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Abstract: Fruit counting and ripeness detection are computer vision applications that have gained
strength in recent years due to the advancement of new algorithms, especially those based on
artificial neural networks (ANNs), better known as deep learning. In agriculture, those algorithms
capable of fruit counting, including information about their ripeness, are mainly applied to make
production forecasts or plan different activities such as fertilization or crop harvest. This paper
presents the RipSetCocoaCNCH12 dataset of cocoa pods labeled at four different ripeness stages:
stage 1 (0–2 months), stage 2 (2–4 months), stage 3 (4–6 months), and harvest stage (>6 months). An
additional class was also included for pods aborted by plants in the early stage of development. A
total of 4116 images were labeled to train algorithms that mainly perform semantic and instance
segmentation. The labeling was carried out with CVAT (Computer Vision Annotation Tool). The
dataset, therefore, includes labeling in two formats: COCO 1.0 and segmentation mask 1.1. The
images were taken with different mobile devices (smartphones), in field conditions, during the
harvest season at different times of the day, which could allow the algorithms to be trained with data
that includes many variations in lighting, colors, textures, and sizes of the cocoa pods. As far as we
know, this is the first openly available dataset for cocoa pod detection with semantic segmentation
for five classes, 4116 images, and 7917 instances, comprising RGB images and two different formats
for labels. With the publication of this dataset, we expect that researchers in smart farming, especially
in cocoa cultivation, can benefit from the quantity and variety of images it contains.

Keywords: cocoa pods detection; ripeness stage detection; semantic segmentation; smart farming

1. Introduction

The application of precision agriculture strategies in cocoa crops continues to en-
counter various challenges that need to be addressed. These challenges primarily involve
issues related to the poor quality of existing data and the acquisition of new data necessary
for the application of advanced precision agriculture techniques [1].

One of the main challenges is to identify different stages of ripeness of the cocoa pods
since this type of crop has a wide number of varieties, and all of them can show different
textures and color characteristics in their maturation process [2].

Detecting ripeness stages in cocoa pods is critical in determining two relevant factors
in any crop: effectively planning the optimal timing of harvest and accurately predicting
production volumes. Unfortunately, the adequate maturity to harvest is not always homo-
geneous, affecting the fermentation process necessary to obtain good chocolate quality [3].

The following different techniques have been tested for ripeness-stages detection in
cocoa pods:

• acoustic signals [2,4],
• determination of metabolic profiles through biochemical markers [5], and
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• laser techniques with backscattered images [6].

However, these techniques are unrealistic when implemented in the field with real
conditions, since the devices for capturing sound data, laser images, spectrometry, or
bio-chemical markers require expensive devices that are not within the reach of the farmers.

On the other hand, artificial intelligence techniques based on artificial neural networks
(ANNs), better known as deep learning, are increasingly used [7–9].

The precision and robustness of deep learning models depend on the quality and
quantity of the training data, as they are crucial factors that contribute to the variability of
the phenomenon under study [10].

Moreover, the increasing prevalence of smartphones among farmers for their daily
activities simplifies the process of capturing images, eliminating the necessity of investing
in costly equipment and specialized management for data capture.

Unfortunately, the community engaged in applied research using deep learning tech-
niques to detect ripeness stages in cocoa pods faces a scarcity of image datasets for most
varieties. In addition, the available public datasets offer only a limited number of images
for training deep learning models [8,11].

To help the community that performs applied research for developing deep learning
solutions to detect ripeness stages in cocoa pods, we propose the RipSetCocoaC-NCH12
dataset, which consists of 4116 images taken with different types of smartphones labeled
for semantic segmentation. Having several stages of ripeness is a feature that will allow
researchers to train machine learning algorithms that classify more than two classes: mature
and immature. These features will allow the scientific community interested in these
applications to train more robust and accurate deep learning models.

The RipSetCocoaCNCH12 dataset will be important for the training of machine learn-
ing algorithms that seek to detect different ripeness stages in cocoa crops of the CNCH12
variety and to make inventories of pods.

