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Abstract: Agitation is a commonly found behavioral condition in persons with advanced dementia. It
requires continuous monitoring to gain insights into agitation levels to assist caregivers in delivering
adequate care. The available monitoring techniques use cameras and wearables which are distressful
and intrusive and are thus often rejected by older adults. To enable continuous monitoring in older
adult care, unobtrusive Wi-Fi channel state information (CSI) can be leveraged to monitor physical
activities related to agitation. However, to the best of our knowledge, there are no realistic CSI
datasets available for facilitating the classification of physical activities demonstrated during agita-
tion scenarios such as disturbed walking, repetitive sitting–getting up, tapping on a surface, hand
wringing, rubbing on a surface, flipping objects, and kicking. Therefore, in this paper, we present
a public dataset named Wi-Gitation. For Wi-Gitation, the Wi-Fi CSI data were collected with twenty-
three healthy participants depicting the aforementioned agitation-related physical activities at two
different locations in a one-bedroom apartment with multiple receivers placed at different distances
(0.5–8 m) from the participants. The validation results on the Wi-Gitation dataset indicate higher
accuracies (F1-Scores ≥ 0.95) when employing mixed-data analysis, where the training and testing
data share the same distribution. Conversely, in scenarios where the training and testing data differ
in distribution (i.e., leave-one-out), the accuracies experienced a notable decline (F1-Scores ≤ 0.21).
This dataset can be used for fundamental research on CSI signals and in the evaluation of advanced
algorithms developed for tackling domain invariance in CSI-based human activity recognition.

Keywords: human activity recognition; CSI dataset; convolutional neural networks; agitation
recognition; fine-grained activity recognition

1. Introduction

Dementia is a progressive neurodegenerative disorder characterized by deterioration
in cognitive functions such as memory, thinking, and judgment, which affects the social
and emotional behavior of a person [1]. It is considered one of the prominent causes
of institutionalization and disability of the older adult population [2]. At present, 50 million
members of the world’s population are suffering from dementia which is anticipated to rise
by approximately 70% in 2030 as the older adult population is continuously growing [3]. It
is found that 90% of persons with dementia (PwD) exhibit agitation as one of the common
behavioral conditions [4]. Usually, it is difficult to deal with the person exhibiting agitation
specifically in long-term or at-home care settings. PwD demonstrating agitation are more
likely to experience a rapid decline in physical health due to unexpected falls or fractures
compared to PwD without agitation [5]. They are also susceptible to additional neuropsy-
chiatric symptoms such as sleep impairment, depression, etc. [5]. Therefore, in addition
to posing risks to the safety of PwD, it also induces significant distress for caregivers
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and presents challenges in delivering the necessary assistance and care to PwD [6]. Thus,
to optimize care for PwD, it is of extreme importance to monitor and understand agitation
symptoms at an early stage so that caregivers can intervene and de-escalate the situation
as well as tailor the care provided as per the needs of PwD [7].

Currently, efforts are being made to implement assistive technology leveraging Human
Activity Recognition (HAR) techniques to support healthcare [8]. With the help of HAR
techniques, PwD can be continuously monitored, providing caregivers with a more pro-
found understanding of their daily routines and behaviors [9]. The available technology
for HAR includes video cameras, wearable sensors, and RF-based sensing. However, due
to the obtrusive nature of cameras and wearables, they impose various drawbacks for in-
house dementia care. For example, PwD can easily forget to wear wearable solutions or they
might feel stigmatized/distressed by continuously wearing them [10], whereas video-based
solutions can cause privacy and security issues for both PwD and their caregivers. To over-
come these drawbacks, unobtrusive sensing systems (USSs) which do not demand the user’s
attention and can monitor users from a distance while preserving their privacy are required [11].
A recent interview-based study with formal and informal caregivers of PwD also highlighted
the value of using USSs for proactive in-home care of PwD [12], thus opening new avenues
for context-based development of USSs for in-home dementia care.

Among others, RF-based sensing systems such as Wi-Fi Channel State Information
(CSI) are considered unobtrusive and are widely used for HAR [11]. While these systems
hold promise for advancing the organization of healthcare, there persists a shortage of CSI-
based solutions specifically tailored for in-home dementia care. For the implementation
of CSI-enabled Unobtrusive Sensing Systems (USS), a Wi-Fi access point (acting as a trans-
mitter) and a few receiving points, commonly present in devices like laptops and mobile
phones, are required. The access point (or transmitter) continuously emits signals that un-
dergo multipath propagation in the monitored environment before reaching the receivers.
This multipath propagation induces changes in the transmitted signal properties (such
as amplitude and phase) corresponding to different human activities occurring within
the monitoring environment (see Figure 1).

Figure 1. Use of CSI monitoring in home environment.

Inspired by the existing studies utilizing CSI in healthcare, such as sleep monitor-
ing [13], seizure detection [14], fall detection [15], and stress detection [16], the possibility
of using CSI in assisting in-home dementia care shall also be investigated. In that regard,
this paper presents and evaluates a realistic CSI dataset depicting physical agitation ac-



Data 2024, 9, 9 3 of 26

tivities, named Wi-Gitation. Note that realistic here means close to real-life, i.e., a real-life
home environment was used with healthy participants enacting agitation scenarios.

While the Wi-Gitation dataset can be seen as the first step towards digitalizing agitation
detection, it is also advantageous for future research works on HAR with CSI. It will not
only save the cost of time and work of researchers but can also speed up the research on CSI-
based HAR for fine-grained activities (like kicking, tapping, hand wringing, etc. in realistic
scenarios) while accounting for multiple factors impacting the CSI (like environment,
location, gender, distance, etc.).

In summary, the main contribution of this paper is twofold:

1. A realistic Wi-Fi CSI dataset inspired by the standard agitation monitoring scale (SOAPD)
for classifying agitation-related physical activities is presented. To the best of our knowledge,
Wi-Gitation is the first publicly available dataset providing CSI of full-body and fine-
grained physical activities depicting agitation in a realistic scenario. Moreover, a semi-
controlled study setup where participants were given a certain degree of freedom
was used. Additionally, the activities were performed at two different locations
and observed by four receivers placed at varied distances (details are discussed in
Section 2.1).

2. Baseline evaluation results obtained with the help of mixed-data and leave-one-out analysis
using the Wi-Gitation dataset are presented. For future research, it is important to have
a baseline for comparison; thus, mixed-data and leave-one-out analysis utilizing four
CNN models, ResNet-50, MobileNet-V2, NASnetmobile, and xception is presented.

2. Related Work
2.1. Agitation Diagnosis

Agitation is broadly defined as occurring in patients with cognitive impairment or de-
mentia syndrome; exhibiting behavior consistent with emotional distress; manifesting ex-
cessive motor activity, verbal aggression, or physical aggression; and evidencing behaviors
that cause excess disability and are not solely attributable to another disorder (psychiatric,
medical, or substance-related) [17]. Traditionally, agitation is diagnosed by using standard
scales like the scale for observation of agitation in persons with dementia of Alzheimer’s
type (SOAPD) [18], Cohen-Mansfield Agitation Inventory (CMAI) [19], clinical dementia
rating (CDR) [20], and the modified mini-mental state (3MS) [21]. A clear demarcation
in physical and verbal agitation activities is given by SOAPD. SOAPD is considered to
be patient-centered while also demonstrating good psychometric adequacy [22,23]. It
demarcates seven broad activity categories: total-body movement (disturbed pacing and
walking, getting up–sitting down–getting up repeatedly), up/down movements (like get-
ting up–sitting down–getting up repeatedly from a chair or bed), repetitive body motions
in place (like rubbing, hand wringing, and tapping), outward motions (like hitting, pinch-
ing, and pushing), high-pitched noise (like screaming and shouting), repetitive vocalization
(like repetitive requests), and negative words (like swearing and cursing) [18]. SOAPD
uses the duration (between 16 s and 5 min) and intensity (mild, moderate, or extreme)
of these activities to determine the agitation score which is calculated as the summation
of the weights for all observed activities (see Table 1), which is usually calculated by trained
professionals, or at times narrated by informal caregivers to medical practitioners. This
can make it prone to personal biases and inevitable human errors [24]. Furthermore, this
existing method can cause a delay in the diagnosis of agitation level due to the dependency
on the professionals, which then delays the course of preventive/precautionary measures [25].
Hence, self-standing methods that can monitor as well as highlight the triggers of agitation
in the early stage are required [23,26]. In that direction, the Wi-Gitation dataset is a first step
to verify whether CSI can be used to classify the fine-grained hand and leg movements needed
to estimate agitation.
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Table 1. Physical activities used in Wi-Gitation dataset from SOAPD (Table adopted from [18]).

