spikes corresponding to claps.

2.2.2. Spectral Centroid

The spectral centroid is a measure of the center of “gravity“ of the power spectrum
of an audio signal [15]. Mathematically, the value of the spectral centroid (SC), for the kth
frame is defined as
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SCt =
∑N

k=1 mt(k) · k

∑N
k=1 mt(k)

, (1)

where SCt is spectral centroid frequency at time t, k is the kth frequency bin, mt(k) is the
power spectral density value at frequency k, and the summation is taken over all frequency
bins. Essentially, this equation calculates the average frequency of a signal weighted by the
power at each frequency.

In practice, the spectral centroid is usually computed using the Discrete Fourier
Transform (DFT) of a short-time windowed segment of the audio signal. This results in a
sequence of spectral centroids over time, which can be further processed and analyzed to
extract useful features for various audio signal processing applications.

Overall, spectral centroid-based images provide an efficient, robust, and informative
representation of the audio signal that can be used for human action recognition [16]. For
example, a higher spectral centroid value often corresponds to a “brighter” or “sharper”
sound, while a lower spectral centroid value usually indicates a “duller” or “muddier”
sound [17]. By converting the spectral centroid over time into an image, we can capture
spatial and temporal information that can be effectively processed by deep learning mod-
els [2]. Spectral centroid can also help in distinguishing actions based on their tonal or
harmonic characteristics. For example, it can be valuable in recognizing actions involving
musical instruments or vocalizations, where the timbre or brightness of the sound varies.

2.2.3. Spectral Rolloff

Spectral rolloff is a measure in digital signal processing that provides an estimation of
the frequency below which a specified percentage of the total spectral energy lies. In other
words, it is the cutoff frequency where any additional increase in frequency contains less
power or energy. Typically, spectral rolloff is expressed as a fraction of Nyquist frequency
(half of the sampling rate), and it serves as an important feature in audio analysis for
various tasks including music information retrieval, speech processing, and detection of
musical onsets and offsets. Rolloff frequency can provide a sense of the bandwidth of the
signal. A lower rolloff frequency often indicates a narrower bandwidth or a more tonal
signal, while a higher rolloff frequency may suggest a broader bandwidth or a more noisy
signal. Spectral rolloff can be relevant for recognizing actions based on the high-frequency
content of the audio. For instance, actions that involve high-pitched sounds or actions
that have significant energy in the higher frequency range can be distinguished using
spectral rolloff.

2.2.4. Mel Frequency Cepstral Coefficients (MFCCs)

Mel Frequency Cepstral Coefficients (MFCCs) are a type of feature widely used in the field
of digital signal processing and speech recognition. They provide a representation of the power
spectrum of an audio signal that is more aligned with human auditory perception.

MFCCs are based on the known variation for the critical bandwidth of human ear. This
variation is often expressed in terms of the Mel scale, which is a perceptual scale of pitches
judged by listeners to be equal in distance from one another. Hence, the MFCCs take into
account the non-linear human ear perception of frequencies, making them a robust feature
for speech and music modeling.

The process to extract MFCCs involves several steps:

• Pre-emphasis: This step is performed to increase the signal’s amplitude of the high-
frequency part.

• Framing: The continuous signal is divided into frames of N samples, with adjacent
frames being separated by M (M < N).

• Windowing: Each frame is multiplied by a window function (Hamming window, for
instance).
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• Fast Fourier Transform (FFT): This step is taken to convert each frame from the time
domain to the frequency domain.

• Mel Filter Bank Processing: The power spectrum is then multiplied with a set of Mel
filters to obtain a set of Mel-scaled spectra.

• Discrete Cosine Transform (DCT): Finally, the log Mel spectrum is transformed to the
time domain using the DCT. The result is called the Mel Frequency Cepstral Coefficients.

In the context of human action recognition, MFCCs can provide information about the
rhythm, tempo, and acoustic cues related to actions.

2.2.5. MFCC Feature Scaling

MFCC Feature Scaling is a normalization process used when working with Mel
Frequency Cepstral Coefficients (MFCCs) in machine learning applications, particularly in
audio and speech processing.

The goal of feature scaling, also known as data normalization, is to normalize the range
of feature values in order to promote computational efficiency and reduce the potential
impact of the so-called “curse of dimensionality”. This is especially critical in machine
learning models, such as neural networks, where features with different scales can have a
detrimental impact on the learning process.

