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Abstract: We introduce DeReKoGram, a novel frequency dataset containing lemma and part-of-
speech (POS) information for 1-, 2-, and 3-grams from the German Reference Corpus. The dataset
contains information based on a corpus of 43.2 billion tokens and is divided into 16 parts based on 16
corpus folds. We describe how the dataset was created and structured. By evaluating the distribution
over the 16 folds, we show that it is possible to work with a subset of the folds in many use cases
(e.g., to save computational resources). In a case study, we investigate the growth of vocabulary (as
well as the number of hapax legomena) as an increasing number of folds are included in the analysis.
We cross-combine this with the various cleaning stages of the dataset. We also give some guidance in
the form of Python, R, and Stata markdown scripts on how to work with the resource.

Dataset: https://www.owid.de/plus/derekogram/ (along with information and sample code).

Dataset License: DeReKo license (non-commercial, academic).

Keywords: language; n-grams; corpus frequency; dataset; German; vocabulary growth

1. Introduction

In corpus linguistics, we are interested in systematic analyses of large collections
of texts (corpora) to gain insights into language usage patterns, structure, and meaning.
Here, full-text corpora (i.e., collections where the sequential ordering of words and their
distribution over documents are preserved) are the most general resource, in the sense
that all the information that might become relevant during a research endeavor can be
derived, especially all measures that rely on sequential information. However, a lot of
interesting language resources that we want to include in corpora are subject to restrictions
under national copyright law or licenses. The latter is (often) a matter of negotiation
between licensees and licensors and might even differ between text sources [1]. This
not only complicates things considerably when compiling corpora but is also an obstacle
for efforts regarding standards of open science [2]. In other words, in an ideal world
shaped for corpus-linguistic research, we would be able to distribute all corpus resources
freely for everyone who wants to conduct original research or replicate findings based on
these resources.

Since, unfortunately, we do not live in this ideal world, the corpus-linguistic commu-
nity often has to compromise when distributing corpora. For example, we might prevent
access to the full-text corpora themselves and give users the opportunity to access them via
corpus platforms that are designed to search for specific patterns and allow for a specified
set of analyses and the extraction of small parts of the corpus (e.g., keyword-in-context
outputs). Several such corpus platforms are available for the German language. COSMAS
II and KorAP (COSMAS II is available via https://cosmas2.ids-mannheim.de. KorAP is
available via https://korap.ids-mannheim.de (accessed on 7 November 2023)) and provide
access to the corpus on which the dataset presented here is based. Access to another German
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corpus resource is offered by the corpus search of the Digital Dictionary of the German Lan-
guage (DWDS) (the corpus search of the DWDS is available via https://www.dwds.de/r
(accessed on 7 November 2023)). While opening many linguistic research avenues, there are,
however, also many large-scale corpus-linguistic procedures (e.g., calculations of transition
probabilities for all 2-grams, i.e., two-word sequences, in a corpus) where access paths
through corpus platforms, and this includes the ones mentioned above, are not sufficient.

For such applications, n-gram (n-grams are adjacent sequences of words where n
encodes the window size: 1-grams (unigrams) are single words, 2-grams (bigrams) are
adjacent sequences of two words, and so on) frequency lists are another possibility for
allowing researchers to leverage large-scale corpora. Maybe the best-known of such lists
are the Google Books corpora [3], which are also available for German but come with
their own restrictions, like a frequency threshold and other issues [4,5]. Frequency lists
enable researchers to devise a range of measures (for example, the transitional probabilities
mentioned above or more sophisticated language models based on n-grams) and can
be used to train word-level machine learning models with a fixed context [6]. Basically,
frequency lists become relevant whenever all items contained in the corpus need to be
factored into the analyses. Frequency lists can also inform joint research with other linguistic
disciplines. Word frequencies (or derived measures) might become relevant in choosing
stimuli for psycholinguistic studies (e.g., if the corpus frequency of experimental items
should be held constant or manipulated in an experimental setting). They are also used as
covariates or predictors for behavioral data, such as eye movements during reading [7,8] or
ERP data [9,10].

