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Abstract: The impacts of the coronavirus disease 2019 (COVID-19) pandemic have been extremely
severe, with both economic and health crises experienced worldwide. Based on the panel regression
model, this study examined the trends and correlations in the number of COVID-19-related deaths
and the number of COVID-19-infected cases in all 37 regions of the Tamil Nadu state in India, in
August 2020. The fixed effects model had the greatest R? value of 78% and exhibited significant
results. The slope coefficient was also highly significant, showing a considerable variation in the
relationship between new COVID-19 cases and deaths. Additionally, for every unit increase in
COVID-19-infected cases, the death rate increased by 0.02%.
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1. Introduction
1.1. Study Background

The coronavirus epidemic began in Wuhan City (China) on 31 December 2019, and
became a pandemic. The incidence of novel COVID-19 infections dramatically increased
due to the absence of antiviral medications and vaccines, resulting in enormous economic
losses, panic, and many deaths.

Using different statistical models to analyse epidemic data has emerged as a critical
study field for predicting the number of COVID-19 deaths and infected individuals.

Statistical models represent the numerical data relevant to specific samples or groups.
To assess trends in the data shown, these models frequently take the form of line graphs
and scatterplots. While statistical models may display data in various scenarios, those
dealing with COVID-19 are particularly valued at present since they provide numerical
information about this pandemic, such as the number of cases and deaths brought on by
COVID-19. These models have also proved very helpful in localizing cases to specific
nations, regions, cities, and specific areas within cities, enabling the authorities in these
locations to respond appropriately to the infection. Additionally, models have focused on
various crucial traits among individuals who present with COVID-19, such as age, race,
sex, and preexisting diseases. This enables researchers to determine which populations are
most at risk of infection [1].

Artificial intelligence (AI) techniques built on machine learning (ML) and mathematical
models have been utilized to evaluate the epidemic’s progress throughout each country
and identify any potential amplifying factors that might mitigate its effects [2].
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1.2. Literature Review

To examine the relationship between dependent and independent variables and de-
termine the current rate of spread of COVID-19, [3] sought to build on earlier research.
This research statistically analysed the relationship of factors such as region, sex, birth year,
infection date, and recovery or symptom relief date with the noted number of recovered
and dead patients. The findings revealed that region, infection date, and sex were associ-
ated with the number of recovered and deceased patients, whereas birth year was only
associated with the number of deceased patients. Furthermore, no deaths from COVID-19
were noted among recovered patients, whereas 11.3% of patients who died were confirmed
to be COVID-19 positive after their deaths. In South Korea, the main factor associated
with the number of infections was the number of patients infected by an unknown source,
representing more than 33% of the total number of infected patients.

The association between the overall number of COVID-19 infections and recovered
people in various countries were studied and analysed by [4] using the chain-binomial
variant of Bailey’s model. They also noted that most studies have investigated COVID-19
cases with different regression and time series models commonly used to assess the trend
or growth of any illness.

The relationship between the transmission of viral infections and human migration
was investigated by [5]. They concluded that the intensity of pedestrian traffic in the
research period impacted virus spread after 15-20 days on average.

A time series-based system to track epidemics is a system that [6] aimed to create.
Utilizing univariate time series models, the author showed the evolution of the reported
incidents in the first stage. Additionally, he combined the models to offer more precise and
reliable findings and analysed statistical probability distributions to create hypothetical
futures. The “time series susceptible-infected-recovered” (tsikR) model was developed and
used in the last stage, and its epidemiological ratio (Rp) was calculated to determine when
the epidemic ended. The time series models comprised traditional exponential smoothing,
ARIMA techniques, feed-forward artificial neural networks (ANNs), and multivariate
adaptive regression splines (MARS) from the ML toolbox. The primary mean and Granger—
Newbold and Bates-Granger techniques were included in the combinations. To assess the
spread and containment of the epidemic, the tsiR model, as well as the Ry ratio, was applied.
The recommended method was used to monitor the COVID-19 outbreak in Greece.

Using Bailey’s model and secondary data, [7] calculated the removal rate, or the
percentage of deceased individuals in the infected population. Additionally, regression
analysis was performed to demonstrate the linear association between this indicator and
the frequencies of all infections. Finally, they discussed the connection between the model
and decision-making.

By carefully analysing the cases reported in the country up to 22 April 2020, [8] used
exploratory data analysis to create a statistical model to help people understand COVID-19
in India. The study’s findings illustrated the daily and weekly effects of COVID-19 in
India and drew comparisons between that nation, its neighbours, and other badly afflicted
nations.

