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Abstract: Machine learning is a crucial tool for both academic and real-world applications. Classi-
fication problems are often used as the preferred showcase in this space, which has led to a wide
variety of datasets being collected and utilized for a myriad of applications. Unfortunately, there is
very little standardization in how these datasets are collected, processed, and disseminated. As new
learning paradigms like lifelong or meta-learning become more popular, the demand for merging
tasks for at-scale evaluation of algorithms has also increased. This paper provides a methodology for
processing and cleaning datasets that can be applied to existing or new classification tasks as well as
implements these practices in a collection of diverse classification tasks called USC-DCT. Constructed
using 107 classification tasks collected from the internet, this collection provides a transparent and
standardized pipeline that can be useful for many different applications and frameworks. While
there are currently 107 tasks, USC-DCT is designed to enable future growth. Additional discussion
provides explanations of applications in machine learning paradigms such as transfer, lifelong, or
meta-learning, how revisions to the collection will be handled, and further tips for curating and using
classification tasks at this scale.

Dataset: https://github.com/iLab-USC/USC-DCT

Dataset License: CC-BY-NC

Keywords: machine learning; data sharing; classification; computer vision; visual classification;
dataset collection; dataset organization; data cleaning

1. Introduction

The last decade has seen machine learning techniques flourish, with many targeting
the problem of classification [1–3], using the ever-increasing depth of learning models [4–7]
to meet this challenge. During this time, many datasets have been developed to form
benchmarks in the field of computer vision for the training and evaluation of classification
models [1–3]. ImageNet [1] has become the most common choice for both evaluating the
performance of and pre-training of deep neural networks for visual recognition; however,
as the accessibility of deep learning has grown, so too has the variety of classification
datasets collected for both academic and real-world applications. Furthermore, as interest
in paradigms such as lifelong learning and meta-learning continues to build, which explore
multiple tasks and their corresponding datasets, collections of these datasets have begun
to be utilized in an effort to evaluate model performance across varying classification
scenarios and to encourage stronger algorithmic generalizability [8].

As these collections become more comprehensive, a major issue has become glaringly
apparent—a near-total lack of standardization in dataset construction. Methods of collection
and distribution can vary wildly between datasets and strategies taken are often not well
documented. These issues result in a multitude of barriers preventing the use of resources
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available due to the possibility of errors and overlap. Additionally, the mechanisms
for using different datasets provide another point of contention. Without a standard
convention for the general organization and labeling of datasets, most need their own
unique procedures or require a complete overhaul in the organization. And as the practice
of creating sets of datasets builds, the effort required of an end-user to encompass a wide
range of tasks results in a lower likelihood of use and, thus, reduces the rate of advancement.
While it is too late to enforce every past unique dataset fitting within certain criteria, the
distribution of current and future classification tasks can be unified into a single pipeline
for ease of future accessibility. This paper describes how to create a large-scale collection of
diverse classification tasks (USC-DCT) and presents it as a fully standardized benchmark
that can easily be acquired and used for many different paradigms in visual classification.
Along with the full benchmark, a data processing pipeline is presented that is designed
to help adapt any classification task into the standard format used in this benchmark.
Therefore, the benchmark can grow easily as new classification datasets are collected by
the machine learning community. Not only can it be used in a piecemeal fashion for
applications like lifelong learning [9], but it could also be used in its entirety to provide
a diversified pre-training backbone. Outside of the specific sets used, USC-DCT can also
serve as a framework-independent dataset repository for those interested in working on
classification problems across domains.

The initial release of USC-DCT (v1.0) contains 107 diverse classification tasks obtained
from 94 datasets. Each dataset in the collection has been processed by the proposed pipeline
to standardize the utilization of these diverse tasks, which includes a clean-up procedure to
remove duplicates within and across datasets. Additionally, extensive statistics on dataset
diversity, common issues found when processing a large number of datasets (e.g., invalid
images, non-dataset images, etc.), and the exact and near duplicates identified are presented.
In addition to proposing the benchmark and a transparent pipeline to standardize distribu-
tion of a large-scale collection like USC-DCT, we also present discussions on how USC-DCT
can be utilized by the machine learning community, suggestions on future additions to
USC-DCT and how we foresee its growth, as well as our recommendations on the best
ways to create and publish a dataset.

2. Related Works

Data collection is one of the more challenging aspects of learning for deep models.
The cost of collecting and annotating large amounts of data can be very high, and various
approaches have been used over time to achieve this. Some have been organized from data
collected from subjects directly [3,10], while others have utilized more indirect collection
methods. For example, ImageNet queries and retrieves images from search engines for data
collection [1]. Since search engine results are extremely noisy, clean-up is often performed
while annotating using services like Amazon Mechanical Turk (AMT). Even with the
human effort to retrieve a mostly clean dataset, a variety of issues within datasets have
been identified [11,12], which also impact model robustness [13]. The CIFAR-10 and CIFAR-
100 datasets were also collected by querying search engines and underwent removal of
exact duplicates [2]. More recently, there have been efforts to remove images from the
CIFAR datasets using nearest-neighbors and further manual annotation [14].