Here, we introduce new (up to 3-gram) frequency lists based on the German Reference
Corpus “DeReKo” [1] that contain lemma, part-of-speech (POS), and frequency information
from a corpus of around 43.2 billion tokens. We will first describe which parts of DeReKo
provide the basis for the frequency list and introduce the data structure. We will then
evaluate the distribution of data over the 16 parts (henceforth “folds”, Section 3) and present
a case study (Section 4) on vocabulary growth utilizing several cleaning stages in the dataset.
Further details and sample code for using the dataset are available at https://www.owid.
de/plus/derekogram/ (accessed on 7 November 2023) (Supplementary Materials). With
this accompanying webpage, we would like to facilitate work with DeReKoGram for as
many researchers as possible. We give pointers on how to back-translate the integer codes
(see Section 2 for an explanation) to human-readable wordforms and lemmas, aggregate,
lower (i.e., transform all characters to lower-case), and clean the dataset and search for
specific patterns based on a linguistic example. For Python, we also show how to train
smoothed n-gram language models with DeReKoGram. For Stata and R code for another
linguistic application please see the supplementary material of a previous study [11].

2. Data Description

DeReKo, the corpus DeReKoGram is derived from, currently contains around 50 billion
tokens and comprises a multitude of genres, such as (for the most part) newspaper texts
(newspapers from most regions of German-speaking countries are included; in addition,
the included newspapers vary in the size of their distribution area and their political
orientation), fiction, or specialized texts. The corpus currently grows by around 3 billion
words per year [1].

2.1. Data Selection

For DeReKoGram, the dataset we are introducing here, a large subset of DeReKo was
selected, tokenized with the KorAP tokenizer [12], and tagged with the TreeTagger [13].
The basis of the sample is a 2020 release of DeReKo, from which we excluded sub-corpora
with high proportions of foreign-language passages and high proportions of non-redacted
texts (e.g., material taken from Wikipedia discussions), as well as some material where
publication in this format would be legally problematic. We provide 1-, 2-, and 3-gram
frequency lists with and without punctuation (as identified by the TreeTagger). Note that
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excluding punctuation increases the number of lexical items contained, for example, in
some 3-grams. The original corpus sequence ich glaube , dass (Engl. “I believe that”) counts
as a 4-gram and is thus not included in the dataset with punctuation. In the dataset without
punctuation, however, the 3-gram ich glaube dass is included. This might be beneficial for
all analyses where punctuation is not important. We included begin- and end-of-document
markers «START» and «END». Please refer to Koplenig et al. [11] for an explanation. Note
that n-grams crossing sentence boundaries can be excluded by deleting n-grams based on
the POS tag $., which identifies the end of a sentence. Hence, n-grams crossing sentence
boundaries cannot be excluded from the dataset without punctuation.

2.2. Data Structure

One row in each dataset consists of integer IDs for the wordform and lemma, POS
tag, and the associated corpus frequency. Hence, 1-gram datasets have 4, 2-gram datasets
7, and 3-gram datasets 10 columns. Table 1 shows an excerpt from the bigram data with
punctuation for fold 12. No frequency threshold or stop word list was employed regarding
the inclusion of n-grams. The dataset was divided into 16 folds (16 folds have the advantage
(e.g., over 10 folds) that one can create 5 datasets where the size is doubled in each step
by using 1, 2, 4, 8, and 16 folds) where each fold consists of 1/16 of all corpus documents
(randomly sampled without replacement). The data are stored using integer IDs [14]; i.e.,
each wordform and lemma is independently mapped to a unique integer. This drastically
reduces file sizes and allows for faster and more resource-efficient processing for research
questions where the actual word form or lemma is not required. We also provide the
dictionaries necessary to map integer IDs to their respective wordforms and lemmas and
routines for Python, R, and Stata to use these dictionaries. To enable a resource-efficient
approach, we also provide dictionaries for each of the 16 folds separately.