The impact of travel history and interaction with travellers on the dissemination of
COVID-19 in Nigeria was evaluated by [9] using the ordinary least squares (OLS) estimator.
They created predictions by extracting data from the Nigeria Centre for Disease Control
(NCDC) website from 31 March 2020 to 29 May 2020. The model evaluated the time
before and after the Nigerian federal government imposed travel restrictions. Based on the
diagnostic checks performed, the fitted model exhibited an excellent fit for the dataset with
no validity violations. With travel history and contact with travellers observed to increase
the likelihood of COVID-19 infection by 85 and 88%, respectively, the results demonstrated
that the government made the right choice in enforcing travel restrictions. The authors
concluded that the government must enforce this policy to contain the spread of COVID-19.

Using stochastic modelling, [10] forecasted the prevalence of COVID-19 trends in
East African countries, focusing on Somalia, Sudan, Djibouti, and Ethiopia. The study’s
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findings indicated that, under the average rate scenario, the number of COVID-19-positive
individuals in Ethiopia would increase, ranging between 5846 and 56,610 within four
months after 30 June 2020.

An autoregressive distributed lag model and limited cointegration tests were used
by [11] to evaluate the long-term equilibrium relationship between the cumulative number
of new COVID-19 infections (X) and the cumulative number of deaths due to COVID-
19 (Y). The stability of the calculated model was also assessed. The consistency of the
model parameters was evaluated using the cumulative sum of the recursive residuals and
squares tests.

The dynamic relationship between the number of cases and deaths was examined
by [12] using the vector error correction model (VECM), the Johnsen-Fisher cointegration
test, and the Granger causality test. From 1 April 2020 to 26 December 2020, data on daily
new COVID-19 cases and COVID-19-related deaths in India, Ukraine, Canada, and the
USA were obtained from the website. Summary figures showed that the United States
had the most significant COVID-19 cases, followed by India, Canada, and Ukraine. The
USA also had the highest number of COVID-19-related deaths, followed by India, Ukraine,
and Canada. Canada led all other countries regarding the death rate, followed by the
USA, Ukraine, and India. The results of the Johnsen—Fisher cointegration test indicated
that there was only one cointegration equation. The Granger causality test and the VECM
demonstrated short- and long-term causal correlations between COVID-19 infection and
mortality. The rate of adjustment was 9.9%.

1.3. Objectives of the Present Study

This study aimed to determine the relationships and trends between the number of
COVID-19 deaths (DEATH) and the number of new COVID-19 infections (NCASE) in all
37 regions of Tamil Nadu (India) using the number of daily COVID-19-infected cases and
deaths in August 2020 based on the preceding discussion. A panel regression model was
used, with DEATH as the dependent variable and NCASE as the independent variable.

1.4. Panel Data Model

These data include observations of events gathered over various time scales for the
same group of people, entities, or units. Econometric panel data, in a nutshell, are multidi-
mensional data collected over a certain period.

A simple regression model of panel data is defined as

Yip = o+ pXi + v

where vjy = y;vj;_1) + pit represents the predicted residuals obtained from panel regression
analysis, Y represents the dependent variable, X denotes the explanatory or independent
variable and indicates the intercept and slope, respectively, t represents the tth period, i
represents the ith cross-sectional unit, and X is considered to be non-stochastic as well as an
error term to follow the classical assumptions, i.e., v;; ~ N(0,¢?). In the present research
paper, the number of cross-sections (districts) was 37 (i=1, 2, 3, ..., 37), and the number of
time points was 1, 2, 3, . . ., 30.

Detailed discussions of panel data modelling can be found in [13-17].

Panel data provide “more informative data, more variability, less collinearity among
variables, more degrees of freedom and more efficiency” because they combine time series
of cross-sectional observations [14].

2. Materials and Methods
2.1. Materials

The COVID-19 infection and death dataset for August 2020, which included data on all
37 regions of Tamil Nadu, India, was gathered from the Tamil Nadu government’s official
website. The current study’s research objectives were examined using various econometric
methodologies linked to panel data regression modelling. The techniques section discusses
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several panel data regression modelling strategies. Model and parameter estimates were
performed using EViews Ver. 11.

Models based on panel data provide descriptions of individual behaviours across time
and individuals. Pooled models (OLS regression) or constant coefficient models (CCMs),
RE (random effects), and FE (fixed effects) models are the three different types of models.