When data collection strategies in visual classification tasks are surveyed [1,2], it be-
comes apparent that no globally accepted methodology has been employed for structuring,
collecting, and cleaning vision datasets. Since collection methods can vary greatly, this
is not surprising. Standardization can make it possible to train stronger models, as well
as aid further research in paradigms like transfer learning [15], continual learning [16],
meta-learning [17], and task adaptation [18], where collections of datasets can be crucial
for the generalization of algorithms. Some collections that have previously been proposed
include the 8-dataset sequence [8] for continual learning, fine-grained 6-task collection for
task adaptation [19], the Visual Domain Decathlon [20], and the Visual Task Adaptation
Benchmark [21]. While [20] re-distributes tasks and their annotations, most of the collec-
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tions like these require users to set up each dataset separately to evaluate their algorithms
on them. This can be feasible for collections such as these (up to 20 datasets). However,
for large-scale collections, this can become unfeasible due to the non-standardized ways in
which classification datasets are distributed. Examples include SVHN [22] images being
encoded in .npy files instead of the common image format or in a text file, like some distri-
butions of MNIST [3]. This overhead can easily be eliminated if datasets are distributed
in a standardized manner in the future, and paradigms like continual learning and task
adaptation can be easily evaluated at scale. Some standardization in the distribution has
been achieved by datasets archived using common machine learning frameworks like
PyTorch [23], TensorFlow [24], the Hugging Face dataset hub [25], and more. These dataset
repositories are a great resource for the standardized distribution of datasets. However,
they are not consistent about which datasets appear in the repositories, nor do they address
issues with duplicates (i.e., removing duplicates that exist in the original datasets), and
therefore, forming a collection of datasets for a task like continual learning can become
framework dependent.

Regardless of how a dataset is initially processed and distributed, it might still contain
some errors that can have some effect during model training. These include noisy labels,
ambiguity, or other similar issues. To study the impact of cleaning datasets, many data-
driven approaches have been proposed. Some studies have used outlier detection to achieve
this task [26]. CleanML evaluates the impact of data cleaning in classification tasks using
14 real-world non-vision datasets, considering how the database community approaches
the problem [27]. ActiveClean proposes an interactive data cleaning framework that uses a
user-defined cleaning operator—which can be expensive depending on the dataset [28].
While there is the cleaning of exact duplicates in this collection, this effort is orthogonal to
the studies to further clean datasets in a more data-driven way, as well as to algorithms
that are robust to noisy labels [29].

3. Methodology

The building of USC-DCT can be divided into three stages. The data aggregation stage
was performed by the authors to find the initial large and diverse collection of tasks, and can
be performed by others in the service of future expansions and revisions to the collection.
The pre-processing and validation stage is the intra-dataset procedure that records the
image information for each dataset and contains both manual and automated steps. Finally,
the post-processing stage is a combination of duplication removal, set generation, and
building the final database. This section expands on this methodology and gives details for
each component of the pipeline, as visualized in Figure 1.

Although choosing the datasets to be included in the collection was and will be a
purely subjective and manual process, the rest of the USC-DCT pipeline is meant to be
transparent and reproducible. For each dataset, a script was (and will be) created to handle
the downloading, extraction, conversion, and parsing of the dataset. This script handles
the peculiarities of each dataset in order to fit every dataset into a common framework.
There are several reasons for performing this process, the most important of which are,
first, it allows all down-stream users to see exactly what decisions were made on the raw
dataset (instead of just trusting that individuals performed this step correctly), and second,
it allows anyone to inspect the scripts and correct any mistakes they find.

Hence, DCT is (1) a collection of scripts that can be applied to raw dataset archives,
and (2) a resulting database that allows end-users to obtain any image from any dataset in
the collection through a unified interface.
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Figure 1. Overview of the dataset collection and preparation pipeline applied for USC-DCT.

3.1. Dataset Aggregation

The first stage of building USC-DCT involved collecting diverse datasets, then down-
loading their source files and extracting the files for the images and labels.

3.1.1. Collection

Since one of the driving factors in creating a collection such as USC-DCT is to sup-
port research domains like lifelong and meta-learning, the acquisition of computer vision
datasets that span a wide variety of different subject matters is the key concern during the
dataset-gathering phase. An increased variance of tasks in the collection promotes research
for more generalizable or adaptable algorithms that could be used for any problem in this
domain. Following this principle, we chose to omit common pre-training or evaluation
datasets (such as ImageNet [1] or CIFAR-10/100 [2]) to focus on increasing the accessi-
bility to other diverse data. Further limiting the scope, we only consider classification or
classification-adjacent datasets during this process.

As mentioned, one of the bigger challenges in forming a large-scale collection such as
this is the varying practices of distribution and the overhead it creates to set up a collection
of this size. To assess what is lacking in standardization practices, previously curated
collections—such as those found in [8] for use in the lifelong learning domain, as well as
the “Visual Decathlon Challenge” [20]—were thoroughly examined. While both groupings
provide methods to use all of the datasets included, they do not propose a methodology
for unifying them, outside of some overlap with what is presented by [30]. Moreover, there
is a notable overlap in the subject matter covered between these two collections. Therefore,
a collection of individual datasets can better encompass the larger diversity of classification
tasks currently available, especially if their distribution is streamlined.

For USC-DCT, following these insights, the primary metric used for determining
diversity between datasets was the subject matter, followed by pixel resolution and overall
dataset size. The first aimed to ensure that collections that used natural images, medical
imaging, artificial visuals, etc., would become more accessible. The latter two factors are
used to ensure that any sort of standardization methods developed could be used for any
newly developed datasets in the future, regardless of their size.

With the scope and limitations established, the discovery and collection of these
various datasets were conducted using dataset repositories such as PapersWithCode.com,
(https://paperswithcode.com/datasets) and others mentioned in Section 2, making sure
they were commonly used or cited in current research over the past few years. Basic
assessments such as the ease of interpretation, data formatting and organization, and
labeling systems were completed on the first 32 datasets. Others consisted of datasets

https://paperswithcode.com/datasets
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published on the open-source Kaggle platform (https://www.kaggle.com/datasets), an
important resource for datasets that span a diverse number of classification tasks. Adding
Kaggle as a source greatly increased the diversity in this large-scale collection, at the
cost of added complexity to the standardization process in the form of some additional
implemented limitations. Most notably, selected datasets could not have fewer than 128
total images, images could not be smaller than 16 × 16 pixels, and the dataset could not be
targeting a visual task that could not be reduced to a binary or multi-class classification
task. (This process is visualized in Supplementary Materials S1.) The datasets also required
manual investigation to ensure a minimum image quality and label correctness. Using these
two primary resources, the final raw collection comes to a total of just under 100 datasets.