Table 1. Sample bigram data for fold 12 with punctuation (rows 38 to 42 of the respective file).
Column 1: wordform code for the first element of the bigram, column 2: lemma code for the first
element of the bigram, column 3: part-of-speech tag for the first element of the bigram, columns 4 to
6: respective information for the second element of the bigram, column 7: frequency of the bigram in
fold 12. For convenience, columns 8 to 11 show the back-translated (“clear”) wordforms and lemmas.
Note that only columns 1 to 7 are included in the dataset. Columns 8 to 11 were back-translated with
the lemma and wordform dictionaries for fold 12, which are also available for download.

Form 1 Lem. 1 POS 1 Form 2 Lem. 2 POS 2 Freq. Form 1
(Clear)

Lem. 1
(Clear)

Form 2
(Clear)

Lem. 2
(Clear)

9 12 APPR 2 0 ART 1,775,493 mit mit der die
1 2 $, 6 4 APPR 1,762,655 , , in in

15 17 APPR 7 0 ART 1,761,184 für für den die
1 2 $, 50 39 KOUS 1,760,171 , , wie wie
1 2 $, 58 41 ADV 1,721,500 , , so so

3. Evaluation of Fold Distribution

In what follows, we evaluate the underlying sampling process, which was carried out
using the cryptographic hash function BLAKE2b [15] to create the 16 folds by comparing
several frequency parameters over all folds. We did so for a corpus that had not been
cleaned in any way and for raw and lowered, i.e., where all characters had been converted
to lower case, datasets separately.

We chose five “direct” measures: (1) number of different wordforms, i.e. the number
of wordform types. One may wonder why we do not evaluate the number of wordform
tokens. However, this would be somewhat trivial, since the sampling process randomly
assigned corpus documents to folds (see Section 2). The length of the documents (measured
in tokens) may therefore differ only minimally between the folds. With the evaluations
presented here, we aim to show that this similarity also holds for somewhat more complex
measures. (2) number of hapax legomena, (3) number of different wordforms tagged
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as normal nouns, (4) function words (part-of-speech tags are taken from the automatic
(and non-corrected) classification of the TreeTagger, which uses the Stuttgart-Tübingen-
Tagset [16]. The following tags were classified as function words: APPO, APPR, APPRART,
APZR, ART, KOKOM, KON, KOUI, KOUS, PAV, PDAT, PDS, PIAT, PIS, PPER, PPOSAT,
PPOSS, PRELAT, PRELS, PRF, PTKA, PTKNEG, PTKZU, PWAT, PWAV, PWS) as well as
(5) the ratio between the number of name/noun tokens and finite verb tokens. We also
report two “derived” measures: (6) type-token ratio (where wordforms are treated as types)
and (7) the entropy (entropy h is defined as h = −∑N

i=1 pi ∗ log2 pi, where pi is the relative
frequency of wordform i and N is the number of wordform types in the corpus fold) of the
complete frequency distribution for wordforms. For all these measures, we calculated the
difference in percentages between the minimum and maximum value over the 16 folds:
∆1-gram = (max (x1, x2, . . ., x16) – min(x1, x2, . . ., x16))/max(x1, x2, . . ., x16); where xn is
the value of the respective measure in the nth fold (accordingly for 2-grams). Ideally, the
difference percentages should be close to zero, which would indicate no difference between
the corpus folds. We also calculated coefficients of variation (CV, also known as relative
standard deviation, RSD, also reported as percentages) defined as CV = σx/µx, where σx is
the standard deviation and µx the mean of the respective measure over the 16 folds.

Table 2 shows that the highest difference percentages for 1-grams and the highest
coefficients of variation can be observed for the number of different wordforms tagged as
function words. This is presumably because the number of different wordforms of function
words is indeed much smaller than, e.g., nouns. For example, for the lowered folds, the
number of different wordforms ranges from 764 to 772. On the 2-gram level, the difference
percentages and the coefficients of variation are also very low.