2.1.1. Unit Root Tests

Lagrange multiplier (LM) stationarity [18] or the [19] test may be used to check for
unit roots inside panel data. The alternative hypothesis is that the panels are stationary,
whereas the null hypothesis is that they have unit roots. Based on these findings, one could
accept the alternative hypothesis and reject the null hypothesis if the p-value is <0.05.

2.1.2. OLS Regression (Pooled Model) or CCM

Cross-sectional analysis often makes the following assumptions about the pooled
model with constant coefficients:

Yir = a+ pXi + v

wherei=1,2,3,...,37,and t=1,2, 3, ..., 31; here, i represents the ith cross-sectional unit,
t represents the tth period, and X indicates a non-stochastic error term that follows the
classical assumptions, i.e.,

vy ~ N(0,0?)

2.1.3. Individual-Specific Effects Model

We assumed that, for the people who were assessed, «; exhibits unobserved hetero-
geneity. The fundamental question is that whether there is a relationship between the
individual-specific effects and the regressor. An FE model is used if they are linked. An RE
model is used if they are not correlated.

2.1.4. FE Least Squares Dummy Variable (LSDV) Model [17]

The phrase “fixed effects” is applied since every entity’s intercept does not fluctuate with
time; it is, therefore, time-invariant, although the intercept might change among districts.

Vit = & + Xy B+ it

After estimating, the individual-specific result is obtained as
& =y; — Xip

In other words, individual-specific impacts are the residual variance in the dependent
variable that the regressor cannot account for. The fixed effects intercept might differ among
the districts when utilizing the dummy variable approach.

2.1.5. RE Model

It is assumed that the regressor is not affected by the individual-specific effects «;,
which are included as «; in the error term. The composite error term and slope parameters
are the same for each person, i.e.,

Yir = xitP + (@i + i)
2
Here var(gj;) = 0,2 + 0% and cov(ej, €js) = 022, 50 pe = cor (g, €js) = R
Rho indicates the error’s interclass correlation or the percentage of its variation ac-
counted for by person-specific effects. If the individual effects exceed the idiosyncratic
mistake, it becomes closer to 1.
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2.1.6. Hausman Test

The RE model is favoured, and the null hypothesis of the given test and that of the FE
model are selected, with the latter being the alternative hypothesis. The null hypothesis
is the one that assumes there is no correlation between the regressor and (#;), and the
Hausman test [20] checks for their relationship. If the Hausman test suggests using the RE
estimator, it should be used because it is more effective. Only the time-varying regressors
could be used to calculate the Hausman test statistic.

H = (Bre — ﬁFE>‘<V(BRE) — V(Bre)(Bre — Bre)
2.1.7. Wald Test

The Wald test [21] determines which model variables significantly contribute to the
observed impact. The test, also known as the Wald chi-squared test, can be utilized to
examine whether explanatory variables within a model are important, namely, whether
they add to the model’s explanatory power. Variables with no explanatory power can be
removed from the model without having any significant influence. One parameter that
equals some value is the test’s null hypothesis.

3. Results and Discussion
3.1. Unit Root Tests

It is crucial for time series data studies that the research variables remain stationary,
which indicates that the variable data’s variances and means are the same. “Levin-Lin-
Chu unit root tests” were performed to determine if the research variables—NCASE and
DEATH—were stationary. Table 1 presents the findings.

Table 1. Unit root test outcomes for variables DEATH and NCASE.

Variables NCASE DEATH
Method Levin, Lin, and Chu t
Statistic —8.6252 —8.6611
Prob ** 0.0000 0.0000

** Probabilities were calculated assuming asymptotic normality.

The NCASE and DEATH variables are shown to be stationary in Table 1 because the
method used was highly significant (p < 0.0000). As a result, the analysis’s variables were
stationary.

3.2. Summary Statistics

The number of COVID-19-infected cases reported in the various regions of Tamil Nadu
in August 2020 is shown in Figure 1. The most significant numbers of COVID-19 infections
were noted in Chennai (35,491), followed by Coimbatore (11,504), Thiruvallur (11,334),
Chengalpattu (10,517), and Tirunelveli (8393). The smallest numbers of new COVID-19
infections were reported in Krishnagiri (917), Dharmapuri (802), and Nilgiris (502). Overall,
in August 2020, 181,817 COVID-19 infections were reported in Tamil Nadu.

