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Abstract: The paper is devoted to the problem of generating artificial datasets for data envelopment
analysis (DEA), which can be used for testing DEA models and methods. In particular, the papers that
applied DEA to big data often used synthetic data generation to obtain large-scale datasets because
real datasets of large size, available in the public domain, are extremely rare. This paper proposes
the algorithm which takes as input some real dataset and complements it by artificial efficient and
inefficient units. The generation process extends the efficient part of the frontier by inserting artificial
efficient units, keeping the original efficient frontier unchanged. For this purpose, the algorithm uses
the assurance region method and consistently relaxes weight restrictions during the iterations. This
approach produces synthetic datasets that are closer to real ones, compared to other algorithms that
generate data from scratch. The proposed algorithm is applied to a pair of small real-life datasets. As
a result, the datasets were expanded to 50K units. Computational experiments show that artificially
generated DMUs preserve isotonicity and do not increase the collinearity of the original data as
a whole.
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1. Introduction

Data envelopment analysis (DEA) is a nonparametric method that is used to measure
the relative efficiency of a homogeneous set of decision making units (DMUs) [1]. The
DEA approach is widely used in various fields, including manufacturing systems, power
industry, governance, finance, supply chain, transportation, etc. [2–14]. It is assumed that
each DMU consumes multiple inputs to produce multiple outputs. The estimation of
efficiency scores using the DEA model is based on comparing observations with points on
the frontier. The term frontier is used because it is based on best practice observations.

Some DEA papers lack testing of the proposed models on large-scale real data. In
those papers, the proposed new model is illustrated by a small dataset with several dozen
units and three to five variables. Such an illustrative example serves to demonstrate that the
proposed method can give correct results. However, as practice shows, this is not enough
to draw a conclusion about the performance of the proposed model or algorithm. A small
demo example cannot reveal the computational issues that may arise on medium- and
large-scale datasets.

For example, in papers by Sueyoshi and Sekitani [15–17] DEA models were proposed
for the measurement of returns to scale (RTS) under a simultaneous occurrence of multiple
projections and multiple supporting hyperplanes. It was proposed to use the strong
complementary slackness conditions (SCSC) of linear programming [18] as constraints in
order to find all vertices of a face where RTS is evaluated. The paper [19] shows that the
simple example proposed by Sueyoshi and Sekitani failed to detect numerical issues with
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their model. Computational experiments conducted on medium-sized datasets helped
reveal the instability of the SCSC model.

Another example demonstrates how detailed testing on large-scale data allows one
to benchmark DEA methods and draw conclusions about their performance. Paper [20]
describes and compares some of the best-known methods for estimating returns to scale.
The paper shows that well-established theoretical models may encounter numerical insta-
bility even in medium-sized datasets. In this particular example, the numerical instability
is caused by the inversion of an ill-conditioned matrix during the simplex solution process.
However, there are a large number of causes of algorithmic instabilities that are difficult to
detect theoretically but easy to identify through numerical experiments.

One of the attempts to collect open DEA data that could be used for scientific and edu-
cational purposes is the Data Envelopment Analysis Dataset Repository [21]. Unfortunately,
this DEA repository has not functioned for many years.

There exist several DEA datasets distributed with R packages (e.g., Benchmarking,
rDEA, npsf) published on the Comprehensive R Archive Network (CRAN). However,
these datasets are intended mainly for educational purposes and contain a small number
of DMUs. Other existing open data repositories are focused on, e.g., machine learning
data [22,23], or statistical data [24,25]. However, such repositories contain data that are
not intended to be applied directly to DEA analysis: the variables of a DEA model are not
specified; inputs and outputs may be mixed with environmental variables; datasets may
contain binary, categorical, or unstructured data (audio, video, images, etc.). Therefore, the
use of these repositories for DEA is very limited.

Well-known repositories for sharing scientific data [26,27] contain quite a few DEA
datasets that are used in articles. However, the datasets in such repositories are difficult to
find because they do not take into account DEA specifics. For example, there is no possibility
to specify search details such as the number of DMUs or variables, time periods, presence of
undesirable variables, etc. Moreover, many datasets do not contain descriptions, so it is im-
possible to recognize the variables and number of DMUs without downloading the dataset.

Largely because of those reasons, many DEA researchers, for testing purposes, use arti-
ficially generated data, usually referred to as synthetic data. Synthetic data are increasingly
being used for machine learning. There are two reasons for this: a) the lack of high-quality
data and b) the need for privacy protection when sensitive data are used. Recent reviews on
synthetic data generation using machine learning (ML) algorithms are presented in [28,29].
Recent studies on the application of ML algorithms for the estimation of DEA technologies
are given in [30,31].