Table 2. Difference percentages on the 1-gram level (∆1-gram, column 2 and 3) and coefficients of
variation (CV, column 4 and 5) for a number of frequency measures for the 16 raw and lowered 1-gram
folds. Column 6 and 7 hold information for raw 2-gram folds (column 6: difference percentages;
column 7: coefficients of variation). All values are reported as percentages.

Measure ∆1-Gram CV 2-Gram (Raw Only)

Raw Low Raw Low ∆2-Gram CV

Number of wordforms/2-grams 0.22 0.23 0.05 0.06 0.21 0.05

Number of hapax legomena 0.26 0.29 0.07 0.07 0.23 0.06

Number of different wordforms tagged as nouns 0.20 0.22 0.05 0.06 -

Number of different wordforms tagged as function words 1.85 1.04 0.5 0.3 -

NE + NN tokens/fin. verb tokens 0.10 0.02 -

Entropy 0.01 0.01 <0.01 <0.01 0.01 <0.01

Type-token ratio 0.17 0.17 0.05 0.05 0.13 0.03

Another way to compare the folds on the 1-gram level is to compare the frequency
ranks of wordforms over all 16 corpus folds. Since each wordform has been assigned a
numerical code based on its token frequency rank in the overall corpus, we can correlate the
codes of the first n wordforms (ranked by their frequency in each fold) with the respective
first n codes in every other fold. This yields a 16-by-16 correlation matrix with Spearman’s
correlation coefficients ρ. Ideally, all ρs should be very close to 1, which would indicate a
perfect match of frequency ranks over all corpus folds. We calculated correlation matrices
with increasing values of n for raw corpus folds without any cleaning and extracted the
lowest ρ (ρmin) for each value of n.

Table 3 shows that all values for ρmin are very close to 1 but are steadily decreasing as
n increases. This is because the token frequencies in higher ranks (= lower frequencies) tend
to produce more ties; i.e., wordforms with equal frequencies. In other words, wordform
frequencies lose their distinguishing power for higher values of n. For example, in fold 4,
the token frequency for all wordforms with the in-fold token frequency ranks of 995,506
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to 1,018,394 (22,889 wordforms) is 28. To demonstrate that a similar pattern can also be
observed for other folds: in fold 13, all tokens with the in-fold frequency ranks 994,655 to
1,017,581 (22,927 tokens) share a frequency of 28. This lack of distinguishing power in the
lower frequency ranges consequently leads to lower values of ρmin.

Table 3. Lowest spearman’s correlation coefficients ρ for the first n wordform codes ranked by their
in-fold frequency from 16-by-16 correlation matrices correlating all folds.

First n Wordforms Spearman’s ρmin

100 0.9999
1000 0.9999

10,000 0.9997
100,000 0.9975

1,000,000 0.9660

Furthermore, we Spearman-correlated all POS frequency distributions in the 16 folds
with all other folds, again yielding a 16-by-16 correlation matrix. Here, all ρs were larger
than 0.9999.

Finally, we checked whether the frequency distributions as captured by the Zipf-
Mandelbrot power law [17,18] yielded comparable parameters over all folds. Using the R
package zipfR [19], we fitted large number of rare events (LNRE) models to the frequency
distributions of (unigram) wordforms for each fold. Indeed, the parameter ranges were
very narrow, with the exponent parameter α ranging from 0.6316296 to 0.6316336 and the
second free parameter β ranging from 0.00043567 to 0.00043572.

Given these comparisons, we concluded that the sampling process produced 16 ho-
mogeneous folds. Methodologically, this means that many analyses performed using all
16 parts should produce very similar results when performed using only one fold.