Further taking inspiration from the use of datasets like [31–33], they are split into
sub-datasets based on assigned super-classes to create increasingly diverse tasks. This also
establishes a standard for creating subdivisions in the future. In the end, 94 datasets were
collected and then further split into 107 tasks, with a total of 11,115,024 images among
13,272 classes before any processing.

During the dataset collection effort, a brief inspection saw that many of the datasets
maintained some internal consistency, but that there was weak translation to other sets.
The myriad of issues ranged from differences in image types to broken files to varied
organizational structures. How these and other issues were addressed is further detailed
throughout the subsequent sections of the proposed dataset processing pipeline.

3.1.2. Download and Extraction

Every dataset identified during the collection is downloaded automatically by the
pipeline. This process is customized for each dataset for two reasons. (1) Every dataset is
hosted differently (e.g., Kaggle, Google Drive, author websites, etc.), which changes how
they should be downloaded. (2) The number of archives/files to be downloaded for each
dataset is not standardized. Initial inspection found that some datasets came in a single
archive, while others were distributed in multiple archives. Moreover, annotations are
not always distributed in the archives and sometimes need to be downloaded separately.
For each of the necessary files downloaded, the md5sum values are stored as constants
within the pipeline scripts and verified for every fresh install of USC-DCT. This is to
ensure the reproducibility of the efforts taken to put USC-DCT together. Due to the many
different ways these datasets are distributed, archive extraction must be customized for
each dataset as well. The archive formats encountered were .zip, .tar, and other multi-
archive distributions. Extraction produces a dataset folder that contains images and other
annotation files for each dataset in the collection.

3.2. Pre-Processing and Validation

The next stage involved inspecting the files that were extracted for each dataset,
preparing the script that will allow the pipeline to ingest those files and explain to oth-
ers what the files are, and then validating all of the images that were to be included
in USC-DCT.

3.2.1. Inspection

Inspection is a common but overlooked step every user needs to perform to use
a published dataset in their work. It consists of inspecting the dataset folder and the
distributed files to understand the actions necessary to include the dataset in a classification
pipeline. Are the data distributed as image files or in another format, like pixel values in
a .csv format? Are the labels given in a file, inferred from the folder structure, or part of
the naming convention for the images? Are there any sets given (e.g., training, validation,
test)? Are there any confusing folders/files with no clear documentation? An inspection
helps to answer questions such as these and helps to identify how to prepare the dataset
for a machine learning pipeline.

https://www.kaggle.com/datasets
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A handful of flawed practices were found numerous times while reviewing the 94
datasets: these occurrences were documented in the form of status codes to ensure that
they were addressed during data preparation. The codes that are assigned are a mixture of
objective designations (e.g., too small, invalid file, etc.) and subjective designations (e.g.,
near-duplicate folders). A list of these status codes is given in Table 1, with the shorthand
used for each of them in the rest of this paper, along with their detailed explanations. An
important note is that not all of these status codes represent outright mistakes or errors
made during the distribution of the dataset; instead, they were developed to help document
which images in the downloaded archives should and should not be used, as well as why
any images were excluded (i.e., assigned to a non-zero status code). Finally, these codes
were developed in parallel with the processing of all of the datasets and, therefore, were
added to organically.

Table 1. Explanation of status codes that every image within the USC-DCT collection was as-
signed during the second stage of the pipeline. A shorthand for each code is presented as well as
longer explanations.

Status Code Shorthand Explanation

0 problem-free Image has no identified problem.

1 invalid file The image does not open, is corrupted, or does not
load. This is tested by attempting to load every image

using the Pillow package.

2 non-dataset image These are images found in the dataset folder that are
completely unlike images in the dataset. Examples can

be title images, sample image collages, logos, etc.

3 duplicate folders These are images exactly duplicated in the
downloaded dataset folder and can occur if a class

folder or the full dataset itself has been duplicated in
the distributed archive by mistake. To prevent
removing valid images, during validation, it is

checked if every image with this status also exists
elsewhere, using a matching file hash.

4 no label These are dataset images with no provided labels, e.g.,
images that were used for demonstration or test sets

with labels intentionally left out.

5 near-duplicate
folders

These differ from status = 3; these folders contained a
mixture of exact duplicate images as well as images
that were often crops or re-scaled variants. Since the

folder does not contain exact duplicates of other
folders, they received a different code. An example

can be raw medical scans before crops were made to
classify different parts.

6 different task Some datasets are distributed with multiple possible
tasks, not all of which were used in USC-DCT. These

tasks might still have images in the distributed
archives, which are eliminated using this status code.
For instance, provided segmentation mask images for
actual dataset samples would fall into this category.

7 multiple labels These are images marked with more than one label.

8 too small These images are smaller than 16 pixels in at least one
dimension. We chose this threshold to ensure enough

data in any given image.
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3.2.2. Preparation

Once the dataset has been inspected, it can be prepared to be added to the collection.
For some datasets that instead present the images in .npy, .csv, or other non-image formats,
a conversion step is performed to save them as .png files. This standardizes the data loading
across all tasks.

Once all necessary image data are in a readable image format, dataset preparation is
performed through an automated script (within the function “parse_dataset”) for trans-
parency, where any necessary information provided in the downloaded archives is recorded
across all tasks. Supplementary Materials S2 contains samples of customized code for some
chosen tasks, where more information can be found on these automated scripts. The
information stored for each image includes the following:

• Relative paths to the dataset folder (or to the converted data);
• Integer labels;
• Set (training/validation/testing);
• Subject ID (for any medical or biometric datasets);
• Status code;
• Image hash.