The above Figure 2 shows the maximum number of fatalities due to COVID-19 in Chen-
nai (663), followed by Coimbatore (250), Thiruvallur (138), Chengalpattu (156), Tirunelveli
(138), and Kanyakumari (135). Nine deaths were registered in Dharmapuri and Nilgiris,
the lowest number among the districts. In August 2020, 3387 deaths were reported due to
COVID-19 in Tamil Nadu, for a monthly death rate of 0.02%.
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Figure 1. Total number of new COVID-19-infected cases in August 2020.

Probability
0.0000
0.0000

1,145,553.00
3141.80

39,029.06

364.6168

191.3449

3,487,398
44,727,306

Value
41,239,909

Analysis of Variance

df
(36,1110)
(36, 389.769)
36
1110
1146

Method
ANOVA F test
Within
Total

ANOVA tests were performed separately for NCASE and DEATH to assess the differ-
Between

ences across districts regarding the number of COVID-19-infected cases and COVID-19-

related fatalities. The findings are shown in Tables 2 and 3.

Welch F test

Table 2. Analysis findings of the mean equality of COVID-19 infections.

Figure 2. Total number of COVID-19-related deaths in August 2020.

3.3. Differences between Districts
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Table 3. Test findings of mean equality of COVID-19-related deaths.

Method df Value Probability
ANOVA F test (36, 1110) 105.9176 0.0000
Welch F test (36, 390.212) 44.55014 0.0000
Analysis of Variance
Between 36 14,006.17 389.06
Within 1110 4077.290 3.67
Total 1146 18,083.46 15.78

The findings showed significant differences between the districts, as the ANOVA tests
were highly significant (p < 0.0000) for the research variables. This indicated that there were
considerable disparities in the number of infections reported in various areas, as well as
the number of deaths.

3.4. A Model with Constant Coefficients or Pooled OLS Regression

In a panel least squares analysis, NCASE and DEATH were the dependent and inde-
pendent variables. Table 4 displays the regression findings based on EViews, Version 11.

Table 4. Findings from a model with constant coefficients or pooled OLS regression.

Variable Coefficient Std Error T Statistic Prob.
C 0.2940 0.0830 3.5432 0.0004
NCASE 0.0168 0.00033 51.1907 0.0000
Durbin-Watson stat 1.4981 Prob. (F-Statistic) 0.0000
Hannan-Quinn criterion 44121 F-Statistic 2620.49
Schwarz criterion 4.4175 Log-likelihood —2526.41
Akaike info criterion 4.4087 Sum squared resid. 5498.77
SD dependent var. 3.9724 SE of regression 2.19
Mean dependent var. 2.9529 Adjusted R-squared (%) 0.70
Root MSE 2.1895 R-squared (%) 0.70

According to the findings, the slopes and intercept were highly significant, and the
model F-statistic was also quite substantial, with an extraordinarily high R? of 70%. This
demonstrated a direct correlation between an increase in the number of COVID-19 cases
and a variation in COVID-19-related deaths. Additionally, as previously mentioned, the
DEATH rate increased by 0.02 percent for every unit increase in NCASE.

The main issue with this model is that it did not differentiate between the various
districts or inform us whether the overall COVID-19 mortality response to the explanatory
variable over time was consistent across all districts. As a result, there is a good chance
that the error term and the model’s regressor could be associated. If this is the case, the
calculated coefficients in the abovementioned model could be biased and inconsistent.

3.5. FE LSDV Model

The dummy variable approach was applied to create this FE model. The model is
expressed as

Yit = a1 +aaDy; + a3iD3i + a4 Dyj + ... + a37D37; + B2 Xt + Vit

where D,; = 1if the observation was from the Chengalpattu region and 0 otherwise, D3; = 1
if it was from Chennai and 0 otherwise, Dy; = 1 if it was from Coimbatore and 0 otherwise,
and so on. In this case, the baseline or reference category was the district of Ariyalur. As a
result, the intercept shows the intercept value for the Ariyalur region. In contrast, the other
coefficients of « show how much the intercept values for the different regions deviate from
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the Ariyalur district’s intercept value. Therefore, &, indicates how much the intercept’s 2nd
district value, Chengalpattu, differs from a;. The sum (a; 4 ay) provides the intercept’s
actual value for Chengalpattu. Similar calculations may be performed for the intercept
values of the remaining districts.