2. RipSetCocoaCNCH12 Dataset
2.1. Descripion

CACAO CNCH12, developed by “Compañía Nacional de Chocolates”, is the cocoa
variety in the dataset. The images were collected at the “Compañía Nacional de Choco-
lates” farm, located in the municipality of Támesis, department of Antioquia—Colombia
(5◦43′02′′ N–75◦41′25′′ W). The average height above sea level in the farm is approximately
1100 m. The dataset was created between 1 December 2022 and 17 February 2023, the
primary cocoa harvest season in the study area.

The average ripening period for a cocoa pod typically spans six to seven months,
although slight variations may occur based on the specific agronomic and climatic condi-
tions of the crop. The ripeness stages were defined in ranges of two months due to the
key physical and chemical differences of the cocoa pods according to the agronomists
of the “Compañía Nacional de Chocolates” company. The stages are defined based on
the duration in months, starting from pollination of the flowers to the optimal time for
harvesting the pod. The sequential progression of cocoa pods during the ripening process,
from 0 to 6 months, is illustrated in Figure 1.
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The images of cocoa pods were divided into five classes (Table 1). They were divided
into four classes according to their ripeness stage in months: Class 1 (0–2 months), Class 2
(2–4 months), Class 3 (4–6 months), and Class 4 (>6 months) (Figure 2). Additionally, there
is a fifth class known as “abortions” that does not fall under any of the ripeness stages
(Class A). Abortions are cocoa pods that start their growth process but die from various
causes associated with attacks by pests or diseases or even due to physiological problems
of the plant (Figure 3).

Table 1. Number and names of instances per class.

Class Class Name Instances

C1 Stage 1 (0–2 months) 3278

C2 Stage 2 (2–4 months) 1688

C3 Stage 3 (4–6 months) 1519

C4 For harvest (>6 months) 1169

CA Abortions 263

Total 7917
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The dataset contains two folders: the first contains the annotations in COCO 1.0 format,
and the second contains the images in segmentation mask 1.1 format. In each of these
folders, the images are divided into subfolders named with the main class they contain; an
image can contain several instances of different classes, but the images in each folder are
dominated by one of the classes. The distribution of instances in each folder can be seen
below in Figure 4.
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2.2. Quantitative Measure to Differenciate Cocoa Classes

The ripening process of fruit involves a sequence of physiological changes to become
ready for consumption or processing. The fruit grows, accumulating essential nutrients and
water, while noticeable transformations in color, texture, and composition signify its ripeness.

A widely used way to measure the state of maturity of a fruit quantitatively at different
stages is to calculate the internal sugar content by measuring Brix degrees [12–15]. To have
a quantitative measure that would confirm the difference between ripeness stages, the Brix
degrees were measured in more than 35 cocoa pods for each class in the four ripeness stages
(C1 to C4). The results are presented in Table 2.

Table 2. Number of samples and average Brix degrees for the ripeness stages.

Class Number of Samples by Class Selected to Measure
Degrees Brix Average Brix Degrees Measured

(
µj

)
(◦Bx)

C1 39 5.3

C2 45 6.6

C3 38 8.7

C4 40 16.6
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An ANOVA test was performed to check for a significant difference between the
different classes, according to their measure of Brix degrees. The results can be seen below
in Table 3.

Table 3. ANOVA table for Brix degrees in the four different ripeness stages.

Source of Variation Sum of Squares df * Mean Square F ** p Value

Between groups 2955.78 3 985.26 (VBG)
305.72 1.12e−63

Within groups 483.41 150 3.22 (VWG)

Total 3439.20 153

* Degrees of freedom. ** F = variance between groups/variance within groups = VBG/VWG.

Null hypothesis : µj are equal
Alternative hypothesis : µj are not equal

According to the results of the F and p-value, the null hypothesis is rejected. Therefore,
there is a significant difference in Brix degrees among classes, which confirms the accuracy
of dividing cocoa pods into the four proposed classes for the stages of ripeness.

Every image is 3000× 3000 px in JPEG format, with 8 bits. The image files were named
with the date and time of capture. Figure 5 is an example of the images corresponding to
the four ripeness stages.
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Table 4 below shows a summary of the RipSetCocoaCNCH12 dataset.
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Table 4. The RipSetCocoaCNCH12 specifications.