This function (“parse_dataset”) also creates a mapping between classes (i.e., written
English—if they exist) to integer labels. If no specific integer labels are given for a dataset,
one is created for them (0-indexed) by sorting the class names alphabetically. If no set
information is distributed with the dataset, all images are designated as belonging to the
training set. The images with a non-zero status code associated with them have their set
and integer label recorded as −1. If no subject/patient/object ID was provided, or it is not
applicable for the dataset/image, the subject ID is set to −1. It has to be noted that status
codes 1 and 8 are set automatically by the automated validation script for each task, and
are the only non-zero statuses that are not manually provided by the writer of the function
“parse_dataset”. As an output, this script generates a list of image files with the above
information collected for each image. This list is then used to run the validation for each
dataset, providing a standardized, reproducible, and transparent method of integration
into the collection.

3.2.3. Validation

Validation was then performed both by framework-provided scripts and human
oversight. Each dataset-specific preparation script and results were assigned to one or two
other members of our team, who re-inspected dataset folders and processing scripts to
confirm the results for the dataset.

The framework-provided validation script also aids users by providing extensive
statistics on the processed dataset to help them to verify that any image marked with
a non-zero status code actually exhibits that issue. In addition to reviewing the dataset
folders and preparation code, validators inspect the validation script summary to verify that
(1) the number of images in different sets and/or classes makes sense, (2) class names and
integer labels are recorded correctly, and (3) images marked as invalid or exact duplicates
are independently confirmed by the script. The script also verifies every image with a
non-zero status code has its image label and set assigned to −1. This process ensures a
standardized output across all 107 tasks. Examples of validation script outputs for selected
datasets are shown in Supplementary Materials S2.

3.3. Post-Processing

The final stage is performed once the full collection of—or new addition to—USC-DCT
is ready. This stage removes both intra- and inter-dataset duplicates, as well as generating
the training, validation, and testing sets on a class-by-class basis.
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3.3.1. Duplicate Removal

In addition to the above stages that allow us to standardize the collection, a round
of clean-up was performed on the datasets. This removed any remaining duplicates that
were not easily identified during the dataset preparation (e.g., because the datasets were
too large).

During this clean-up, two different hashes were utilized. The file hash was computed
using the xxh64sum of the image file, whereas the image hash was the mds5um of only the
final image pixel data. Image pixel data were separately hashed in case there were duplicate
images (i.e., the visual representation) that were stored in different file formats or otherwise
had been saved in a different manner, which would produce different file hash values, as
the file’s bytes would now differ. This would also be true if some of the image’s metadata
(or header) had changed (e.g., the software used, internally stored timestamps, etc.). These
two different hashes were used to identify any image duplication issues in USC-DCT
datasets and to mark images with further status codes to handle them accordingly. Finally,
when removing images based on duplicate files or image hashes, the script first removed
those images with duplicate file hashes, and then those with duplicate image hashes.

The status codes related to intra- and inter-dataset duplicates can be seen in Table 2,
where we give a shorthand and more detailed explanation for each code that we assign to
images at the third stage of the proposed pipeline. In summary, any image that appears in
2+ classes or datasets is excluded from the collection. If an image appears 2+× for the same
class, only one of the duplicated samples is kept in the collection.

Table 2. Explanation of status codes that every image is assigned with in the USC-DCT collec-
tion during the third stage of the pipeline. We present a shorthand for each code, as well as
longer explanations.

Status Code Shorthand Explanation

100/102 file/image hash in 2+ classes

Either the image had more
than one label (see status = 7),
or it was improperly placed in

multiple classes.

101/103 remaining file/image hash
dup.

All images should be unique
for each class. Therefore, only
one of the file/image hashes is

kept.

200/201 file/image hash in 2+ datasets

Sometimes the dataset and
class these appear in could

make sense, and other times
not. However, it is easier to

just remove them on the
assumption that duplicates

should not exist.

300 class size too small

Fewer than three images in a
class, which makes it

impossible to assign one
image to each set.

3.3.2. Set Generation

During the creation of DCT, it was noted that while a few datasets provided sug-
gested sets (training/validation/testing), most did not. And even among the datasets that
provided suggested sets, most only provided two: training and testing. Moreover, some
testing sets were provided without labels. This is a problem for building models and for
comparing final results to those reported by others. As part of this effort, standardized
splits were created for every class of every dataset: ≥10% testing, ≥10% validation, and
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≤80% training. This allows anyone reporting results on these datasets to work on the same
subsets of data and promotes reproducibility.

Before creating the splits, it is verified that each class has enough images; if any class
has fewer than three images left in it (one each for training, validation, and testing sets), it
is eliminated by setting the status code for the images of that class to 300; also detailed in
Table 2 with other status codes assigned to images during the third stage of the pipeline.

To calculate the splits for most datasets, a simple method was used to randomize
the image placement in a thoroughly deterministic way. For every dataset, the images
were sorted by their file hash. Then, on a class-by-class basis, the first 10% of images were
marked for the validation set, the next 10% of images for the testing set, and the remaining
images (80%) for the training set. It should be noted that since this was performed on a class-
by-class basis, the class distributions were unchanged from the source datasets—except
when a class was eliminated because there were fewer than three images remaining.

For the five datasets that provided us with the subject ID [34–38], the algorithm was
complicated by the desire to have every individual subject, regardless of the number of
classes they were associated with, appear in only one of the three sets. This prevented
any information leaks between the different sets. Therefore, an iterative algorithm was
used that sorted the subjects in decreasing order of the number of classes they appeared
in and put the subject into the set that was currently most “behind” the desired ratio. The
next phase, now working on subjects that appeared in only one class, sorted the subjects in
decreasing order of the number of images and put them into sets using the same method.
In both phases, a subject was not allowed to be placed into a set if the count of images in
any given class exceeded the desired count.