When applied to MFCCs, feature scaling might take a couple of forms:

• Standardization: This technique scales the MFCC features so they have the properties
of a standard normal distribution with a mean of zero and a standard deviation of one.
This is achieved by subtracting the mean and then dividing by standard deviation.

• MinMax Scaling: Also known as normalization, this technique rescales the features to
a fixed range, usually 0 to 1, or −1 to 1. The scaler subtracts the minimum value in the
feature and then divides by range (max value—min value).

By applying MFCC Feature Scaling, it is possible to optimize the performance of
machine learning models by ensuring that all MFCC features contribute equitably to
the model’s learning, preventing features with larger scales from dominating those with
smaller scales.

2.2.6. Chromagram

A chromagram is a graphical representation of the chroma feature of an audio signal,
utilized extensively in the field of music information retrieval. The term “chroma” pertains
to the 12 different pitch classes in music, which correspond to the traditional Western music
scale. In other words, it refers to the color of music that offers a sense of key and harmony.

A chromagram visually represents that the intensity of these pitch classes changes
over time in a piece of music. Each row in a chromagram corresponds to one of the 12 pitch
classes, and the columns correspond to points in time. The color or intensity at each point
in the plot shows the degree to which that pitch class is present in the sound at that moment
in time.

Generating a chromagram involves several steps:

• The audio signal is first converted into the frequency domain using Fourier Transform
or a similar method.

• The resulting spectral information is then mapped onto the 12 pitch classes in an
octave using a filter bank tuned to chroma frequencies.

• Over time, a 2D representation (time-pitch intensity) is obtained.

There are several benefits of using image-based representations for human action
recognition, including:

• Efficient representation: Spectral centroid-based images provide efficient representa-
tion of the audio signal that can be easily processed by deep learning models. Unlike
raw audio signals, which can be difficult to process due to their high dimensionality
and variability, spectral centroid-based images provide a compact and informative
representation that captures temporal dynamics of the audio signal.
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• Robustness to noise: Spectral centroid-based images are less sensitive to noise and
distortions than other audio features, such as the raw audio signal or Mel-frequency
cepstral coefficients (MFCCs). This is because spectral centroids capture the “center
of gravity” of the frequency content, which is less affected by noise and distortions
than the fine-grained details of the audio signal. This makes them suitable for noisy
environments where other audio features might be unreliable.

• Spatial information: Spectral centroid-based images provide spatial information that
can be used by deep learning models to recognize human actions. By converting the
spectral centroid over time into an image, we can capture the spatial and temporal
information of the frequency distribution of the audio signal, which can be interpreted
by deep learning models to recognize different human actions.

• Transfer learning: Spectral centroid-based images can be used for transfer learning,
where pre-trained models can be fine-tuned on a specific task. This is because spectral
centroid-based images provide a standardized and efficient representation that can
be used to compare and combine data from dissimilar sources. This can be useful for
tasks such as cross-dataset validation and transfer learning, where models trained on
one dataset can be applied to another dataset.

3. Data Description

Data in this study were arranged in two directories: one for training and another for
evaluating the model. Audio samples were extracted from videos lasting an average of 10 s
(6837 samples overall with 4893 for training and 1944 for testing) [18].

Figure 1 shows a sample of action with different image representations. Images
in both training and testing folders were organized in a format of {category}_{action
group}_{sample number}.{file extension}, i.e., in ‘’ApplyEyeMakeup_g08_c01.png’‘,
ApplyEyeMakeup is the class followed by ‘’g08”, which is the supergroup of the sam-
ple, and then ‘’c01” is the sample number for this particular action class. The statistics
describing all image representation samples employed in this experimental setting, includ-
ing action class and a number of samples, are reported in Table 1.

(a) (b)

(c) (d)

(e) (f)

Figure 1. Six different audio-image representations of the same action. Each image represents
different characteristics of the same audio signal (adopted from [19]). (a) Waveplot. (b) Spectral
Centroids. (c) Spectral Rolloff. (d) MFCCs. (e) MFCCs Feature Scaling. (f) Chromagram.
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Table 1. Statistics describing the image representations employed in the experimental setting: for all
considered categories, we report the total number of training and testing samples.