Activity Types SOAPD Categories

Duration (d) Intensity

Not
Present

Short
(d ≥ 16 s)

Medium
(16 s ≥ d
≤ 2.5 m)

Long
(2.5 m ≥
d ≤ 5 m)

Not
Present Mild Moderate Extreme

Full-body

Total-body
movement
(Disturbed
walking)

0 1 2 3

Full-body
Up/Down
movement (Sitting
up and down)

0 1 2 3

Fine-grained

Repetitive
Movements
(Rubbing, hand
wringing, tapping)

0 1 2 3 0 1 2 3

Fine-grained

Outward
Movements
(Flipping objects,
kicking furniture)

0 1 2 3 0 1 2 3

Human Activity Recognition using Wi-Fi CSI

HAR refers to the process of automatically identifying and interpreting activities
performed by individuals based on data collected from various sensors. In general, HAR
modeling involves four main steps: the data collection phase (where human activity data
are captured via sensors), the pre-processing phase (where pre-processing steps are applied
to enhance the quality of data), the learning or training phase (where features are learned
from the dataset using techniques like machine learning or deep learning), and the activity
recognition phase (where the trained model classifies the activities) [8].

In this research, we use Wi-Fi CSI as a sensor for data collection. The radio waves
transmitted using Wi-Fi are sensitive to the environment, i.e., they are affected by the en-
vironment (e.g., reflected, absorbed, or scattered), which causes the overall radio signal
to arrive at the receiving antenna from multiple paths. This is known as multipath propa-
gation and is the foundation of the aforementioned channel state information. CSI data
contain the spatial information of each communication link, including the phase and signal
strength. With any change in the environment over time (e.g., a person is cooking, falling,
etc.), a change in the received reflected signal over each link is also observed. A pattern
observed from these reflected signals results in a spatial–temporal fingerprint of each
activity which can be used for human activity monitoring.

Wi-Fi CSI is actively used for the unobtrusive monitoring of coarse- and fine-grained
human activities. Past works are evidence of the success of CSI in monitoring both coarse-
grained activities (full-body activity, e.g., walking, running, falling, and sitting [27]) and
fine-grained activities (e.g., finger gesture recognition) [28]. Along with these, physiological
activities (e.g., heart rate and breathing rate) were also monitored successfully by leveraging
the CSI [29]. These physical and physiological activities were also utilized in monitoring
subtle, but important, human behaviors. For example, Liu et al. [29] used heart and breathing
rates to determine the sleep events and postures of a person for assessing the quality of sleep.
The research by Lin W. et al. used CSI to develop DW-Health for monitoring/distinguishing
drinking behavior to promote/remind users to drink water [30]. Similarly, Liu X. et al. [31],
Wenyuan et al. [32], Guo X. et al. [33], and Zhu Y. et al. [34] used CSI for monitoring
fitness activities.

CSI has also shown its application in healthcare for assisting in the prediction/diagnosis
of anomalies. Earlier research demonstrates the successful use of CSI in the detection
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of eclamptic seizures among pregnant women, possible danger during bathing, post-
surgical falls, Huntington’s disease, Parkinson’s disease, etc. [35]. Considering the COVID-
19 pandemic, a recent article proposed CSI for developing a platform for early diagnosis
of COVID-19 symptoms [35]. In relation to the domain of dementia research, only one
research work was found that used CSI for classifying the wandering patterns of PwD [36].
Thus, to assist caregivers in providing in-home care for PwD, more CSI-based studies
are required to identify subtle behavior patterns in PwD which may lead to agitation (as
mentioned in SOAPD).

2.2. CSI Datasets

Considering the surge in CSI use, various Wi-Fi CSI-based activity recognition datasets
were published to accelerate the research on HAR. WiAR provides data for monitoring
upper-body activities like arm waving, hand clapping, and drinking water, lower-body
activities like kicking, and whole-body activities like squatting, walking, etc. [37]. An-
other available dataset provides human-to-human interactions like hugging, handshaking,
pushing, kicking, etc. [38]. WiAR enables gesture recognition by providing data on ges-
tures like push and pull, clap, sleep, etc. [39,40]. A dataset by Meneghello et al. [41]
provides CSI data of full-body and hand exercises at 80MGz. In another recent dataset by
Demrozi et al. [42], data for entering or leaving the office, standing, walking, and sitting
activities were collected with six participants in two office setups. As can be noted, most
of these available CSI datasets are strictly protocolized/controlled or collected in empty rooms,
meeting rooms, or office setups, or when the participant is in the line of sight of the receiver
and transmitter, which limits the idea of using them in real-life use cases like in-home moni-
toring (such as in-home dementia care). This is because CSI signals use multipath propagation
and hence can be sensitive to the presence of any complex surroundings.

Therefore, by foreseeing the need for unobtrusive and ubiquitous in-home moni-
toring, this Wi-Gitation dataset is constructed. Table 2 compares the main characteristics
of the Wi-Gitation dataset with some of the recent datasets. It can be observed from the table
that available datasets used different monitoring environments individually such as those
without furniture (empty rooms) and with some furniture (meeting rooms, office rooms, lab-
oratory, etc.) but measurements were not conducted in a fully furnished home/apartment
setting. Moreover, the majority of them conducted experiments when participants were
in the line of sight (LOS) or in the nearby vicinity of Tx–RX. In summary, the Wi-Gitation
dataset outstands other available datasets on multiple factors: a varied and well-distributed
(gender and body mass index) participant pool, data collection in a realistic scenario
(one-bedroom apartment having furniture, glass windows, walls, etc.), multiple receivers
placed at various distances, multiple monitoring locations in the nearby vicinity and NLOS,
and a semi-protocolized experiment paradigm (i.e., duration and type of activities are fixed
but slight variations in the manner of performing activities, angle of sitting, etc. were not
monitored) containing small-scale hand/leg as well as full-body activities.
Overall, the dataset possesses five main characteristics.

• Realistic setup: The data were collected in a simulated one-bedroom apartment having
all the facilities of a fully furnished real home (e-health house, University of Twente)
to see the impact of complex surroundings.

• Semi-controlled study setup: The participants were not strictly instructed to sit in the exact
same location or orientation; a slight shift (within 0.2 m) was permitted. Moreover, they
were given the freedom to choose which leg/hand they wanted to use, with the possibility
to switch between them. Similarly, for walking activity, no walking paths were defined
and participants were allowed to walk wherever they wanted within the monitoring area.
This was done to ensure that the data collected would be close to real-world scenarios.

• Distributed gender: The data were obtained from twenty-three healthy participants
having a good distribution of gender (11 Female, 12 Male), height (average height
173.52 ± 8.89 cm), and weight (average weight 67 ± 11.25 kg).
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• Data from Rx at different distances: The dataset uses one transmitter and four receivers
each placed at different distances from the participants (minimum distance: 0.5 m,
maximum distance: 8 m) for further analysis on the ubiquitousness of CSI.

• Data from non-line of sight (NLOS): Among the four receivers, one was placed beyond
the wall (approx 5 m distance from the transmitter Tx) for exploring the possibility
of using CSI in beyond-the-wall scenarios.

• Activities at two locations: To capture the variation in CSI due to the change in loca-
tion, activities were performed at two different fixed locations (and walking activity
at location of participant’s choice) within the e-health house.