It should be noted that our policy is that new duplicates found when adding future
datasets will be removed from those new datasets but kept in the datasets that are already
in the collection. This topic is discussed further in Section 5.2.

After the sets are generated, the data are inserted into an SQLite database for dis-
tribution. The database includes the relative path for each image, the file hash, image
details (e.g., dimensions, type, hash), as well as the classes—both a numeric ID and their
text representation.

3.4. Overview

USC-DCT consists of 107 classification tasks collected from 94 diverse datasets, which
were acquired and processed by the proposed pipeline in Section 3.2. The additional tasks
that bring the collection up to 107 are generated by separating the iNaturalist [33] and
Office-Home [32] datasets into multiple tasks. For iNaturalist, this was achieved by separat-
ing tasks by defined superclasses in the dataset, while for Office-Home, different domains
(clipart images vs. real-world images of dataset classes) were considered different tasks.

For other datasets that provide more than one task or a more complicated classification
task, their sub-tasks were added to USC-DCT instead. For example, CelebA [34] is a
multi-label classification dataset of facial attributes. Since USC-DCT includes only multi-
class classification tasks, the sub-task of hair color was carefully sub-sampled from the
multi-label problem in CelebA. For datasets that present multiple tasks like VOC [39]
and CORe50 [40], one appropriate classification task was chosen depending on how it
contributes to diversity.

Across the 107 tasks included in the collection, USC-DCT boasts 13,269 classes and
6,894,664 images in total. Table 3 shows the minimum, maximum, and median values for
the number of classes and images, which shows how diverse the collection is in terms
of these values. Moreover, images range in size from 16 × 16 (WxH) to 15,530 × 9541.
Table 4 shows each of the 107 tasks with their names, number of classes, and number of
total images after they were processed by the proposed pipeline.
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Table 3. Statistics on the number of classes and images across the 107 classification tasks in the
USC-DCT collection.

Minimum Maximum Median Average

Number of classes per task 2 4271 15 124

Number of images per task

All 148 1,189,798 15,524 64,436
Training 112 950,216 12,383 51,493

Validation 18 119,791 1587 6471
Test 18 119,791 1587 6471

Table 4. Overview of 107 datasets in the USC-DCT collection version 1.0 with their respective number
of classes and the number of total samples used in the benchmark. See Supplemental Materials S3 for
visual exemplars of each dataset.

Dataset Name # of
Classes

# of
Images Dataset Name # of

Classes
# of

Images

100 Sports [41] 100 14,558 iNaturalist: Mollusca [33] 169 46,239
7000 Pokemon [42] 150 6803 iNaturalist: Plantae [33] 4271 1,189,798

Apparel Images [43] 24 11,372 iNaturalist: Reptilia [33] 313 89,803
APTOS 2019 [44] 5 3504 Intel Image Classification [45] 6 17,003

Art Images Type [46] 5 7110 IP102 Dataset [47] 102 75,217
ASL Alphabets [48] 29 87,000 Kannada MNIST [49] 10 60,000

Blood Cell Images [50] 4 12,513 Kvasir Capsule Dataset [51] 14 37,776
Boat Types [52] 9 1460 Labeled Surgical Tools [53] 5 3004

Book Covers 30 [54] 30 56,975 Land-Use Scene Classification [55] 21 10,499
Brain Tumor Dataset [56] 4 2870 Large-Scale Fish Dataset [57] 9 9408

Brazilian Coins [58] 5 3059 LEGO Bricks [59] 50 40,000
Breast Ultrasound [60] 3 778 Malacca Historical Buildings [61] 3 162
Cataract Dataset [62] 4 601 Manga Facial Expressions [63] 7 455

CelebA [34] 5 124,803 Mechanical Tools [64] 8 7335
Chars74k [65] 62 11,202 MIT Indoor Scenes [66] 67 15,524

Chest X-Ray [67] 2 5824 Monkey Species [68] 10 1267
CLEVR v1.0 [69] 8 85,000 Multi-Class Weather Dataset [70] 4 1099

Colorectal Histology MNIST [71] 8 5000 NEU Surface Defect [72] 6 1799
Concrete Cracks [73] 2 38,402 NWPU-RESISC45 [74] 45 31,492

CORe50 [40] 10 163,006 Office-Home: Art [32] 65 2297
CUB-200 [75] 200 11,787 Office-Home: Clipart [32] 65 4190

DeepVP-1M [76] 9 74,288 Office-Home: Product [32] 65 4269
DeepWeedsX [77] 9 17,508 Office-Home: Real World [32] 65 4317

DermNet Dataset [78] 23 17,826 OnePiece Dataset [79] 18 11,503
Describable Textures [80] 47 5623 Oregon Wildlife [81] 20 7076
Diabetic Retinopathy [36] 5 35,126 OrigamiSet 1.0 [82] 3 1495

Dragon Ball Super Saiyan [83] 6 148 Oxford Buildings [84] 11 845
Electronic Components [85] 36 10,153 PAD-UFES-20 [38] 6 2269

EuroSAT [86] 10 27,000 PatchCamelyon [87] 2 277,483
FaceMask Dataset [88] 3 13,755 Planets And Moons [89] 11 1634

Facial Expression 2013 [90] 7 33,977 PlantDoc Dataset [91] 27 2547
Fashion Product Images [92] 43 43,653 Polish Craft Beer Labels [93] 100 7971

Fine-Grained Aircraft [94] 70 10,000 Retinal-OCT 2017 [37] 4 76,677
Flowers [95] 102 8185 Rice Image Dataset [96] 5 74,703

Food-101 [97] 101 100,938 Rock Classification [98] 7 2032
Freiburg Groceries [99] 25 4933 Russian Letter Dataset [100] 33 37,667

Galaxy10 [101] 10 17,615 RVL-CDIP [102] 16 398,388
Garbage Classification [103] 12 15,493 Satellite Images African

Poverty [104]
4 25,571

GTSRB [105] 43 51,831 Simpsons Characters [106] 42 21,882
HistAerial [107] 7 137,427 Sketches [108] 250 19,999
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Table 4. Cont.