Item Description

Field of application Object detection—smart farming
Data acquisition Smartphone devices

Method of annotation Manually with CVAT (Computer Vision
Annotation Tool)

Number of classes
5: stage 1 (0–2 months), stage 2 (2–4 months),
stage 3 (4–6 months), for harvest (>6 months),

and abortions
Number of images 4116

Number of instances 7917
Data collected by Authors of this paper
Years of collection 2022–2023
Vertical resolution 96 dpi

Horizontal resolution 96 dpi
Dataset size 27 GB

Image format .JPG
Image size 3000 × 3000 px

Annotation formats COCO 1.0 and segmentation mask 1.1

3. Methods

Nowadays, smartphones have become ubiquitous. In even the most remote rural
areas, smartphones have become the main communication technology due to their low
costs and portability. These devices can also give farmers the ability to collect image data.
Therefore, in this work, the images were captured with smartphones to have a dataset as
similar as possible to real conditions.

3.1. Image Data Acquisition

Five devices from some of the leading manufacturers were selected for this work.
To ensure significant variability in the types of images captured and enrich the dataset,
multiple devices were chosen. The technical specifications of used smartphones can be
seen below in Table 5.

Table 5. Technical specifications of the smartphone cameras used to capture the dataset images.

Smartphone Camera Specifications

Samsung Galaxy A01 Dual rear camera consisting of a 13-megapixel f/2.0 main sensor and a 2-megapixel
f/2.4 depth sensor.

Samsung Galaxy Note 10 Triple camera composed of an ultra-wide angle: 16 MP, f/2.2, 123◦; a wide angle: 12 MP, AF,
f/1.5–2.4; and a phone Camera: 12 MP, f/2.1.

iPhone SE 2020 Single camera. 12 MP wide-angle camera, f/1.8 aperture.

LG G5 Dual camera. 16 MP main camera and f/1.8 aperture.8MP secondary super-wide-angle
camera with f/2.4 aperture.

Motorola G9 plus
Quadruple camera. Main camera: 64 MP sensor, f/1.8 aperture and phase detection focus.
Ultra-angular: 8 MP sensor, f/2.2 aperture. Macro: 2 MP sensor and f/2.2 aperture. Depth:

2 MP sensor and f/2.2 aperture.

The strategy for capturing images involved zigzag paths in the field enabling access
to each crop tree. During each pass, a person took images of a single class to allow easier
classification in the folders.

Between one and four images of each cocoa pod were taken from different angles to
obtain as many samples as possible (Figure 6).

The images were taken between 8:00 a.m. and 4:00 p.m. First, the size format for the
capture was adjusted on all smartphones to a 1:1 ratio, and then resizing was applied to
them using a script in the Python language with Pillow (Python Imaging Library), giving
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them a final size of 3000 × 3000 px. The original images had sizes in the range from
3072 × 3072 to 4096 × 4096 px.
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3.2. Brix Degrees Data Acquisition

Some pods were selected to measure the Brix degrees of the internal sugar content, as
mentioned in Section 2.1. First, the pods chosen for samples were perforated with a drill.
Then, the sample was extracted, which was later placed in a handheld refractometer, and
finally, the data were recorded manually. Images of this process can be seen below in Figure 7.
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3.3. Data Annotation

The tool used for labeling images was CVAT (Computer Vision Annotation Tool) [16],
which allows for different techniques. The technique used for this work was polygon
labeling to obtain a semantic segmentation of the classes (Figure 8).

The dataset contains labels in two alternative formats: (1) COCO 1.0, which has files
in the format (*.json) for detection using bounding boxes and polygons, and (2) segmen-
tation mask 1.1, which contains separate folders for semantic segmentation and instance
segmentation. Examples of these masks can be seen in Figures 9 and 10.
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Figure 10. Example of masks for instance segmentation: Class 1.
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4. Limitations

The RipSetCocoaCNCH12 dataset does not include classes of cocoa pods to discard.
In future work, diseases and rotten pods may be included. Additionally, more data should
be collected on other different cocoa varieties.
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