Table 2. Overview of available datasets (M = Male, F = Female, Tx = Transmitter, Rx = Receiver,
R = Room, LOS = line of sight, NLOS = non-line of sight, BHK = bedroom, hall, kitchen,
P = protocolized, SP = semi-protocolized).

Dataset Participants Environment Tx–Rx Location Activities

2018 [37] 10 (5 M, 5 F)
Empty R (6 m × 8 m), Meeting

R (6 m × 10 m), Office R
(6 m × 10 m)

1 Tx–Rx; 4 m apart 1 in LOS and nearby
vicinity

P: Large upper-,
lower-, and

whole-body gestures

2017 [43] 6 - 1 Tx–Rx; 3 m apart 1 in LOS P: Full-body activities

2019 [44] 9 Living R (3.79 m × 3.45 m) 1 Tx–Rx; 2.5 m apart 1 in LOS or nearby
vicinity

P: Hand and
full-body activities

2020 [38] 40 pairs Furnished R (5.3 m × 5.3 m) 1 Tx–Rx; 4.3 m apart 1 in LOS P: Human to human
interaction

2020 [45] 30 (28 M, 2 F) Lab (4.7 m × 4.7 m), Hallway
(7.95 m × 3.6 m)

1 Tx–Rx; 3.7 m, 7.6 m,
and 5.44 m apart 1 in LOS and NLOS P: Full-body activities

2021 [46] -
Lab (4 m × 4.5 m), Furnished R

(3.5 m × 4.5 m), Furnished R
(4.5 m × 5 m)

1 Tx–Rx; 5 m apart Multiple in LOS P: Full-body activities

2021 [39] 16 (12 M, 4 F)
Classroom (4.5 m × 5.5m),

Office (2.5 m × 4 m), Hall R
(4.5 m × 2.5 m)

1 Tx-3Rx; appx. 1.6 m
apart

Multiple in nearby
vicinity P: Hand gestures

2023 [41] 13 (10 M, 3 F)

7 environments—bedroom,
living room, kitchen, university

laboratory, university office,
semi-anechoic chamber

2Tx-2Rx; Multiple in nearby
vicinity

P: Full-body and
hand activities

2023 [42] 6 Office room 1 (12 m × 6 m),
Office room 2 (6 m × 4 m) 2Tx-1Rx; Multiple in nearby

vicinity

NP: entering
or leaving the office,
walking, standing,

sitting, empty room

Wi-
Gitation

Distributed gender:
23 (12 M, 11 F)

Realistic setup: Simulated
1BHK apartment (8 m × 11 m)

Varied Rx placement:
1 Tx-4Rx; 2.7 m, 3.3

m, 6.3 m, 6.5 m apart

Multiple locations:
Multiple in nearby
vicinity and NLOS

SP: Fine-grained
hand/leg and

full-body activities

3. Wi-Gitation Dataset Description
3.1. Participants

The Ethics Committee of Behavioral, Management, and Social Sciences (BMS), University
of Twente approved this study. A combination of twenty-three graduate students and employ-
ees were recruited through online and offline volunteer registration. Table A1 lists the ranges
of age (average ± standard deviation: 25.26 ± 9.49 years), gender (12 male and 11 fe-
male), height (average ± standard deviation: 173.52 ± 8.89 cm), weight (average ± standard
deviation: 67 ± 11.25 kg), and body mass index (BMI) (average ± standard deviation:
22.25 ± 3.90 kg/m2) of the twenty-three participants. The information about participant
demographics can be important for further research in generalizing CSI-based HAR as CSI
is sensitive to participants’ physical traits. Considering the privacy-sensitive nature of de-
mographic information, a range-based information presentation method is used (Table A1,
in Appendix A). Before beginning the experiment, participants were provided with an oral
and written description of the experiment (aim, methods, data collection, data storage, and
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data usage). Upon agreement, a signed consent form issued by the University of Twente
for experimental studies with human participants was obtained from each participant.
The participants were free to stop the experiment or quit the experiment at any point
in time if they were not comfortable.

3.2. Activities

In this work, both full-body and fine-grained physical activities as described in ‘a scale
for observation of agitation in persons with Dementia of Alzheimer’s type (SOAPD)’ is
used [18] (see Table 1). In addition to these activities, the CSI data of normal walking and
normal sitting were also collected as activities of daily living and can be used in comparison
to agitation activities. For example, normal walking can be compared with disturbed
walking and normal sitting with other fine-grained hand and leg activities. Briefly, these
activities are:

1. Agitation-related full-body activities: to-and-from disturbed walking and getting
up–sitting down–getting up repeatedly from the chair;

2. Agitation-related fine-grained activities: rubbing hands on table, hand wringing,
tapping on table, kicking slowly on furniture, flipping objects;

3. Baseline normal–daily life activities: normal walking and normal sitting.

Note that, for agitation detection, the activities need to be carried out with different
intensities (slow, medium, and high) and varied duration (detailed in Section 3.7).

3.3. Device Used

In the experiment, five mini-PCs equipped with the Intel Ultimate Wi-Fi Link 5300 NIC
were used to collect the channel state information, for which the hardware specification can
be found in Table 3. One mini-PC acted as a packet injector (transmitter), while the others
were placed in monitor mode (receivers, conforming to the 802.11n specifications). Channel
64 was chosen as it is the most commonly selected one in the literature, with a center
frequency of 5.32 GHz, as it allows for fine-grained activity monitoring due to the shorter
wavelength (6 cm and 12.5 cm for 5 GHz and 2.4 GHz, respectively). Ideally, 2.4 GHz
is good for wall penetration (due to the longer wavelengths), although 5 GHz can also
provide adequate results for through-the-wall activity monitoring [37]. The transmitter
injected packets at a frequency of 100 Hz for which the monitoring nodes recorded the CSI.
Each mini-PC consisted of three antennas, resulting in a CSI matrix of 3 × 3 × 30 (as
the software only allows recording at most 30 subcarriers, with a channel spacing of
312.5 kHz). Furthermore, packets were transmitted using 48 Mbps and 64 Quadrature
amplitude modulation (QAM). By using the Linux CSI Tool [47], the received traces consist
of a received signal strength indicator (RSSI) and CSI can be obtained. RSSI is the sum
of signal energy from multiple paths (both LOS and NLOS) between the transmitter and
the receiver calculated per chip. CSI provides fine-grained information by describing
signal propagation through the effect of time delay, energy attenuation, and phase shift
in the wireless channel. Thus, CSI is effective at monitoring fine-grained activities using
Wi-Fi signals, like those involved in agitation detection. To summarize, in the present
study for agitation monitoring, CSI data were collected by using 5 transceivers: one
as a transmitter node (3 antennas) and four receivers (3 antennas each) working at 5.32 GHz.

Lastly, to annotate the CSI data, four video cameras mounted on the ceiling of the eHealth
house were used. The camera angles were adjusted in such a way that fine-grained movements
such as rubbing, tapping, and kicking could be easily captured.
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Table 3. Specifications for Gigabyte Brix IoT.

Component Specification

Hardware

Processor Intel Apollo Lake N34500

RAM 1x HyperX 8GB DRR3L-SO DIMM 1866 MHz

Hard drive Transcend MTS800 SSD 128 GB (M.2 2280)

Wireless adapter Intel N Ultimate Wi-Fi Link 5300

Size 165 × 105 × 27 mm

Operating System Ubuntu 14.04.4

Parameters

Channel 64

Center frequency 5.32 GHz

Packet transmission rate 100 Hz

Number of antennas 3

Subcarriers 30

3.4. Experiment Location: eHealth House

It is important to evaluate a CSI system in complex surroundings (like a fully furnished
house) specifically while considering scenarios such as in-home care for early-stage PwD
living alone in their houses. To replicate these scenarios, the eHealth house, which is
a simulated one-bedroom apartment designed specifically for scientific research in the Tech
Med Centre at the University of Twente, The Netherlands, is used. This fully furnished
apartment consists of one bedroom (20.52 m2), one bathroom (6.76 m2), and a kitchen
plus living room (44.16 m2) to provide a real-life scenario for experimentation whereas
the control room (11.87 m2) and meeting room (22.37 m2) are designed to enable monitoring
of the experiments. Two walls of this apartment are made up of glass (shown in blue
in Figure 2) whereas the others are made up of concrete. Test runs were conducted to see
the effect of people walking outside the eHealth house. It was observed that the signals were
not able to transverse through the outer glass and concrete walls. Lastly, the experiments
were performed in the living area at location L1 and location L2. In Figure 2, the layout
of the eHealth house is shown. For more information, a virtual tour of the eHealth house
can be found on the official website [48].