The findings shown in Table 5 demonstrate that the FE model is highly significant, with
an impressive R? of 78%. The slope coefficient for COVID-19 infections is also highly signif-
icant, indicating that COVID-19 infections displayed considerable fluctuations in the link to
COVID-19-related deaths. Several negative dummy variable coefficients were discovered,
but none were significant. The dummy variables for Nagapattinam, Karur, Kanyakumari,
Erode, Dharmapuri, Cuddalore, Coimbatore, Chennai, Chengalpattu, Ramanathapuram,
Salem, Sivaganga, Tenkasi, Thanjavur, Theni, Thiruvannamalai, Thiruvarur, Tirunelveli,
Tiruppur, Trichy, Vellore, Virudhunagar, and Villupuram were highly significant, indicating
that it is possible that these district changes were heterogeneous and that the results from
the combined regression model may not be helpful. Moreover, the slope coefficient values
in Table 5 are also different, which raises additional questions about the outcomes in Table 4.
Furthermore, there is no autocorrelation in the FE model if the value of Durbin—Watson d
is closer to 2. Therefore, the FE model is superior to the pooled regression paradigm.

Table 5. Regression model FE or LSDV results.

Estimated

Coefficient Coefficient Std Error t Statistic Prob
C(1) 0.3972 0.2568 1.5468 0.1222
C(2) 0.0051 0.0010 5.1039 0.0000
C(3) 2.7289 0.5042 5.4122 0.0000
C@) 15.1093 1.1413 13.2383 0.0000
C(5) 5.9247 0.4869 12.1681 0.0000
C(6) 1.1572 0.4543 2.5472 0.0110
C(?) —0.1901 0.4232 —0.4491 0.6534
C(8) 1.4559 0.4177 3.4858 0.0005
C(9) 0.3487 0.4169 0.8365 0.4030

C(10) 0.8321 0.4170 1.9954 0.0462
C(11) 2.3410 0.4551 5.1438 0.0000
C(12) 3.1514 0.4223 7.4619 0.0000
C(13) —0.0618 0.4203 —0.1471 0.8831
C(14) —0.1714 0.4200 —0.4081 0.6833
C(15) 2.9747 0.4170 7.1332 0.0000
C(16) 0.3416 0.4176 0.8180 0.4135
C(17) 0.3943 0.4189 0.9412 0.3468
C(18) —0.2588 0.4212 —0.6147 0.5389
C(19) —0.0785 0.4216 —0.1861 0.8524
C(20) 1.3151 0.4183 3.1446 0.0017
C(21) 0.7794 0.4189 1.8607 0.0631
C(22) 1.4194 0.4254 3.3365 0.0009
C(23) 2.1073 0.4439 4.7475 0.0000
C(24) 1.3855 0.4182 3.3130 0.0010
C(25) 1.6699 0.4171 4.0034 0.0001
C(26) 1.7692 0.4183 4.2295 0.0000
C(27) 0.8697 0.4469 1.9460 0.0519
C(28) 0.7666 0.4181 1.8336 0.0670
C(29) 3.3055 0.5011 6.5960 0.0000
C(30) 2.0718 0.4193 49412 0.0000
C(31) 0.3522 0.4177 0.8431 0.3993
C(32) 0.9335 0.4195 2.2253 0.0263
C(33) 3.3194 0.4203 7.8978 0.0000
C(34) 1.0339 0.4178 2.4749 0.0135

C(35) 1.0140 0.4172 2.4303 0.0152
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Table 5. Cont.

Estimated

Coefficient Coefficient Std Error t Statistic Prob
C(36) 2.2630 0.4229 5.3513 0.0000
C(37) 2.0612 0.4221 4.8831 0.0000
Durbin-Watson stat 1.9148 Prob(F-statistic) 0.0000
Hannan-Quinn criterion 4.2091 F-statistic 109.10
Schwarz criterion 4.3104 Log-likelihood —2341.69
Akaike info criterion 4.1477 Sum squared resid 3984.57
SD dependent var 3.9724 SE of regression 1.89
Mean dependent var 2.9529 Adjusted R-squared (%) 0.77
Root MSE 1.8638 R-squared (%) 0.78

3.6. Wald Test

We used the Wald test to examine whether the pooled OLS or FE model was more
appropriate. The null hypothesis in this situation is that the OLS regression model is
suitable (all dummy variables are equivalent to 0), and the alternative hypothesis is that
the FE model is suitable (all dummy variables are not equivalent to 0). Thus, this test was
performed, and the findings are expressed in Table 6.

Table 6. Findings of the Wald test.