On the one hand, large real datasets are rarely seen in the DEA literature, while
datasets with more than 10K DMUs are extremely rare. One of the largest datasets in DEA
is used in [32]; it represents real data from 30,099 power plants described by 6 variables
(two inputs, one good output, and three bad outputs). As a consequence, the existing
publicly available datasets for DEA are not enough to conduct comprehensive testing.

On the other hand, applications of DEA show that many inefficient units are projected
on the inefficient parts of the frontier when efficiency scores are evaluated. However, this
fact disagrees with the main concept of the DEA approach because the efficiency score of an
inefficient unit has to be measured relative to efficient units. As a consequence, inaccurate
efficiency scores may be obtained. This happens because a non-countable (continuous)
production possibility set is determined on the basis of a finite number of production units.

One way to improve the frontier is to insert restrictions on the dual multipliers.
A number of papers developed the DEA models, which were based on incorporating domi-
nation cones into the dual model [33–39]. Podinovski [40] proved the equivalence between
weight restrictions and production trade-offs between inputs and outputs. Computational
procedures with weight restrictions and production trade-offs and a discussion of their
implementation can be found in [41,42].

Farrell was the first to introduce artificial units in the primal space of inputs and
outputs in order to ensure the convexity of the piecewise linear isoquants. Allen and
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Thanassoulis [43] elaborated further on the idea of focusing on anchor units as points of
departure for formulating coordinates of artificial units. The main purpose of this was
to improve the envelopment by reducing the number of inefficient units not “properly”
enveloped, resulting in projections to the frontier of these units being on a weakly efficient
part of the frontier.

Thanassoulis et al. [44] developed further the super-efficiency method for discovering
anchor units in the VRS model [45] and proposed a method for extending the frontier
with the help of anchor units. However, their method cannot be used for generating
large-scale datasets for two reasons. First, the positions of artificial units are specified by
a decision-maker. Second, the procedure does not guarantee full envelopment.

To the best of our knowledge, there are no studies on synthetic data generation in DEA
that takes some real datasets as input and complements them with artificial efficient units.
The present study attempts to address this gap and contributes by proposing the algorithm
for synthetic data generation. The proposed algorithm takes a real DEA dataset as an input
and complements it with artificial DMUs.

Following the ideas of Thanassoulis et al. [44], we developed the algorithm for syn-
thetic data generation based on the principles:

(P1) Original efficient frontier should not change after adding artificial DMUs, and
(P2) Artificial efficient DMUs should extend the efficient part of the frontier.

Data generation is organized in such a way that artificial efficient units are generated
in the borderline region to upsample data neighborhoods. Inefficient units are generated to
follow the underlying distribution of the original data.

Based on the proposed algorithm, datasets with a large number of DMUs have been
prepared that can be used for testing the numerical stability and computational performance
of existing DEA methods.

The structure of the paper is as follows. Section 2 provides a review of existing
approaches for generating artificial datasets in DEA and shows some limitations of current
approaches. Section 3 introduces the DEA models that are used for data generation. In
Section 4, the algorithm of synthetic data generation for DEA is presented and applied to
real-life datasets. Section 5 concludes.

2. Literature Review

Many DEA studies [46–48] have noted that generating synthetic datasets for gen-
eral multi-input/multi-output technologies is a challenging task. Existing methods for
generating artificial data are based on the assumption that there is a so-called data gen-
erating process (DGP), which relates inputs and outputs, from which the artificial DMUs
were generated.

One of the easiest ways to generate data is, obviously, to use a uniform distribution as
a DGP. However, this method produced datasets with a very low proportion of efficient
DMUs. This is not an issue, but it does not accurately reflect real data. For example,
Khezrimotlagh et al. [32] reported that a dataset with 10 inputs and 10 outputs uniformly
distributed on the interval [10, 20] has more than 98.8% dominated DMUs on average in
the sample with 20,000 DMUs. Moreover, using a uniform distribution as a DGP gives
an unrealistic input-output mix because inputs and outputs are generated independently.
Therefore, the benchmarks obtained with such datasets may be biased.