Moreover, a visualization of the most/least frequently walked paths for both normal
and disturbed walking was plotted by tracing the individual walking patterns of all
the participants from the recorded videos. In Figure 2, five commonly walked paths
(L3.1 to L3.5) were plotted with 1 being the most commonly walked and 5 being the least
commonly walked path. This graphical representation can potentially explain the difference
in walking performances of CSI data from different receivers, such that, if good performance
is observed by Rx3 (in the bedroom) or Rx4 (in the kitchen), this can be because participants
walked paths close to these locations more frequently. Moreover, these walking paths can
also help in making sense of the varied performances of the individual participants, such
that a participant spending more time in the same area likely affects the signal in a similar
fashion, whereas a participant moving throughout the entire space generates a larger
variance. It should be noted that these paths are participant-independent, meaning that
not all the paths were walked by each participant as they were free to walk anywhere they
wanted in the living and kitchen area.
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Cupboard 

Rx4

Bedroom 20.52 m2

TV

L2

Living room + Kitchen 44.16m2

L1Rx1

Tx

Rx3

Rx0

6.
7 

m

4 m

5 m
0.5 m

8 m
4 m0.5 m

Distance from L2 to Rx
Distance from L1 to Rx

Inner thin walls

Inner thick walls
Glass walls

L3.1

L3.3

L3.2

L3.4

L3.5

Most frequently walked paths (L3)

Figure 2. Layout of eHealth house and visualization of the most commonly walked paths, with L3.1
being the most commonly walked and L3.5 being the least commonly walked. Note that individual
participants may have slightly deviated from the shown paths.

3.5. Experimental Setup

The nodes were placed in different locations of the eHealth house. A rough estimate
of optimal locations for the placement of receivers is obtained by considering commonly
used spaces in the house and utilizing Fresnel Zone theory [49]. As per the theory, the signal
strength decay is proportional to the distance and longer (multi)paths; therefore, the activity
should not occur too far from the line of sight. Considering this, an estimation of optimal
locations for the four receivers was identified by taking a rough estimate of the space around
each antenna pair and ensuring more condensed Fresnel Zones but with sufficient signal
strength. Figure 3 provides an idea of plotted Fresnel Zones. It should be noted that while
the Fresnel Zones give a suggestion on node placement, radio waves are highly sensitive
to obstacles in the environment. Thus, for this research, it was merely used as an indication
rather than a precise measurement to explore the effect of Fresnel Zone theory.

Figure 3. Visualization of Fresnel Zones in the experimental setup (plotting for 5.32 GHz
(30th subcarrier), showing only every third zone.



Data 2024, 9, 9 10 of 26

Finally, the antennas were positioned as follows: the middle antenna was placed verti-
cally; the left and right antennas were placed at approximately 30 degrees from the mid-
dle antenna for all the receivers and transmitters to complement the wavelengths. Ul-
timately, Figure 2 depicts the placements of Rx nodes at the following locations: near
the sofa (Rx1), near the dining table (Rx0), in the bedroom (Rx3), and in the kitchen (Rx4),
and it shows the positioning of the antennas. Table 4 (and Figure 2) provide the details
of distances between Tx–Rx pairs and locations L1 and L2, as well as the distances of all
the nodes from the floor.

Table 4. Distances between Transmitter (Tx) and Receiver (Rx) with respect to location L1, L2,
and floor.

Node Tx (in m) L1 (in m) L2 (in m) Floor (in m)

Rx0 2.7 4.1 1 1.1
Rx1 3.3 1 4.1 0.45
Rx3 6.5 7.7 7.7 0.45
Rx4 6.3 7 4.5 0.85
Tx - 2.85 0.5 0.85

3.6. Experiment Paradigm

The total time required for this experiment session (including instructions) was approx-
imately 60 min, which included 40 min for the experimentation and 20 min for the other
parts (providing instruction, briefing about the experiment, and signing the consent forms).
The experiment was designed as a time-controlled experiment, i.e., for each activity, a spe-
cific time was given. Figure 4 illustrates the series of activities conducted during the experi-
ment. As described in Section 3.1, activities monitored, the experiment paradigms adopted
seven physical activities representing agitation and two additional normal activities (see
Section 3.1). These include getting up and sitting down repeatedly, rubbing on a surface,
hand wringing, tapping on a surface, kicking, flipping objects, and to-and-fro disturbed
walking, normal walking, and normal sitting. Each activity took place for two minutes
followed by a gap of 10 s and 20 s of instructions for the next activity. Activities like
walking normally and disturbed walking were performed in the kitchen + living room
area, whereas other activities were conducted in two locations, L1 (on the sofa) and L2
(on the dining chair). These locations are shown in Figure 2. Note that participants were
free to move anywhere they wanted in the given area for normal and disturbed walking
activities, whereas for other activities they were asked to sit at L1 and L2 but slight changes
in distance, angle of sitting, movement of hands, etc. were not monitored. Though CSI is
highly affected by these small changes in real life, these things cannot be avoided. Hence,
in order to make the dataset as realistic as possible, participants were given these choices.

Figure 4. Experiment Paradigm (P: pause of 10 s, I: instructions for next activity for 20 s).



Data 2024, 9, 9 11 of 26

3.7. Instructions for the Participants

English was used as the language of instruction. Before starting the experiment,
a video demonstrating a possible way to perform the above activities in relation to the agi-
tation scenario was shown to the participants on the television screen installed in the living
room of the eHealth house (see Figure 5). This screen was visible from both locations L1 and
L2. The video was also shown to participants before starting each activity (during experi-
mentation) in order to guide them through the experiment. The information on the video
included the name, location, duration, and an example video (at the start) of each activity.
During the activities, a two-minute countdown timer was shown on the screen to show
the remaining time for the ongoing activity. This was done to avoid confusion among
participants regarding the start and stop times. Along with these, some other important
instructions were given to participants as follows:

• Participants were asked to act as if they were agitated.
• They could be inspired by the video demonstration of activities but they were also

free to modify it a bit. For example, for rubbing the table they could use any or both
hands (right or left) and they could also vary the intensity (slow, medium, or high)
of the activity.

• For disturbed walking, they could walk anywhere in the living room and kitchen
area. They were also allowed to use a cane (like older adults use for walking support)
or simply walk nervously with regular steps in one direction and then back again.

• The location for performing the activities was fixed, i.e., on the sofa and dining chair
but slight shifts (within 0.2 m) in distance, angle of sitting, hand placements, etc. were
not protocolized.

• While sitting on the sofa (L1), for the rubbing activity, they were asked to rub on the ta-
ble (as a surface) placed in front of the sofa. For the activity flipping object, a book
(size: 21.5 cm × 14 cm), and woodcraft (size: 26 cm(height) × 5 cm(diameter)) were
given and they were allowed to choose any one or switch in between. For the kicking
activity, they were asked to hit (gently but repetitively) on the leg/legs of the table
placed in front of the sofa. Here also, they could choose the intensity, with any or both
legs (right or left).

• While sitting on the dining chair (L2), for the rubbing activity, they were asked to rub
on the dining table (as a surface). For the activity flipping objects, the same book
and woodcraft were used and participants were allowed to choose any one or switch
in between. Similarly, for the kicking activity, they were asked to hit (gently but
repetitively) on the leg/legs of the dining table with their own choice of leg and
intensity of the kicking.