Dataset Name # of
Classes

# of
Images Dataset Name # of

Classes
# of

Images

House Room Images [109] 5 5174 Skin Cancer MNIST [35] 7 10,013
Hurricane Damage [110] 2 21,050 Stanford Cars [111] 196 16,109

iFood2019 [112] 251 130,468 Stanford Online Products [113] 12 117,983
iLab 80m [114] 15 15,000 SVHN [22] 10 630,417
iLab Atari [115] 67 368,870 Texture Dataset [116] 64 8530

iMaterialist Fashion 2019 [117] 46 45,191 UIUC Sports Event Dataset [118] 8 1578
iNaturalist: Actinopterygii [33] 183 46,641 UMIST FaceDatabase [119] 20 1012

iNaturalist: Amphibia [33] 170 47,850 Vegetable Images Dataset [120] 15 20,996
iNaturalist: Animalia [33] 142 38,349 VOC2012 - Human Action [39] 11 4294

iNaturalist: Arachnida [33] 153 42,164 Watermark Classification [121] 2 31,147
iNaturalist: Aves [33] 1486 428,775 WikiArt Dataset [122] 27 78,677
iNaturalist: Fungi [33] 341 93,359 Yoga-82 [123] 82 19,450

iNaturalist: Insecta [33] 2526 687,823 Zolando Clothing/Models [124] 6 10,667
iNaturalist: Mammalia [33] 246 71,276

Total: 13,269 6,894,664

4. Results

This section includes the USC-DCT collection characteristics, ranging from an overview
of the raw datasets themselves to the distribution of challenges faced when processing
these datasets and forming the collection.

4.1. Task Diversity

Task diversity was one of the main aims during the collection of USC-DCT. To
show how diverse the USC-DCT tasks are, we assign a semantic label to each task from
16 different semantic areas. These labels include nature, vehicles, art, media, medical,
scenes, facial, food, fashion, letters/numbers, astronomy, instruments, actions, objects,
satellite imagery, and counting. We mark the datasets that do not fit into these 16 semantic
labels as ’other’. A visual representation of the diversity of images is provided in Supple-
mentary Materials S3.

Figure 2 shows how these semantic labels are distributed across different-sized tasks
in the collection and compares USC-DCT to other popular collections of datasets used
in the literature such as the 8-dataset collection [8], Visual Domain Decathlon [20], and
fine-grained 6-tasks [19]. This analysis displays how diverse USC-DCT is compared to these
other collections of datasets, which shows how useful it can be to the machine learning
community. We note that there is no comparison of these different collections using
t-SNE (see Figure 3), because the method does not allow direct comparisons from such
wildly different data (e.g., cluster locations and shapes, even for the same data, will be
completely different).

Moreover, to further identify how similar these tasks are to each other in the feature
space, a sub-sample of USC-DCT was generated to have five images per class from every
task in the collection. Then, a deep neural network [125] was trained on ImageNet [1]
to extract features from this sub-sampled version of the datasets. Figure 3 shows the
visualization of these features through a t-SNE [126] plot, and shows the diversity of the
collection as well as how different tasks intersect with each other.

When viewed in the feature space, some tasks are overlapping and appear close to each
other, which is to be expected. Examples of this are Food-101 [97] and
iFood2019 [112], as well as partial overlaps between iNaturalist [33] sub-tasks Aves and
Plantae with tasks CUB-200 [75] and Flowers [95], respectively. The Office-Home sub-tasks
that contain the same objects in different domains, like real world, product, and clipart,
also fall into similar regions in the t-SNE plot.
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(a) USC-DCT

(b) 8-dataset sequence (c) Visual Domain Decathlon (d) Fine-grained 6-task collection

Figure 2. Semantic labels vs. task sizes of common collections used in the literature to develop and
evaluate different learning paradigms compared to those of USC-DCT. Every task was hand-labeled
to show the level of diversity in the 107 tasks in DCT.

Figure 3. t-SNE visualization of the feature space for a sub-sample of images from each of the
107 tasks in USC-DCT.

Meanwhile, in line with the design goals of the collection, a large variety of other tasks
can be viewed in their separate clusters. These include the unique datasets Polish Craft
Beer Labels [93], LEGO Bricks [59], and iLab Atari [115], as well as the more well known
Stanford Cars [111] and Fine-Grained Aircraft [94]. These experiments further show the
diversity in the USC-DCT collection.
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4.2. Status Code Statistics

As mentioned in Section 3.2, one of the challenges that was encountered during the
creation of this large-scale collection was the issue with standardization in structuring and
publishing datasets, as well as issues with exact duplicates in and across datasets. This
section summarizes some of the more important points that were discovered by applying
the proposed dataset pipeline to these 107 tasks. Table 5 presents the exact numbers of
images and datasets affected by each identified status, and then further discussion of some
of these results follows.

Table 5. Breakdown of how many images and datasets were affected by their identified status during
collection creation using the proposed pipeline.

Stage Status Code # of Images # of Datasets

Pre-Processing
and Validation

1 (invalid file) 225 6
2 (non-dataset image) 11 5
3 (duplicate folders) 260,707 17
4 (no label) 143,829 14
5 (near-duplicate folders) 10,801 2
6 (different task) 3,674,847 8
7 (multiple labels) 284 1
8 (image too small) 1369 3

Post-Processing

100 (file hash in 2+ classes) 13,610 48
101 (remaining file hash duplicates) 113,819 81
102 (image hash in 2+ classes) 20 4
103 (remaining image hash duplicates) 328 14
200 (file hash in 2+ datasets) 504 15
201 (image hash in 2+ datasets) 2 2
300 (class size too small) 4 2

First, some key statistics needed to be identified: Across the several million images
that comprise USC-DCT, only a small fraction were invalid files that could not be loaded (a
total of 225). Only five datasets included summary or other non-dataset images discovered
in the archives which we had to identify and eliminate from the collection. Comparatively,
dataset images that appeared in archives without an accompanying label appeared around
143k times, across 14 of the tasks. These images were mostly test sets with unreleased labels
or other demonstration images distributed with the archives.