Dulá [47,49] used synthetic large-scale datasets to investigate the computational perfor-
mance and scale limits of DEA models. This work provides a comprehensive computational
study involving DEA problems with up to 100K DMUs. Since there were no typical DEA
datasets for this purpose, the author simulates DGP using a sphere as an efficient frontier.
This method is also implemented in FEAR [50]. FEAR is a software package for effi-
ciency analysis with R, a software environment for statistical computing. FEAR’s function
genxy.sphere generates n observations with m inputs and r outputs uniformly distributed
on the part of a unit sphere located in the positive orthant of the output variables and in
the negative orthant of the input variables. The center of the sphere is located at point



Data 2023, 8, 146 4 of 25

(1, . . . , 1, 0, . . . , 0) with m ones and r zeros; that leads to the spherical frontier lying in the
positive orthant. For more information on the simulation method, see Ref. [51].

The described approach is efficient, but it does not allow for generating units of
different scales. In real data, there may be DMUs that differ by 5–7 orders of magnitude in
some variables. The presence of a significant variation in the values may trigger certain
numerical difficulties that can reveal the instability of the algorithm at large-scale problems.
Therefore, for a comprehensive computational study, the dataset must contain units at
multiple scales; using a sphere as a DGP is not well suited for this task.

Barr and Durchholz [46] were among the first who tested DEA models using large-
scale problems. In addition to the real dataset of 8748 US banks, they also used synthetic
ones because few large-scale DEA problems were available. The first proposed approach
for generating such data is to draw samples from a multivariate distribution. However,
as the authors warn, the variables representing inputs and outputs need to be carefully
chosen since all outputs should be positively correlated with all the inputs.

The second approach used in [46] employed the Cobb–Douglas production function,
which is most widely used in production economics. This function may be written as

y = A
m

∏
i=1

xαi
i , xi > 0, αi > 0, i = 1, . . . , m, (1)

where, y is the single output, xi, i = 1, . . . , m are input variables, αi is an elasticity for
input i, and A is usually referred to as total factor productivity. If ∑m

i=1 αi < 1, then the
function displays decreasing returns to scale. For ∑m

i=1 αi = 1 constant returns to scale exist.
If ∑m

i=1 αi > 1, then the production function is said to be increasing returns.
For a model with a single output, inputs x1, . . . , xm are generated as independent and

identically distributed uniform random variables, and output is directly obtained according
to (1) given all αi = 0.8/m. For some DMUs, the A value can be multiplied by a random
number between 0 and 1 to simulate inefficiency. By controlling A, we can also regulate the
proportion of efficient units.

In the case of multiple outputs, Wilson [50] proposes the following approach imple-
mented in FEAR’s genxy command. Inputs x1, . . . , xm and output y are generated as for
the case with a single output. Next, (r− 1) uniformly distributed numbers ϕ1, . . . , ϕq−1 in
the interval (0, π/2) are generated. The outputs are determined as follows:

yr =

√√√√y2
/(r−1

∑
j=1

tan2
(

ϕj
)
+ 1
)

,

yj = yr tan ϕj, j = 1, . . . , r− 1.

(2)

Put simply, the outputs are randomly distributed on the part of a sphere located within
the positive orthant, centered at the origin, and with radius y.

To show the difference between artificially generated data and real data, we used genxy
function mentioned above and generated 100 DMUs with 5 inputs and 3 outputs. The pair-
wise scatter plots of the variables and Pearson correlation coefficients are shown in Figure 1.
The histograms showing the distribution of each variable are presented along the matrix
diagonal. Pearson correlation coefficients are shown in the upper triangle. The red color
corresponds to a positive correlation coefficient, and the blue color represents a negative
correlation. The lower triangle provides the pairwise scatter plots of the variables, where
the solid line is an OLS fit.

To be economically sound, each output in the dataset should be positively correlated
with all the inputs. However, the figure shows that there are negative correlation coefficients
between inputs and outputs, and for some pairs, the correlation coefficients turn out to be
close to zero.
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Figure 1. Correlation between variables in the synthetic dataset generated with Cobb–Douglas
approach.

The same diagram is shown in Figure 2 for a real dataset taken from the R package
Benchmarking, available publicly on CRAN, see [52]. The dataset is from a US federally
sponsored program for providing remedial assistance to disadvantaged primary school
students [53].

Figure 2 shows that all outputs possessed a significant positive correlation to all inputs,
unlike artificial data. It should be emphasized that such a situation is not unique to this
particular dataset but applies to most DEA datasets.
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Figure 2. Correlation between variables in real dataset [53].