(a) (b)

Figure 5. Data collection in e-health house at (a) Location 1 and (b) Location 2. The transmitter
(Tx) and the receivers (Rx) placed in the living room are highlighted with red circles. Note that
these images were captured from the video data obtained through cameras mounted on the ceiling
of the e-health house.
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4. Data Extraction
4.1. Extracting and Annotating the Data

The data from receiver nodes were collected and extracted using the open-source Linux
802.11 n CSI Tool [47]. The annotation process was conducted manually by the authors
through a visual examination of the video data. For each participant, start time, end
time, activity name, and location of each activity were noted from the video data. Then,
for each activity, the noted duration data were selected and segregated in the CSI for further
processing. Also, note that the experiment was time-controlled; thus, it was already known
where, when, and for how long each activity would take place.

4.2. Separating the Data

MATLAB 2021a was used for data pre-processing [50]. The obtained raw CSI dataset
was first checked for any possible missing data due to technical reasons. It was found
that the node placed in the kitchen (Rx4) failed to obtain the data for all activities of one
participant (P 23) whereas the node placed in the bedroom (Rx3) was not able to collect
data from six participants (P3, P4, P18, P19, P20, P21) for all the activities. Similarly, data
for the “Normal sitting” activity were also not captured by all receivers for two participants
(P1 and P14). Thus, empty data files for these participants for these specific receivers and
activities were removed. Ideally, Tx is expected to send 100 data packets per second (in this
case) but in practice collected CSI data might suffer from non-uniform sampling in the time
domain due to possible packet loss and transmission delay. Therefore, in the next step,
packet loss (by subtracting received packets from expected packets) for each participant
and activity was checked. A few packets were lost from the data but overall no significant
packet loss was found. Table A2 in Appendix B presents the removed data corresponding
to each node. With the dataset detailed information about packet loss corresponding to each
participant, each node, and each activity can be found. From here on, data were separated
for each node, each participant, and each activity. Lastly, all the participants used a cane
for the disturbed walking activity except P19 and P21 who performed disturbed walking
without a cane.

4.3. Obtained CSI Signals

The obtained CSI signal is represented in a three-dimensional channel state matrix,
H = Ntx × Nrx × Nsc, where Ntx is the number of Tx antennas (3), Nrx is the number
of Rx antennas (3), and Nsc is the number of subcarriers (30). This gives 3 × 3 × 30
or 270 data streams or 270 channels for each instant. The multiple antennas were used
to increase the heterogeneity of the data. In total, two minutes of data for each activity
was collected, which is expected to be 12,000 samples (120 s × 100 Hz) without packet
loss. Overall, for each activity, a matrix having 12,000 samples and 270 data streams was
obtained. To observe the temporal pattern in the CSI waveform pertaining to agitation
activities conducted during the experiment, Figure 6 was plotted by using five raw samples
of different activities performed at location 2 (random participants) and one channel
of receiver 1 with a window size of 200. By visual inspection, no specific pattern in signals
pertaining to different activities and participants was observed in this window size of data.
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Figure 6. Raw signals pertaining to different agitation activities at location 2 from random participants
and one channel.

5. Wi-Gitation: Baseline Performance

The aim of the presented analysis is not to develop advanced algorithms for improving
accuracy but is only to present baseline results that can be used for comparison with
different or future algorithms developed for CSI data. Thus, in this section, the performance
of the Wi-Gitation dataset (seven activities representing agitation were used: disturbed
walking, sitting–standing, tapping on the table, hand wringing, rubbing hands on the table,
flipping objects, kicking on furniture) is demonstrated by using mixed-data analysis and
leave-one-out analysis. Mixed-data analysis means that different samples from the same
participant will appear in the train, test, and validation sets [28,51]. For mixed-data analysis,
data were randomized for all participants and the abovementioned agitation activities
before splitting for training (60%), validation (20%), and testing (20%). This analysis
approach favors the real-life situation in older adult care. Usually, older adults/PwD live
alone in their apartments which means that the system can be calibrated on the resident
and then utilized for continuous monitoring.

In leave-one-out analysis, the model will be trained with CSI data from all the available
participants (N-2) except two which were used for validation and testing (one each).
Therefore, a total of 22 models for Rx0 and Rx1, 16 models for Rx3, and 21 models for Rx4
were trained and tested, respectively. This analysis can help in understanding the behavior
of CSI when unseen data are presented to the trained model. An illustration of the process
can be found in Figure 7. Note that the classification was done for both the locations (L1
and L2) and all four receiver nodes (Rx0, Rx1, Rx3, and Rx4) separately.

Figure 7. Schematic flow of agitation-based activity classification.
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Considering the aim of presenting the baseline results of the dataset, simple pre-
processing steps which include the nearest interpolation and sliding window with 50%
overlap were applied before feeding data into the CNN. Though the packet loss (presented
along with the dataset) was not very significant, to make the number of samples consistent
across all the participants and activities, nearest neighbor interpolation was used. In nearest
neighbor interpolation, the value at the nearest sample grid point is taken as a new value
at the query points [52]. Furthermore, 50% overlapping was performed to overcome the loss
of information while segmenting for further processing [53].

Furthermore, both the analyses were performed by using four commonly used convo-
lutional neural network (CNN) architectures: ResNet-50 [54], MobileNet-V2 [55], NASnet-
mobile [56], and xception [57]. These networks are widely used for image and non-image
data classification with proven performance in achieving optimization and state-of-the-art
performance. These specific CNN models were chosen by looking at the number of lay-
ers, top-1 accuracy, and size (MB) (Table 5) for comparing their effect on classifications
of physical agitation activities. ResNet-50 uses only 50 layers whereas NASNetmobile uses
914 layers; MobileNet-V2 is of only 16MB whereas ResNet-50 occupies 98 MB; and Xception
has better top-1 accuracy then others [58]. Untrained network architectures of ResNet-50,
MobileNet-V2, Xception, and NASnetmobile were obtained from MATLAB and fine-tuned
as per the input (270 × 200 × 1)—output (seven classes) requirements of the dataset. Other
model training hyperparameters include a minibatch size of 8, a learning rate of 0.001, and
stochastic gradient descent with momentum (sgdm) optimizer. Additionally, an early stop
if validation accuracy was not improving from the last five iterations was used to deal with
the problem of over-fitting.

Table 5. Overview of CNN architectures used.

CNN Architecture Top-1
Accuracy

Size (MB) Number of Layers

ResNet-50 [54] 0.749 98 50
MobileNet-V2 [55] 0.713 16 53
NASnetmobile [56] 0.744 23 914
xception [57] 0.790 88 174

6. Baseline Results

For both mixed-data analysis and leave-one-out analysis, seven agitation-based physi-
cal activities (disturbed walking, sitting–standing, kicking, tapping hands, wringing hands,
rubbing table, and flipping objects) were classified using four different CNN models,
ResNet-50, MobileNetV2, Xception, and NASnetmobile, at both locations (L1 and L2).

The F1-score was used to evaluate these models [59]. It is the harmonic mean of preci-
sion and sensitivity. Mathematically, precision is the ratio of true positives to the sum of true
positives and false positives. In the present context, it can be interpreted as the measure
of how many instances predicted as a specific activity by the classifier were actually that
activity in general. On the other hand, sensitivity (or recall) is the ratio of true positives
to the sum of true positives and false negatives. A high sensitivity indicates that the model
is good at classifying or recognizing instances of a particular activity, emphasizing the im-
portance of minimizing instances where the activity is present but not identified (False
Negatives). Overall, F1-score provides a balance between precision and sensitivity and
thus can be considered a better evaluation matrix (than accuracy) for trained models (see
Equation (1)). The F1-score ranges from 0 to 1, with a higher score indicating better model
performance in terms of both precision and recall. Therefore, the F1-score corresponding
to both the analysis methods was used for comparison.