# Category Train Test # Category Train Test

1 HeadMassage 106 41 27 BandMarching 112 43
2 BoxingSpeedBag 97 37 28 CricketBowling 103 36
3 HandstandWalking 77 34 29 Basketball Dunk 90 37
4 Rafting 83 28 30 PlayingDaf 110 41
5 ApplyLipstick 82 32 31 FrisbeCatch 89 37
6 ParrallelBars 77 37 32 BodyWeightSquats 82 30
7 Haircut 97 33 33 Hammering 107 33
8 Typing 93 43 34 SumoWrestling 82 34
9 BoxingPunchingBag 114 49 35 CuttingInKitchen 77 33
10 StillRings 80 32 36 Archery 104 41
11 CricketShot 118 49 37 Mopping Floor 76 34
12 SkyDiving 79 31 38 Shotput 98 46
13 WritingOnBoard 107 45 39 HammerThrow 105 45
14 BlowingCandles 76 33 40 CliffDiving 99 39
15 IceDancing 112 46 41 PlayingSitar 113 44
16 BalanceBeam 77 31 42 BrushingTeeth 95 36
17 AppyEyeMakeup 101 44 43 WallPushups 95 35
18 TableTennisShot 101 39 44 Surfing 93 33
19 PlayingDhol 115 49 45 BabyCrawling 97 35
20 HandStandPushups 96 28 46 Bowling 112 43
21 UnevenBars 76 28 47 FrontCrawl 100 37
22 Playingflute 107 48 48 ShavingBeard 118 43
23 Playing Cello 120 44 49 LongJump 92 39
24 Floor Gymnastics 89 36 50 FieldHockeyPenalty 86 40
25 BlowDryHair 93 38 51 Knitting 89 34
26 SoccerPenalty 96 41

4. Methodology

A high-level schematic of a prospective downstream multimodal task is illustrated
in Figure 2. Audio samples for this dataset of human actions were extracted from videos
with a sampling rate of 22,050 Hz. The process of extracting audio from UCF101 video
dataset used the “ffmpeg” tool. The resulting audio file was saved separately. For each
image representation, post-processing and metadata handling were applied. Particularly
following best practices, for chromagram-based representation, a hop length of 512 was
used. The extracted audio files were organized and stored according to UCF101 splits,
and a quality control check was performed to ensure the audio met the desired standards.
This process allowed for the isolation of the audio component from video data, making it
available for various applications, including multimodal action recognition and standalone
audio analysis.

Figure 2. High-level schematic representation of our approach.

These features were then projected onto images that could be processed by Convo-
lutional Neural Networks (CNN) such as (IRV4) [20] or Transformers such as (AST) [21].
Samples that did not have any audio channels were removed from consideration. In to-
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tal, 51 categories were analyzed to represent the audio-image features extracted from the
audio signals.

Since the dataset delineates experimentations on human action recognition in daily
life scenarios, all daily life actions occurring in action recognition were retained in order to
inform the models (e.g., through fine-tuning) on specificities characterizing the audio at
hand. Data were thus preserved in raw format, whereby no form of image normalization
was undertaken, and no forms of pre-processing were applied to the collected data. No
Data Augmentation (DA) approaches were adopted (such as horizontal flipping) in order
to prevent injecting any kind of noise into the sample and to ensure the inclusion of exten-
sively trimmed action sequences. DA was customarily performed through Rotation [22],
Flipping [23], Cropping [24], Scaling [25], Translation [26], Noise Injection [27], Color
Modification [28], and other modes. Carefully selecting appropriate data augmentation
techniques ensures that modified images are still representative of the original dataset and
do not introduce any unwanted biases. These types of processing can be easily completed
with off-the-shelf software libraries, according to specific application needs by starting
from our data.

5. Results

In the context of multimodal action recognition, as in Multimodal Audio-image and
Video Action Recognition (MAiVAR) framework [2], these data are utilized, and they
demonstrate superior performance compared to other audio representations. The study
establishes a benchmark approach for using this dataset. According to Table 2, the data
illustrate the performance of multimodal deep learning models using different audio
representations, namely Waveplot, Spectral Centroids, Spectral Rolloff, and MFCCs. These
representations are used in two scenarios: audio only and fusion of audio and video.
Waveplot Representation shows mediocre performance in the audio-only scenario (12.08)
but excels when combined with video, reaching a performance of 86.21 in the fusion
scenario. However, Spectral Centroids Representation performs poorly in the audio-only
scenario (13.22) but improves when combined with video, achieving a performance of 86.26
in the fusion scenario. In addition, Spectral Rolloff representation performs slightly better
than the previous two in the audio-only scenario (16.46). Lastly, MFCC representation
shows deficient performance in the audio-only scenario (12.96), and its performance in
the fusion scenario (83.95) is also lower compared to that of other representations. In
summary, all representations perform significantly better in the fusion scenario, indicating
that the combined use of audio and video data enhances the effectiveness of these models.
MFCCs representation, however, seems to be less effective when combined with video data
compared to the others. This indicates that preprocessing steps for audio representations
might play a crucial role in improving the model’s performance.