Paper [48] uses a modified Cobb–Douglas functional form for generating random
data. This approach differs from FEAR’s genxy in that the outputs ỹk are generated first as
independent and identically distributed uniform random variables between 0.1 and 1. All
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inputs except x1 are generated using uniform distribution in the same way as the outputs.
Next, the remaining input is determined by the following expression:

x1 =


(( r

∑
k=1

βk(ỹk)
2
)1/2

)1/γ

m

∏
i=2

(xi)
αi


1/α1

. (3)

Coefficients αi and βk can be chosen randomly according to the following procedure. The
α1 value is taken arbitrarily in (0, 1), e.g., α1 = 0.25. Other coefficients are found as follows:

αi =

(
α̃i

/( m

∑
l=2

α̃l

))
(1− α1), i = 1, . . . , m,

where parameters α̃2, . . . , α̃m are generated randomly from the uniform distribution on the

interval (0, 1). The βk values are determined as βk = β̃k

/(
∑r

l=1 β̃k

)
, k = 1, . . . , r, where β̃k

are uniformly distributed over the interval (0, 1). Thus, it turns out that input and output
coefficients are normalized ∑r

m=1 βm = 1, ∑m
l=1 αl = 1 to ensure linear homogeneity of

the distance functions. Nevertheless, parameter γ ∈ (0, 1] still allows us to select various
returns to scale degrees.

Inefficient DMUs are generated based on maximal output vector ỹ by

y = ỹ exp(−u), (4)

where u is a random number from a half-normal distribution, i.e., u ∼ |N (0, σ̂2
u)|, and

exp(−u) is the measure of inefficiency.
Although this method is much more sophisticated, it has the same disadvantages as

the Cobb–Douglas approach (2) described above.
In addition to the commonly utilized uniform and Cobb–Douglas approaches, another

interesting method of data generation was applied in [54]. The data generating rule was
Y = 2X, where X and Y are input and output vectors. This approach is as easy to implement
as it is uniform; extra-large samples of size up to one million DMUs with high density can
be easily produced. However, this approach also generates unrealistic datasets since they
have a 100% correlation between outputs and inputs.

Kohl and Brunner [55] employ a Translog production function for data generation
instead of the typically used Cobb–Douglas production function. However, they used just
a single output in the DGP and considered only CRS settings. To emulate inefficiency,
they utilized a truncated normal distribution with the specified lower bound and an upper
bound of 1. The mode of the distribution was chosen below 1 to simulate the maximum
point of probability density, not in 1.

Wimmer and Finger [56] used synthetic data generation to replicate the original data
because it may be proprietary or confidential. They used the statistical technique proposed
by Faisal et al. [57], shown below as Algorithm 1.

Algorithm 1 Generation of synthetic data according to Faisal et al. [57]

1: Take a simple random sample of xobs
1 and set it as xsyn

1 .
2: for i = 2, . . . , m + r do
3: Fit model f

(
xobs

i

∣∣ xobs
1 , . . . , xobs

i−1
)
.

4: Draw xsyn
i from f

(
xsyn

1

∣∣ xsyn
1 , . . . , xsyn

i−1

)
.

5: end for

In Algorithm 1, all variables (inputs and outputs) are designated as x for the sake of
simplicity, index obs stands for original data, and index syn is for synthetic one. Different
methods can be used for fitting prediction models. Wimmer and Finger utilize a non-
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parametric method of classification and regression trees (CART) and a parametric method
using normal linear regressions preserving the marginal distribution (NORMRANK).

3. Materials and Methods
3.1. DEA Background

Consider a set of n observed DMUs. Each DMUj is described by a pair (Xj, Yj), where
Xj = (x1j, . . . , xmj)

T ≥ 0 is the input vector, and Yj = (y1j, . . . , yrj)
T ≥ 0 is the output

vector. At least one component of the input vector and one component of the output
vector are assumed to be non-zero. The production possibility set T is the set {(X, Y) | the
outputs Y ≥ 0 can be produced from the inputs X ≥ 0}.

In DEA, a production possibility set (PPS) is constructed based on a set of axioms and
using the observed DMUs. For DEA models with variable return to scale (VRS), the PPS is
written in the following form:

T =

{
(X, Y) ∈ Rm+r

∣∣∣∣ n

∑
j=1

Xjλj ≤ X,
n

∑
j=1

Yjλj ≥ Y,
n

∑
j=1

λj = 1, λj ≥ 0, j = 1, . . . , n

}
. (5)

It was proved in [58] that technology (5) generalizes a wide class of DEA models.
Therefore, in this paper, we consider only this type of PPS.