F1-Score = 2 × Precision + Sensitivity
Precision × Sensitivity

(1)



Data 2024, 9, 9 15 of 26

Overall, these baseline results cover two aspects: (a) mixed-data analysis of the Rx
dataset (Rx0, Rx1, Rx3, and Rx4) with respect to activity locations L1 and L2, and individual
activities by using different CNN models; (b) a leave-one-out analysis of the Rx dataset
(Rx0, Rx1, Rx3, and Rx4) with respect to activity locations L1 and L2 and individual activities
by using different CNN models. Note that disturbed walking activity is independent
of locations and the same data were used while training models for both locations.

6.1. Mixed-Data Analysis with Different CNN Models

Performance with respect to activity locations: In Table 6, four CNN models were
compared for both the activity locations (L1 and L2) when using data from all four receivers
(Rx0, Rx1, Rx3, and Rx4) trained and tested individually. The average along Rx suggests
that ResNet-50 performs slightly better than others (for L1: ResNet-50 > MobileNet-V2 >
Xception > NASnetmobile; for L2: ResNet-50 > Xception > MobileNet-V2 & NASnetmobile)
for both the locations with L2 being the better-observed place than L1 in this house and
with given Tx–Rx placement. Furthermore, these four CNN models gave comparable
results with not much difference between obtained F1-scores. Moreover, it was noteworthy
to observe that despite the difference in the distance of receiver and activity location
(appx 5–8 m), an overall good average F1-score (for all activities) between 0.977 and 0.937
was obtained. Figure 8 was plotted to visualize the impact of receivers and activity location.
From this, it can be observed that the receivers close to the activity locations, i.e., Rx1 for L1
and Rx0 for L2, compared to the distant receivers, have higher F1-scores.

Table 6. Mixed-data analysis: Average F1-score from ResNet-50 (RN-50), MobileNet-V2 (MN-V2),
Xception (Xcep), and NASnetmobile (NAS) for both activity locations and all receivers. (* represents
the nearest receiver to the monitoring location.)

Activity Location Rx Data Used RN-50 MN-V2 Xcep NAS Average Models

Location 1: Rx0 (near dining table) 0.965 0.962 0.941 0.945 0.953
on sofa Rx1 (near sofa) * 0.977 0.963 0.970 0.961 0.968

Rx3 (in bedroom) 0.962 0.947 0.956 0.937 0.950
Rx4 (in kitchen) 0.965 0.953 0.945 0.929 0.948
Average: Rx0, Rx1, Rx3, Rx4 0.967 0.956 0.953 0.943 0.955

Location 2: Rx0 (near dining table) * 0.977 0.974 0.984 0.975 0.978
on dining chair Rx1 (near sofa) 0.970 0.937 0.971 0.965 0.961

Rx3 (in bedroom) 0.969 0.968 0.954 0.946 0.959
Rx4 (in kitchen) 0.975 0.975 0.969 0.964 0.971
Average: Rx0, Rx1, Rx3, Rx4 0.973 0.963 0.970 0.963 0.967

Figure 8. Mixed-data analysis: Average F1-score with respect to activity location and placement of Rx
(* represents the nearest receiver to the monitoring location).
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Performance with respect to individual activities: Average F1-score along the Rx
and locations for seven activities (disturbed walking, sitting–standing, kicking, tapping
hands, wringing hands, rubbing table, and flipping objects) for ResNet-50, MobileNet V2,
Xception, and NASnetMobile can be observed in Table 7. The overall average F1-score for all
the activities and the CNN models was between 0.92 and 0.98 (approx) with not much
difference in performance with respect to different CNN models. Further, Figure 9 was
plotted by taking an average along the CNN models. Here, a trend was observed in the F1-
score of the models. The models were able to classify activities as follows in descending
order: disturbed walking, flipping objects, kicking, sitting– standing, tapping, wringing
hands, and rubbing tables.

Table 7. Mixed-data analysis: F1-score from ResNet-50 (RN-50), MobileNet-V2 (MN-V2), Xception
(Xcep), and NASnetmobile (NAS) for all the activities.

Activities RN-50 MN-V2 Xcep NAS Average Models

Disturbed walking 0.989 0.983 0.986 0.975 0.983
Flipping objects 0.982 0.969 0.972 0.965 0.972
Kicking 0.973 0.961 0.966 0.960 0.965
Sitting–standing 0.968 0.958 0.962 0.954 0.961
Tapping 0.962 0.955 0.949 0.945 0.953
Wringing hands 0.959 0.952 0.947 0.941 0.950
Rubbing tables 0.952 0.941 0.944 0.928 0.941
Average activities 0.969 0.960 0.961 0.953 0.961

Figure 9. Mixed-data analysis: Average F1-Score for different activities.

6.2. Leave-One-Out Analysis with Different CNN Models

Performance with respect to activity locations: In leave-one-out analysis, the mod-
els were not able to train very well (i.e., training accuracies at times were below 50%).
But to obtain a basic understanding, the F1-score from the trained CNN models correspond-
ing to both locations and all receivers’ data (Rx0, Rx1, Rx3, and Rx4) was calculated. Com-
pared to mixed-data analysis, significantly lower F1-scores were observed here (between
0.24 and 0.11). These F1-scores can be observed in Table 8, which compares the performance
of four CNN models at both the activity locations (L1 and L2) when using data from all four
Rx (Rx0, Rx1, Rx3, and Rx4) individually. The average along Rx suggests that MobileNet-v2
performs slightly better than the others. For both L1 and L2, the performance of the models
is as follows (descending order): MobileNet-V2 > NASnetmobile > ResNet-50 > Xception.
Similar to mixed-data analysis, here also L2 is a better-observed place (based on average
across Rx, F1-score for L1 is 0.171 whereas for L2 it is 0.191). Furthermore, Figure 10 was
plotted to observe the impact of receivers and activity location.
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Table 8. Leave-one-out analysis: F1-score from ResNet-50 (RN-50), MobileNet-V2 (MN-V2), Xception
(Xcep), and NASnetmobile (NAS) for both activity locations and all receivers. (* represents the nearest
receiver to the monitoring location.)

Activity Location Rx Data Used RN-50 MN-V2 Xcep NAS Average Models

Location 1: Rx0 (near dining table) 0.212 0.235 0.168 0.243 0.215
on sofa Rx1 (near sofa)* 0.183 0.241 0.167 0.212 0.201

Rx3 (in bedroom) 0.116 0.158 0.112 0.165 0.137
Rx4 (in kitchen) 0.187 0.234 0.187 0.235 0.211
Average: Rx0,Rx1,Rx3,Rx4 0.175 0.217 0.158 0.214 0.171

Location 2: Rx0 (near dining table) * 0.187 0.224 0.156 0.226 0.189
on dining chair Rx1 (near sofa) 0.144 0.207 0.149 0.161 0.165

Rx3 (in bedroom) 0.151 0.178 0.110 0.154 0.148
Rx4 (in kitchen) 0.167 0.207 0.138 0.207 0.180
Average: Rx0,Rx1,Rx3,Rx4 0.162 0.204 0.138 0.187 0.191

Figure 10. Leave-one-out analysis: Average F1-score with respect to activity location and placement
of Rx (* represents the nearest receiver to the monitoring location).

Performance with respect to individual activities: Similar to the mixed-data analysis,
the average F1-score along the Rx and locations were calculated for seven activities (dis-
turbed walking, sitting–standing, kicking, tapping hands, wringing hands, rubbing table,
and flipping objects) for ResNet-50, MobileNet V2, Xception, and NASnetMobile (Table 9).
For most of the activities, MobileNet-V2 outperformed other CNN networks (except kick-
ing). Overall, all the models were able to classify disturbed walking and sitting–standing
comparatively better while other fine-grained activities like kicking, flipping objects, tap-
ping, wringing hands, and rubbing tables had comparable F1-scores (between 0.49 and 0.06).

Table 9. Leave-one-out analysis: F1-score from ResNet-50 (RN-50), MobileNet-V2 (MN-V2), Xception
(Xcep), and NASnetmobile (NAS) for all the activities.