4. Case Study: Vocabulary Growth

First, it must be noted that we do not understand vocabulary growth here in the sense
of language acquisition research. Here, we investigate how vocabulary develops as the
corpus grows [20]. Of course, as corpus size increases, we would expect the vocabulary to
grow. However, vocabulary growth curves should differ according to the amount and type
of cleaning we apply to the frequency lists, because an increasing number of wordforms are
being excluded from the dataset. For this case study, we applied various cleaning stages:

A. no cleaning at all;
B. exclusion of punctuation, names, and start-end-symbols (all identified via their re-

spective POS tags), URLs, and wordforms only consisting of numbers (both identified
by regular expressions);

C. exclusion of wordforms containing numbers;
D. exclusion of wordforms that contain upper-case letters following lower-case letters

(in this cleaning stage, we exclude wordforms with non-conventional capitalization
(e.g., dEr) while, at the same time, keeping capitalized abbreviations (e.g., NATO).
For this cleaning stage, we only use the raw version because there cannot be any
difference to the lowered version);

E. exclusion of wordforms where the TreeTagger could not assign a lemma;
F. selection of wordforms that are themselves (or the associated lemma (note that this

means that, for example, the inflected wordform Weihnachtsmannes is also included,
although it is not on the BLL itself, but the associated lemma Weihnachtsmann is.
Another example is the wordform u., which is shorthand for the lemma und)) on a
basic lemma list (BLL) of New High German standard language to identify a set of
conventionalized word forms [21]. For more information regarding this basic lemma
list, please refer to Koplenig et al. [11].

Cleaning stages A through D are cumulative. For example, cleaning stage D incor-
porates stages B and C. Stages E and F, however, both rely on stage D, because they can
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be understood as being equivalent regarding their aim: identifying “true” lemmas and
wordforms of German. We chose these cleaning stages because they represent very general
selections/exclusions in potential research projects in corpus or computational linguistics.
One could also think of these cleaning stages as becoming more rigorous towards the core
vocabulary of the language in each step. Of course, the datasets provided can also be used
to test other selections adapted to specific research questions (e.g., only selecting certain
POS or applying frequency thresholds).

4.1. Number of Wordform Types

We will first examine how the number of wordform types develops when including an
increasing number of the 16 corpus folds. Figure 1 shows that the first four cleaning stages
(panels A through D) exhibit roughly the same overall pattern for raw and lowered versions:
the vocabulary growth curves do not show clear signs of approaching a ceiling value. This
finding replicates several studies for English language corpora that were summarized
by [22], who also “failed to find any flattening of the predicted linear curve, indicating
that the pool of possible word types was still far from exhausted”. There is, in other
words, “no indication of a stop to the growth”, which is an instantiation of Herdan’s [23] or
Heaps’ [24] law.
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included folds (x-axis), cleaning stage (panels (A–F), see panel title), and lowered (grey lines) vs. raw
corpus (black lines). Note the varying y-axes between panels.

The final two cleaning stages (panels E and F) quickly showed asymptotical behavior,
but only in the vocabulary growth curves for the lowered dataset (grey lines). This is espe-
cially true for cleaning stage F, where we restricted the corpus to a fixed set of wordforms.
For the raw corpus version, many new forms were still observed, even approaching the
full corpus.

The same data can also be visualized as percentage increases as increasing folds are
included (Figure 2). There is virtually no difference between the raw vs. lowered versions
for the first three cleaning stages (panels A through C), and the number of observed
wordforms still increases in the last step (15 to 16 folds), by approx. 4%. This is remarkably
close to the figure reported by [25], who used a corpus of ten introductory psychology
textbooks and investigated the growing lexical diversity when adding whole textbooks to
their sample one after another. However, this similarity might be coincidental, because
Miller and Biber used lemmas (not wordforms) and a much more thematically restricted
corpus in their study. Moreover, their overall corpus was much smaller.
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Figure 2. Percentage increase in the number of different wordforms in relationship to the number of
included folds (x-axis), cleaning stage (panels (A–F), see panel title), and lowered (grey lines) vs. raw
corpus (black lines). Note the varying y-axes between panels. The dashed horizontal lines mark a
percentage increase of 1%.