Test Statistic Value df Probability
F-statistic 12.05191 (35, 1110) 0.0000
Chi-square 421.8168 35 0.0000

The FE or LSDV regression model was more suitable than the panel pooled regression
model as per the Wald test F-statistic, which was highly significant (p < 0.0000). Not every
dummy variable had a value of zero.

3.7. RE Mode

Table 7 displays the test results for the RE model, which utilizes the number of COVID-
19-related deaths as the dependent variable and NCASE as the independent variable. The
RE model explains only 24 percent of the variance in DEATH compared to that in NCASE.
The cross-sectional effects individually amount to 0.2 percent according to the rho value of
0.1839.

Table 7. Fitted RE model results.

Variable Coefficient Std. Error t- Statistic Prob.
C 0.9431 0.1883 5.0095 0.0000
NCASE 0.0127 0.0006 19.6753 0.0000
Effects Specification
Cross-sectional random 0.8997 0.1839
Idiosyncratic random 1.8955 0.8161
Weighted Statistics
Root MSE 1.9676 R-squared (%) 0.24
Mean dependent var 1.0450 Adjusted R-squared (%) 0.24
S.D. dependent var 2.2558 S.E. of regression 1.97

Sum squared resid 4440.53 F-statistic 358.63
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Table 7. Cont.

Variable Coefficient Std. Error t- Statistic Prob.

Durbin-Waston stat 1.7848 Prob (F-statistic) 0.0000
Unweighted Statistics

Sum squared resid 6248.85 Durbin-Watson stat. 1.2683

R-squared (%) 0.65 Mean dependent var 2.9529

3.8. Hausman Test

The RE model performed better. The FE and RE estimators were compared using
the Hausman test to observe whether there was a significant variation. The statistic of
the Hausman test was significant, and the null hypothesis was rejected, according to the
findings shown in Table 8, demonstrating the suitability of the FE model. The Hausman
test yielded an R? value of 80%, which was exceptionally high. This observation refuted
the conclusion that the RE model was suitable. Additionally, the regressor variable’s RE
and FE coefficient values show high statistically significance in the final row of Table 8.

Table 8. Results of the Hausman test (test cross-sectional REs).

Test Summary Chi-Sq. Statistic Chi-Sq. d.f. Prob.
Cross-sectional random 91.94 1 0.0000
Cross-sectional random effects test comparisons:
Variable Fixed Random Var (Diff.) Prob.
NCASE 0.005159 0.012679 0.000001 0.0000
Cross-sectional random effects test equation:
Variable Coefficient Std. Error t-Statistic Prob.
C 2.1351 0.1704 12.5334 0.0000
NCASE 0.0052 0.0010 5.0832 0.0000
Effects Specification
Durbin-Watson stat 1.9150 Prob (F-statistic) 0.0000
Hannan-Quinn criterion 4.2125 F-statistic 106.06
Schwarz criterion 4.3165 Log-likelihood —2341.67
Akaike info criterion 4.1494 Sum squared resid 3984.46
S.D. dependent var 3.9724 S.E. of regression 1.90
Mean dependent var 2.9529 Adjusted R-squared (%) 0.77
Root MSE 1.8638 R-squared (%) 0.78

4. Conclusions

A pooled regression model was not appropriate for analysing trends and the link
between new COVID-19 infections and COVID-19-related mortality. The ANOVA test
results showed significant variation across districts. The most excellent numbers of new
cases of COVID-19 were reported in Chennai (35,491), followed by Coimbatore (11,504),
Thiruvallur (11,334), Chengalpattu (10,517), and Tirunelveli (8393). The lowest numbers of
new cases of COVID-19 were reported in Krishnagiri (917), Dharmapuri (802), and Nilgiris
(502). Overall, in August 2020, 181,817 COVID-19-infected patients were registered across
Tamil Nadu. The most significant number of deaths due to COVID-19 occurred in Chennai
(663), followed by Coimbatore (250), Thiruvallur (138), Chengalpattu (156), Tirunelveli
(138), and Kanyakumari (135). Nine deaths were registered in Dharmapuri and Nilgiris,
the lowest figure among the districts. In August 2020, 3387 deaths were reported due to
COVID-19 in Tamil Nadu, India. The fixed effects model, which had the most incredible
R? value of 78%, was significant. The slope coefficient was also highly significant, showing
significant variation in the relationship between new COVID-19 cases and deaths due
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to COVID-19. Additionally, for every unit increase in COVID-19 cases, the death rate
increased by 0.02%.
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