Activities RN-50 MN-V2 Xcep NAS Average Models

Disturbed walking 0.362 0.493 0.387 0.414 0.414
Sitting–standing 0.287 0.399 0.206 0.297 0.297
Tapping 0.112 0.149 0.109 0.123 0.123
Kicking 0.133 0.118 0.110 0.12 0.120
Flipping objects 0.108 0.117 0.103 0.113 0.110
Rubbing tables 0.092 0.102 0.061 0.097 0.088
Wringing hands 0.084 0.094 0.060 0.092 0.083
Average activities 0.168 0.210 0.148 0.179 0.177
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7. Results Analysis and Discussion

The aim of this paper is to provide the Wi-Gitation dataset encompassing fine-grained
hand, leg, and full-body activities followed by presenting baseline results using four
different state-of-the-art convolutional neural networks for facilitating future research
on using CSI for HAR specifically for in-home PwD care. In that direction, first, we
summarize the novel characteristics of this dataset followed by providing its implications
in real-life settings. Thereafter, we extend the discussion on future usage of CSI-based
monitoring systems by comparing, contrasting, and interpreting the results of mixed-data
and leave-one-out analysis.

7.1. Implications of Wi-Gitation Dataset

Most of the available CSI datasets collect data in controlled environments, i.e., strictly
defined activity locations, closely or in-line-of-sight-placed Tx–Rx pairs, and fewer partici-
pants. In contrast, the presented realistic Wi-Gitation dataset contains CSI data of seven
agitation-based activities performed at two different locations in simulated home settings
(one-bedroom apartment) by twenty-three participants. Furthermore, the dataset also
provides normal walking and normal sitting activities which can be used to differentiate
between activities of daily life and agitation activity. Furthermore, the data were captured
by four different receiver nodes placed at different distances (0.5–8 m with one of the Rx
beyond the wall) from the participant. Though for fine-grained activities locations were
defined (sofa and dining chair), slight shifts in the distance, angle of sitting, etc. were
not monitored, whereas for walking activities participants were free to roam anywhere
they wanted in the kitchen and living room area. Additionally, while performing fine-
grained hand and leg activities, participants were free to improvise the activities (such as
by modifying the intensity and choice of hand/leg). This was done to make the dataset
resemble real-life agitation scenarios. Therefore, this dataset can be utilized to draw an early
understanding of the performance of newly developed algorithms in this domain dur-
ing the development and testing phases. In the later or pre-implementation stage (in
real-life settings), actors or PwD can be invited for determinative performance analysis
of the system.

Additionally, this dataset opens new avenues for gaining insights into the ubiquitous-
ness and domain-transfer applications of CSI-based sensing as it contains parameters like
different activity locations, participant characteristics, and placement of Tx–Rx [60]. In-
sights into ubiquitousness can help in making informed decisions on using these advanced
sensing systems. For example, if one Tx–Rx pair is sufficient for an apartment (of a certain
size), then opportunities for possible use might increase as this would be more cost-effective
compared to when multiple Tx–Rx pairs are required. Moreover, while considering unob-
trusiveness and ubiquitousness, it is also important to highlight the privacy and security
issues. The topic of privacy and security concerning CSI is still debatable in the literature.
It is difficult to extract CSI data and knowledge of advanced signal processing is required
to make sense of this data. But in the case of a hack, the unobtrusive property of CSI can
also be useful in the information leakage without anyone noticing it [61]. Thus, along
with developing advanced signal processing algorithms for CSI, serious consideration
of making them more privacy-aware is required. On a higher level, an effort to establish
new protocols, policies, and architectures is demanded before implementing CSI-based
HAR systems in real life.

7.2. Interpretation of Obtained Baseline Results

The majority of available CSI-based works present intriguing and complex algorithms
for processing CSI data. These algorithms help achieve better accuracy but to under-
stand the behavior of CSI data it is also important to present and discuss the results
with minimal data pre-processing before applying advanced signal processing. To gain
an understanding of the behavior of the raw CSI data, we used available raw CSI data
(270 data streams) for training, validation, and testing.
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To start with, mixed-data analysis was used where training and testing were per-
formed on the same participant group but with different samples. This analysis showed
promising classification results for agitation activities at both locations and given Tx–Rx
distances for the used CNN models. From the obtained mixed-method results, it can be
interpreted that the classification performance is dependent on the location of the partic-
ipant (or monitoring location) with respect to Tx–Rx placement and the type of activity
monitored. First, the observation from the closest Rx was comparatively better (Figure 8).
Second, the performance decreases with distance but not sharply, i.e., overall good obser-
vation of activities up to a distance of 8m (maximum tested in this experiment) can be
made with a few/or one Tx–Rx pair(s) (Figure 8). Here, it is worth highlighting that both
the closest receivers to the monitoring locations L2 (Rx0) and L1 (Rx1) were placed at the
same distance from the monitoring location but the distance between Tx and Rx was differ-
ent (Tx–Rx0:2.7m, Tx–Rx1:3.3m), which seems to impact the location-wise classification
performance slightly (as L2 appeared to be a better monitoring location compared to L1).
Third, the presence of a wall (NLOS scenarios) also degraded the classification performance
but not significantly (Figure 8). Fourth, activity-wise results suggest that classification
performance degrades with a decrease in the size of the activity, i.e., full-body activities
like walking had better scores compared to fine-grained activities like rubbing the table
(Figure 9). Fifth, not much difference in performance was found after training and testing
with different CNN models though ResNet-50 performed preeminently compared to others
(Table 7).

Moreover, despite using fully furnished home settings for data collection, the ob-
tained mixed-data results (F1-Scores ≥ 0.95) are comparable to the state-of-the-art works.
In the existing CSI-based HAR research, dangerous poses while bathing were estimated
with an accuracy of 96.23% [62]; paraparesis (paralysis of the lower body) with an accuracy
of 99.4% [63]; Parkinson’s disease with an accuracy of 99.8% [64]; post-surgical falls with
an accuracy of 90% [65]; and wandering behavior among dementia patients with an accu-
racy of 90% [36]. This demonstrates the possibility of implementing CSI-based agitation
monitoring systems in real-life settings for the specific case where training is carried out
on the to-be-monitored person.

In the next step, a leave-one-out analysis was performed to examine the behavior
of CSI when testing was done on a new person different from the one it was trained on.
The results are suggestive of the negative impact of new participant data on the activity-
wise, location-wise, and Tx–Rx distance-wise classification performance (F1-Scores ≤ 0.21).
Though the performance was significantly lower compared to mixed-data analysis, some
commonalities are striking. Here also, Rx close to the monitoring location had slightly
better results and the NLOS scenario had slightly poorer results (in the majority of cases)
(Figure 10). The impact of the placement of Tx–Rx with respect to participants is also
consistent with the mixed-data analysis results (Figure 10). Furthermore, in accordance with
the mixed-data analysis, the classification performance degrades with the size of the activity
but not significantly. F1-Scores declined by 0.04 in mixed-data analysis across activities
(Figure 9) whereas they declined by 0.33 in leave-one-out analysis (Figure 11). Lastly,
MobileNet-V2 performed slightly better but as such not much difference in performance
was found with different CNN models (Table 8).

To further understand the contrasting results of these two methods, Figure 12 was plot-
ted, showing raw CSI signal waveforms for two random participants for all the receivers
and different activities. This figure assists in understanding the achieved mixed-data
analysis performance of the Wi-Gitation dataset. A visual inspection of the waveform
of the raw signal reveals the difference in signals (amplitude change) concerning different
activities which means that the algorithm is trained impeccably well (or able to differenti-
ate) on the given activities and participants’ data; hence, it gives good testing results. In
Figure 12, it is also important to note the difference in the same activity’s signals within
data from different Rx (Rx0, Rx1, Rx3, and Rx4) and participants. In this direction, the ob-
served decline in F1-score in the leave-one-out analysis makes activity-wise, location-wise,
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and distance-wise sensitivity apparent. More specifically, not only physical attributes like
gender, age, height, weight,and BMI of the participants but also any kind of environmental
freedom like different orientations, angle of sitting, and manner of performing the activity
largely influence the overall classification performance, indicating challenges in the generic
analysis. The same was also highlighted by the research work [49]; CSI waveforms are sen-
sitive to location/person and can be different for similar activities if performed in different
environments by different persons. Finally, Figure 13 was plotted to compare the difference
in F1-score corresponding to different activities for mixed-data and leave-one-out analy-
sis at both locations (L1 and L2) by using the results of MobileNet-V2. From this figure,
it is evident that models perform poorly when presented with a new participant’s data,
i.e., ‘over-fitting’ may occur even though early stopping was used.