The results for cleaning stages E and F are different: the fourth step (4 to 5 folds) in
panel E shows a percentage increase of below 1% for the lowered dataset. In panel F, it is
already the second step (2 to 3 folds). The lowest percentage increase is observed for the last
step of the lowered corpora for cleaning stage F: 0.03% (or, in absolute numbers, 157 newly
observed wordform). One of these wordforms (habilitationsprofessur) appears 5 times, and
14 wordforms appeared twice. Note that these numbers and the wordforms themselves
depend on which fold is added last to the growing dataset. Here, we simply included folds
1 to 16 subsequently. So, for cleaning stages E and F, we can conclude that the boundless
growth in vocabulary is far less pronounced than in the previous cleaning stages. This
makes sense given that E and F are the cleaning stages where we tried to identify a basic
set of German wordforms.

4.2. Number of Hapax Legomena

Hapax legomena (henceforth: HL), items appearing only once in a frequency list,
are often used in calculations of quantitative linguistic measures, for example in analyses
concerning productivity [26]. It is therefore interesting to see how the number of HL is
influenced by corpus size (=number of folds), cleaning stage, and lowering of the dataset.

In terms of frequency, we would expect more HL in larger corpora, especially when
no or rather light (cleaning stages A through D) cleaning is performed, because we observe
more and more non-canonical wordforms as the corpus becomes larger. However, it is hard
to hypothesize what the pattern would look like for the last two cleaning stages E and F.

There are no considerable differences between the first four cleaning stages (panels
A through D in Figure 3) and, indeed, none of the curves show any signs of approaching
a point where no new HL are being added after a specific corpus size, which would
be indicated by the curve approaching a horizontal asymptote. The highest number of
HL was observed for the full raw corpus without any cleaning in panel A of Figure 3
(66,149,313 wordforms, 58.0% of all wordforms).
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was observed for the full raw corpus without any cleaning in panel A of Figure 3 
(66,149,313 wordforms, 58.0% of all wordforms). 

The last two cleaning stages (panels E and F), which we consider quite “strict”, show a 
different pattern compared to the first four stages. In these cleaning stages, the trajectory of 
the curves for raw and lowered datasets differs. For the lowered dataset, the number of HL 
steadily decreases, which is what we would expect, given datasets where only recognized 
lemmas (stage E) or elements from a well-defined word list (stage F) are allowed. Conse-
quently, the lowest number of HL was observed for the full corpus in cleaning stage F for a 
lowered dataset (2205 wordforms), which account for 0.37% of all wordforms at this point. 

 
Figure 3. Number of hapax legomena (wordforms) in relationship to the number of included folds 
(x-axis), cleaning stage (panels (A–F), see panel title), and lowered vs. raw corpus (line color). Note 
the varying y-axes between panels. 

For the raw version, it is especially noteworthy that the number of HL first decreased 
and then increased again. In stage E, the lowest point of the curve was reached for 4 folds 
(239,461 HL, 8.6% of all wordforms) with steadily rising counts until the corpus was com-
plete (304,293 HL, 9.6%). To get an idea of where this effect comes from, we can look at 
the HL in the complete 16-fold dataset that were not observed in the 4-fold dataset (247,607 
wordforms). These 228,156 HL had to be added somewhere between the inclusion of folds 
5 to 16. A total of 51.8% of these wordforms (n = 118,076) consisted of upper-case letters 
only (in stage D, we only excluded wordforms where upper-case letters follow at least one 
lower-case letter). Another 7.9% (n = 18,111) begin with more than one upper-case letter 
(e.g., COusinen or HERZstiche), also indicating irregular capitalizations of wordforms that 
would not be hapax legomena if capitalized in a regular way. Thus, irregular capitaliza-
tion seemed to play a large role in the increasing number of hapax legomena after the few 
initial folds for the final cleaning stages of raw corpora. 