Table 2. Comparing audio-image representations before and after fusion based on accuracy in
percentage (adopted from [2]). Note: video-only accuracy is 75.67%.

Representation Audio Yield

Waveplot 12.08% +10.54%
Spectral Centroids 13.22% +10.59%
Spectral Rolloff 16.46% +10.33%
MFCCs 12.96% +8.28%

Finally, our previous work in [2] reports state-of-the-art results for action recognition
on audio-visual datasets, highlighting the impact of this work in the research community.
We use this dataset [29] to conduct an experiment for human action recognition. Exten-
sive experiments are conducted in the following publications listed in Table 3 against
several features.



Data 2024, 9, 21 9 of 12

Table 3. Prior publications produced using the proposed dataset.

Ref. Work Venue

[19] Multimodal Fusion for Audio-Image and Video
Action Recognition

Neural Computing and
Applications

[2] MAiVAR: Multimodal Audio-Image and Video
Action Recognizer

International Conference on Visual
Communications and Image
Processing (VCIP)

[30]
PyMAiVAR: An open-source Python suit for
audio-image representation in human action
recognition

Software Impacts

[29] Spectral Centroid Images for Multi-class Human
Action Analysis: A Benchmark Dataset. Mendeley Data

[31] Chroma-Actions Dataset—CAD. Mendeley Data

[32] Waveplot-based Dataset for Multi-class Human
Action Analysis Mendeley Data

[33] Spectral Rolloff Images for Multi-class Human
Action Analysis: A Benchmark Dataset Mendeley Data

[34] MFFCs for Multi-class Human Action Analysis: A
Benchmark Dataset Mendeley Data

[35] MFCCs Feature Scaling Images for Multi-class
Human Action Analysis: A Benchmark Dataset Mendeley Data

We conducted comprehensive experiments on the proposed datasets and the results
were derived against various features discussed in our prior publications listed in Table 4.

Table 4. Classification accuracy of MAiVAR using Chromagram representation and comparison to
the state-of-the-art methods on the UCF51 dataset after fusion of audio and video features.

Year Method Accuracy (%)

2015 C3D [36] 82.23
2016 TSN (RGB) [37] 60.77
2017 C3D + AENet [38] 85.33
2018 DMRN [39] 81.04
2018 DMRN [39] + [40] features 82.93
2020 Attention Cluster [41] 84.79
2020 IMGAUD2VID [42] 81.10
2022 STA-TSN (RGB) [4] 82.1
2022 MAFnet [40] 86.72

2022 MAiVAR-WP [2] 86.21
2022 MAiVAR-SC [2] 86.26
2022 MAiVAR-SR [2] 86.00
2022 MAiVAR-MFCC [2] 83.95
2022 MAiVAR-MFS [2] 86.11
2022 MAiVAR-CH [2] 87.91

Ours MAiVAR-T [43] 91.2

6. Conclusions

In conclusion, this paper presents an innovative dataset comprising spectral centroid
images representing human actions, derived from audio signals of the UCF101 video
dataset. These spectral centroid images provide a compact and information-rich repre-
sentation of the temporal dynamics of human actions, making them robust to noise and
distortion and highly suitable for diverse applications such as surveillance, healthcare
monitoring, and robotics.

Moreover, the unique characteristics of the dataset allow for it to serve as a robust
benchmark for assessing the efficacy of various machine learning models in human action
recognition tasks. It also provides opportunities for cross-dataset validation and transfer
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learning, opening avenues for fine-tuning pre-existing models on new tasks. Therefore, this
dataset not only enhances the accuracy of human action-related tasks, but also provides a
novel methodology that can contribute to the field of human action recognition.

In the future, subsequent investigations might center on the exploration of various
large-scale multimodal datasets in conjunction with more efficient feature representations
to extend and improve multimodal action recognition applications.
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