Figure 11. Leave-one-out analysis: Average F1-Score for different activities.

Lastly, it can be summarized that Wi-Fi CSI can be potentially used for recognizing
different activities demonstrated in agitation scenarios. Through different types of analysis
(representing different real-life scenarios), it became apparent that factors such as new
persons, monitoring locations, devices, and size of activities might impact the performance
of CSI-based USSs. For instance, if a receiver is placed nearby or in LOS to observe large
body movements of the seen person (during training), then chances of better observation
are high but the challenge comes when the receiver is in NLOS and fine-grained movements
need to be observed on an unseen person’s data. This makes the performance contingent
on the specific scenario. On the positive side, it is also worth underlining that, although
distance plays a key role in CSI monitoring, the performance does not decline sharply
(at least up to 8 m) with distance. This can be translated as follows. If we can improve per-
formance at nearby locations with unseen data, then the chances of improving performance
at distant locations with unseen data are also high. Thus, this indicates the ubiquitousness
of the CSI.
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Figure 12. Raw CSI signal waveform from Rx0, Rx1, Rx3, Rx4. (Note that different colors correspond
to different channels in the receivers).

Figure 13. Comparing activity-wise F1-scores from leave-one-out and mixed-data analysis.

8. Future Challenges

Considering the demand for unobtrusive sensing solutions for in-home monitoring
of PwD/older adults (and other user groups), Wi-Fi-based sensing solutions are recom-
mended [11,12]. In this direction, the Wi-Gitation dataset can facilitate research on using
Wi-Fi-based sensing for real-life use cases such as agitation among older adults/PwD living
alone. To detect agitation, the first challenge is to classify/recognize the agitation-related
activities, which are usually of fine-grained, varied intensity/time-duration as described
in SOAPD [18]. Then, on top of activity classification, algorithms that can compute agitation
scores based on classification results can be developed to automatize the agitation process
followed by rigorous testing with older adults.
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With agitation detection, this dataset can be utilized to encourage research in both
fundamental and application domains. From the bottom-up perspective, many attempts
to advance CSI have been observed in the literature but a deeper understanding of the be-
havior of raw CSI signals in more realistic scenarios is desirable (for example, how and
which factors impact CSI) to be able to make justifiable progress as well as to foresee
the limitations of CSI in HAR detection [66]. Moreover, the dataset presents data from nine
Tx–Rx antenna pairs (i.e., 270 data streams). Fundamentally, it would be worth looking
at which Tx–Rx antenna pair contributes better in which activity so that only those pairs
can be further used for data analysis. This might reduce noise in the data as well as pro-
cessing time. The same can be done for subcarriers. In a recent work, an adaptive antenna
elimination algorithm that adaptively eliminates antennas based on their sensitivity to dif-
ferent activities was proposed [67]. Such algorithms can be further evaluated by using
the Wi-Gitation dataset. Application-wise, as indicated by the leave-one-out analysis,
the problem of ‘over-fitting’ in CSI when testing on unseen data appears as the biggest
challenge for ‘generalizing the CSI data’. In this regard, the Wi-Gitation dataset provides
data from twenty-three participants who have different body mass indexes and fairly
distributed gender which can help in assessing the person-wise generalizability of new
possible algorithms. Additionally, the dataset advances the existing CSI-based HAR re-
search by adding the CSI data for fine-grained activities such as tapping, wringing, rubbing,
kicking, etc. These activities can also be seen as cues of complex behavior like anxiety,
nervousness, stress, etc. Thus, by recognizing these activities, a step ahead in behavior
recognition using CSI can be taken.

9. Conclusions

The Wi-Gitation dataset aims to advance research in unobtrusive and ubiquitous mon-
itoring, particularly for detecting agitation in PwD. While the evaluation results suggest
the potential of Wi-Fi CSI in monitoring agitation-related activities, it is crucial to rec-
ognize that the performance of CSI-based USS is contingent on the specific end-use case.
For instance, optimal performance is achieved when trained on data from older adults/PwD
living alone (mixed-data analysis approach) but deploying the system after training on oth-
ers’ data (leave-one-out analysis approach) may result in poor performance, which can
potentially be addressed through advanced data processing methods.

The obtained results reveal the sensitivity of CSI data to factors like location, partici-
pants, and Tx–Rx placement. Nevertheless, the potential of CSI in ubiquitous monitoring is
undeniable. The results indicate that only a few Tx–Rx pairs were optimal for monitoring
distances up to 8 m (the maximum tested in this study). However, in larger spaces or when
monitoring subtle activities like heart or breathing rate, the number of Tx–Rx pairs may
need to increase. Additionally, the dataset opens avenues for future research, particularly
in making CSI generalizable to fine-grained hand or leg activities. Lastly, comprehensive
investigations into user perspectives and implementation challenges are necessary before
implementing such advanced technologies.
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Appendix A. Participants’ Demographics

Table A1 presents the following demographics of the participants: Height (cms),
Weight (kgs), Gender (M/F), Age (years), and BMI (kg/m2).

Table A1. Participants’ demographic information.

Demographics Data Range Participant Number

Height Range (in cms) 157–160 P17, P4
(173.52 ± 8.89) 161–165 P10, P8, P23

166–170 P13, P21, P14
171–175 P2, P6, P7, P15, P3
176–180 P22, P16, P9
181–185 P20, P18, P19, P1
186–190 P5, P11

Weight Range (in kgs) 46–50 P6
(67 ± 11.25) 51–55 P4, P12, P17

56–60 P15, P8
61–65 P13, P21, P16, P10
66–70 P3, P7, P2, P23
71–75 P5, P9, P18, P19
76–80 P11, P14,
81–85 P22
91–95 P20
115–120 P1

Gender Male P1, P2, P5, P9, P11, P13, P16, P18,
P19, P20, P22, P23

Female P3, P4, P6, P7, P8, P10, P12, P14,
P15, P17, P21

Age (in years) 18-20 P3, P6, P7, P8, P10, P14, P15
(25.26 ± 9.49) 21–25 P2, P4, P5, P9

26–30 P1, P12, P13, P16, P18, P19, P20,
P21, P22, P23

31–35 P17
60–64 P11

BMI (kg/m2) 16–18.4 P6, P15
(22.25 ± 3.90) 18.5–20.9 P12, P16, P4, P5

21–24.9 P13, P21, P8, P17, P3, P11, P9, P18,
P19, P7, P2

25–30.9 P10, P23, P22, P14, P20
31–35.9 P1

Appendix B. Data Removed from Each Node

Table A2 presents the data that were removed from receiver (Rx) nodes, participants,
locations, and activities.

https://drive.google.com/drive/folders/1xeGeoozZzomMi04KOk9L7j0HahqNg37t?usp=share_link
https://drive.google.com/drive/folders/1xeGeoozZzomMi04KOk9L7j0HahqNg37t?usp=share_link
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Table A2. Table showing the removed data per node, participant, location, and activity.

Node Participant Location Activities

Rx0 1, 14 L1, L2 Normal sitting

Rx1 1, 14 L1, L2 Normal sitting

Rx3 3, 4, 18–21 L1, L2 All
1, 14 L1, L2 Normal sitting

Rx4 23 L1, L2 All
1, 14 L1, L2 Normal sitting
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