A total of 35,014 HL (15,3%) had an upper-case letter only in the word-initial position. 
Most of these wordforms turned out to be sentence-initial or nominalized forms of 
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the varying y-axes between panels.

The last two cleaning stages (panels E and F), which we consider quite “strict”, show
a different pattern compared to the first four stages. In these cleaning stages, the trajectory
of the curves for raw and lowered datasets differs. For the lowered dataset, the number
of HL steadily decreases, which is what we would expect, given datasets where only
recognized lemmas (stage E) or elements from a well-defined word list (stage F) are allowed.
Consequently, the lowest number of HL was observed for the full corpus in cleaning stage
F for a lowered dataset (2205 wordforms), which account for 0.37% of all wordforms at
this point.

For the raw version, it is especially noteworthy that the number of HL first decreased
and then increased again. In stage E, the lowest point of the curve was reached for
4 folds (239,461 HL, 8.6% of all wordforms) with steadily rising counts until the corpus
was complete (304,293 HL, 9.6%). To get an idea of where this effect comes from, we
can look at the HL in the complete 16-fold dataset that were not observed in the 4-fold
dataset (247,607 wordforms). These 228,156 HL had to be added somewhere between the
inclusion of folds 5 to 16. A total of 51.8% of these wordforms (n = 118,076) consisted of
upper-case letters only (in stage D, we only excluded wordforms where upper-case letters
follow at least one lower-case letter). Another 7.9% (n = 18,111) begin with more than one
upper-case letter (e.g., COusinen or HERZstiche), also indicating irregular capitalizations
of wordforms that would not be hapax legomena if capitalized in a regular way. Thus,
irregular capitalization seemed to play a large role in the increasing number of hapax
legomena after the few initial folds for the final cleaning stages of raw corpora.

A total of 35,014 HL (15,3%) had an upper-case letter only in the word-initial position.
Most of these wordforms turned out to be sentence-initial or nominalized forms of adjec-
tives (Flauschigsten, Abwischbarer) and verbs (Durchtauchte, Lullten) or compound nouns
(Waldgesundheitsprogramm, Dampflokomotivkessel). We made this observation by sampling
200 of these wordforms: 128 are adjectives or verbs with a word-initial upper-case letter; 62
are compound nouns (41 with two, 18 with three, and 3 with four constituent parts). In
addition, several forms show alternative spellings of umlauts (e.g., Gegenstaendlich instead
of Gegenständlich) or ß/ss alternation (e.g., Fussten or Verkehrskompaß) or simply typos
(Unwahrschienlich instead of Unwahrscheinlich). Since all the effects reported above involve
capitalization, they were not observed for lowered corpora. Hence, the diverging patterns
for the respective curves in panels E and F in Figure 3.
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5. Summary

We presented a novel frequency list dataset for German, DeReKoGram, containing all
1-, 2-, and 3-grams in a large subset (43.2 billion tokens) of the German Reference Corpus
DeReKo with lemma and POS information. We evaluated the distribution of the corpus
material over the 16 folds and concluded that, at least for a number of analyses, results
obtained using one fold are generalizable to the whole corpus. This should make it more
convenient for people with fewer computational resources to work with the frequency
lists. In a case study, we showed how the size of the wordform vocabulary develops if an
increasing number of corpus folds are included. We cross-combined this with five different
cleaning stages and a raw vs. lowered version of the dataset. We paid particular attention
to the number of hapax legomena that were found in the growing datasets. To download
the dataset and get started working with DeReKoGram, you can visit the OWIDplus page
at https://www.owid.de/plus/derekogram/ (accessed on 7 November 2023).

Supplementary Materials: Sample code for Python, R, and Stata is available via https://www.
owid.de/plus/derekogram (accessed on 7 November 2023) and https://github.com/saschawo/
DeReKoGram (accessed on 7 November 2023).
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