Other images that were not included in the USC-DCT collection consisted of images
that were marked with multiple labels in the dataset (affecting only one dataset and
284 images), and images that were too small to reliably use for classification (around
1k images appearing in three datasets).

We also investigated datasets where a large percentage of images in the downloaded
archives were excluded from the final collection. It was found that high image-elimination
rates from these datasets were caused by two main factors: The removal of images due to
task selection, and the removal of images due to partially, or entirely, duplicated folders. The
former is a design choice for creating this collection, and affected datasets, e.g., CelebA [34],
HistAerial [107], were those we chose a sub-task for to add to USC-DCT. The latter implies
distribution errors made while publishing the datasets (e.g., one dataset contained a full
copy of itself in a class-level sub-folder); these require careful inspection and can lead to
mistakes in training and evaluation if uncaught.

There were 20 datasets that contained a total of 3052 images that had a mismatch
between the file extension and the actual image stored within. This count is small in
comparison to the total collection but possibly indicates that some datasets used a naive
conversion and renaming pipeline (either before the image was uploaded to the web (in
the case that the dataset was collected from the web), or during the processing (for images
collected in other ways).
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In addition to computing the statistics for defined status codes for the proposed
processing pipeline, an analysis of how many images and which tasks were affected by
intra- and inter-dataset exact duplicates was completed. Thousands of images were found
multiple times in different class folders, as well as many that were duplicated in the same
class folder. Images that appeared multiple times in different datasets were also identified.
These were much less frequent than intra-dataset duplications; however, for the health of
the collection, they were also eliminated from the database.

Figure 4 gives a summary of the number of images and datasets affected by each status
code identified in Section 3.2. Overall, there were 9 tasks out of the 107 that had no images
removed for any reason. These were DeepVP-1M [76], Diabetic Retinopathy Detection [36],
EuroSAT [86], Sketches [108], iLab 80M [114], Fine-Grained Aircraft [94], UMIST Face
Database [119], Manga Facial Expressions [63], and Malacca Historical Buildings [61]. This
shows how challenging it can be to form a collection of this scale.
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Figure 4. The distribution of status codes sorted by the total count of images in the dataset with
that code.

5. Discussion
5.1. Utility of USC-DCT

As previously mentioned in Sections 1 and 2, a large-scale collection like USC-DCT can
benefit many different learning paradigms in the classification domain. Some frameworks
of note are transfer learning, lifelong learning, meta-learning, and task adaptation. In
this section, further discussion on how USC-DCT can be utilized for the aforementioned
frameworks, as well as others in the field, is presented.

Transfer learning and pre-training have been very important for innovations in ma-
chine learning during the last decade, where a model is first trained on a large-scale dataset
to learn general discriminative features. The pre-trained model can then be fine-tuned
for a specific task using fewer data and fewer resources [15,127]. USC-DCT used as a
whole can be an important asset for developing and validating new approaches to transfer
learning. Moreover, the semantic labels we provide for each dataset can allow subsets of
the collection to be used for this purpose as well.

Collections like USC-DCT have already been widely utilized for lifelong learning [16]
and domain adaptation [18], even though the collections have been up to 20 datasets.
Having a large-scale collection like USC-DCT can help test these algorithms’ generalization
abilities at scale, either by evaluating subsets of sequences from USC-DCT or evaluating all
tasks in it. Since USC-DCT has been designed to contain a diverse number of tasks, it also
makes interdisciplinary research on these frameworks easier. Using this benchmark, one
can just as easily evaluate a lifelong learning algorithm developed on object classification
on a subset of USC-DCT that contains medical tasks. Moreover, it can inspire new research
directions, such as shared lifelong learning, proposed in [9].
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On the other hand, in paradigms like meta-learning [17], the large-scale variety of
tasks is what is crucial. Many meta-learning algorithms require some base knowledge
to train, and having a collection of at least 100 datasets can unlock the development of
algorithms that can learn how to manage a variety of new tasks. Having a large variety in
the base knowledge can also benefit the training and evaluation of zero-, one-, or few-shot
learning frameworks. These paradigms generally assume good existing representations
and attempt to learn new concepts using this knowledge. While most of these studies use
partitioned versions of popular datasets like ImageNet [1] and CIFAR [2], having a large
collection like USC-DCT can truly test how generalizable these algorithms can be.

While USC-DCT can be used with all the learning paradigms mentioned above, it
is not necessary to use it as a complete benchmark. The individual datasets in USC-DCT
can easily be used on their own for many different small-scale projects since they are
distributed in a standard way, independent of a deep learning framework like PyTorch or
TensorFlow. This allows anyone interested in classification problems to experiment with
many different tasks with minimal effort to integrate a dataset into their code, allowing for
easier cross-domain collaboration.

5.2. Revisions to DCT

USC-DCT is distributed in a fully standardized way, where every dataset was pro-
cessed using the proposed pipeline. This makes it feasible for this collection to grow and
change as more classification tasks are collected. New datasets can easily be added to the
collection, which can grow to be a popular repository of diverse classification tasks in the
future. We expect each future addition to be inspected and cleaned in the same manner as
above, and to be distributed with pre-defined splits that can be used across the community
for a fair evaluation of all tasks included.

The version that is released with this paper is considered to be version 1.0. Although
there is full support for adding additional datasets, in order for others to use the same
collection, three things are necessary: (1) there needs to be an authoritative source for
any new additions, (2) any new datasets must be publicly available under an open-source
license, and (3) the new revisions should not add or remove datasets already in any
previous versions. To that end, new additions to the collection will go through a slightly
different pipeline:

• The fully intra-dataset status codes will still be handled by the individuals who
write the scripts to parse each new dataset and the uniform first-pass quality checks.
Additionally, the analysis of the “post-processing” status codes 100–103, which are
concerned with intra-dataset duplication removal, will remain the same.

• The post-processing status codes that are concerned with inter-dataset duplication
removal (i.e., status codes 200 and 201) are handled in a slightly different manner.
Now, instead of all file and image hash duplicates being removed from all datasets,
only those duplicates that appear in the new datasets that are being added will be
removed. This means that no images will be removed from the previous revisions of
USC-DCT.

• Finally, the set building for the new datasets will follow the same pipeline. If any class
contains fewer than three images, status code 300 will be applied.

In summary, the current version 1.0 and all of the images and set assignments—barring
future bug fixes that affect the current datasets—are considered immutable. When new
revisions are added (with one or more new datasets), the inter-dataset duplication removal
process will only remove duplicates found in the new datasets (i.e., the inter-dataset
duplicates that exist between new and existing datasets will only be removed from the new
datasets). Upon the release of the updated version, the consideration of immutability will
be extended to all images and set assignments from the then-current list of datasets.
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5.3. Tips for Usage

Depending on each particular use case, using some or all of the datasets contained
with USC-DCT may be appropriate. For instance, if one is only interested in training a
model on naturalistic scenes, it would make sense to exclude datasets containing histology,
graphic art, etc. In general, we recommended the following:

• Train on the complete training set of the desired datasets.
• Evaluate models on the validation set during the hyperparameter tuning phase.
• Only evaluate final models on the testing set, and only once. When comparing results

against others that used the same datasets, compare against the results on the testing
set of the same version.

Although we strongly recommend against it, if the sets are too large for the available
time or computing constraints, sub-sampling of the training/validation/testing sets could
be a solution. However, in order to guarantee that others will be able to make apples-
to-apples comparisons with the results, one would need to make sure that the data were
sub-sampled in a deterministic manner. The simplest and most foolproof way to achieve
this is to take the first X samples in the training/validation/testing sets. Because the
images have been sorted using their file hash, they are already randomly ordered in the
database. Therefore, if one chooses the first X entries (of either the entire dataset or of
each of the classes in a dataset), they will be guaranteed a deterministic random sample
that others can reproduce—knowing that they will be using the same set of sub-sampled
images. It should be noted that we do not consider a sub-sampling of USC-DCT to be
synonymous with the complete dataset, nor do we make any claims that a sub-sample is
representative of the complete dataset or datasets. If sub-sampling from USC-DCT, the
methodology used should be clearly stated, and if it deviates from the above proposed one,
we recommend storing a list of the hashes used for the generated subsets, so that others can
exactly reproduce the same sub-sample. For an example of creating a sub-sampled subset,
the authors developed one for the work completed in our associated paper [9].

5.4. Recommendations

During the gathering and processing of USC-DCT, over 100 datasets were scrutinized.
In this section, we discuss some recommendations for anyone who plans to gather and
publish a new dataset based on the experiences with forming USC-DCT:

X Documentation on both the data and distribution structure. Build these before popu-
lating them with data. The documentation should match the rest of the built dataset.

X Structuring data in sensible ways. Class folders seem to be the best method.
X Choosing the annotation distribution format carefully. Any additional annotations

could be in .txt/.csv format. Annotations should not be replicated in multiple areas.
X Not leaving any extraneous files in the final distribution. This includes hidden files

as well.
X Basic checks for exact duplicates.

These recommendations are meant to act as a checklist for anyone wishing to publish
data in an accessible manner. While they are good properties to have, not all will represent
the optimal choice for every dataset. However, the more datasets that are published using
a similar approach for structuring and distributing their data, the more accessible they will
be for future research or other applications.

5.5. DCT Reconstitution

Our repository (USC-DCT, https://github.com/iLab-USC/USC-DCT ) has the code
necessary to reconstitute, or rebuild, part of or the entire USC-DCT. This allows users to
then train and evaluate the collection on their own machines, without us having to store,
and provide for download, the entire collection. The steps for rebuilding the USC-DCT are:

• Clone the git repository to a drive.

https://github.com/iLab-USC/USC-DCT
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• Run reconstitute_dct.py, which will allow one to choose the entire collection, or just a
subset, and what version to use.

• This will download the original archive files for each desired dataset. These archives
will then be expanded and processed.

• Finally, the script will download an individualized mapping of all files, which set they
are included in, and what their status codes are.

6. Conclusions

This work presents USC-DCT, a diverse collection of classification tasks compiled
from publicly available classification datasets. USC-DCT is a standardized database of
107 classification tasks, as well as a set of scripts that are transparent and reproducible
with minimum logistical overhead for setting up a large collection. In the paper, several
items are presented: the proposed pipeline for generating USC-DCT, a methodology for
easy future growth, and statistics on the collection. Subsequent discussion then focuses
on its use cases and importance in machine learning research, tips for usage, as well as
our recommendations for publishing a dataset based on our experiences with creating
the collection.

USC-DCT is designed to easily ingest new classification tasks, and can further scale as
algorithms become more generalizable and adaptable. Moreover, it can further evolve via
future efforts that focus on handling images that are similar but not exactly the same, label
ambiguities, and similar classes that might exist across datasets. These additions can make
USC-DCT into the largest fully unified classification benchmark in the future.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/data8100153/s1 or the USC-DCT Github Repo,
https://github.com/iLab-USC/USC-DCT: USC-DCT Database Inclusion Decision Tree, S1; Dataset
Preparation Code Examples, S2; and Visual Overview of USC-DCT v1.0, S3.
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