Based on PPS (5), an input-oriented model can be written in the form [45]:

min θ − ε

( m

∑
k=1

s−k +
r

∑
i=1

s+i

)
subject to

n

∑
j=1

Xjλj + S− = θXo,

n

∑
j=1

Yjλj − S+ = Yo,

n

∑
j=1

λj = 1,

S− = (s−1 , . . . , s−m)
T ≥ 0,

S+ = (s+1 , . . . , s+r )
T ≥ 0,

λj ≥ 0, j = 1, . . . , n,

(6)

where S− = (s−1 , . . . , s−m) and S+ = (s+1 , . . . , s+r ) are slack variables, and ε is
non-Archimedian value. In model (6) the optimal value θ∗ describes the efficiency score of
unit (Xo, Yo), where (Xo, Yo) is a DMU from the set of observed production units (Xj, Yj),
j = 1, . . . , n.

In this input-oriented model, the possibility of proportional contraction of inputs
while keeping outputs constant is sought. Solving model (6) may lead to computational
inaccuracies that result in misleading solutions due to the choice of ε [59,60]. Hence, we do
not use an infinitesimal constant explicitly in the DEA models since we suppose that each
model is solved in two stages in order to separate efficient and weakly efficient units [1].
At the first stage, model (6) is solved by omitting the slacks by simply putting ε = 0. In the
second stage, θ is replaced by θ∗, and the sum of the slacks is maximized. The efficiency
score in model (6) is estimated as θ∗.

Definition 1 ([1]). DMU (Xo, Yo) ∈ T is called efficient with respect to model (6) if and only if
any optimal solution satisfies: (a) θ∗ = 1, (b) all slacks s−k , k = 1, . . . , m, s+i , i = 1, . . . , r are zero.

If condition (a) in Definition 1 is satisfied, then DMU (Xo, Yo) is called input weakly
efficient with respect to model (6).
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In the output-oriented VRS model, the level of output is maximized, keeping levels of
the inputs constant:

max η

subject to
n

∑
j=1

Xjλj + S− = X0

n

∑
j=1

Yjλj − S+ = ηY0

λj ≥ 0, j = 1, . . . , n

S− =
(
s−1 , . . . , s−m

)T ≥ 0

S+ =
(
s+1 , . . . , s+r

)T ≥ 0

(7)

Definition 2 ([1]). DMU (Xo, Yo) ∈ T is called efficient with respect to model (7) if and only if
any optimal solution satisfies: (a) η∗ = 1, (b) all slacks s−k , k = 1, . . . , m, s+i , i = 1, . . . , r are zero.

If condition (a) in Definition 2 is hold, then DMU (Xo, Yo) is called output weakly efficient.

Definition 3 ([61]). Efficient DMU (Xo, Yo) ∈ T is called extreme efficient in model (6) or (7) if
and only if λ∗o = 1 and λ∗j = 0, j 6= o for all optimal solutions.

To test a DMU (Xo, Yo) for efficiency, an additive model was proposed by
Charnes et al. [62]. This model is written in the following form:

max
m

∑
k=1

s−k +
r

∑
i=1

s+i

subject to
n

∑
j=1

Xjλj + S− = Xo,

n

∑
j=1

Yjλj − S+ = Yo,

n

∑
j=1

λj = 1,

S− = (s−1 , . . . , s−m)
T ≥ 0,

S+ = (s+1 , . . . , s+r )
T ≥ 0,

λj ≥ 0, j = 1, . . . , n.

(8)

This model provides sufficient conditions for the classification of DMUs without
dealing with non-Archimedean constants.

Definition 4 ([1]). DMU (Xo, Yo) ∈ T is efficient in model (8) if and only if the optimal value of
its objective function is zero.

Theorem 1 ([1]). DMU (Xo, Yo) ∈ T is efficient in model (8) if and only if it is efficient in VRS model.

The additive model has advantages over the radial VRS model (6) in finding efficient
DMUs because model (6) is solved in two stages. Therefore, to separate efficient units from
weakly efficient ones, two optimization problems should be solved. The additive model
maximizes slack variables without projecting DMU onto the frontier first. Therefore, only
one optimization problem is required to be solved.

Andersen and Petersen [63] developed a super-efficiency model for ranking efficient DMUs.
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min θ

subject to
n

∑
j=1
j 6=o

Xjλj ≤ θXo,

n

∑
j=1
j 6=o

Yjλj ≥ Yo,

n

∑
j=1
j 6=o

λj = 1,

λj ≥ 0, j = 1, . . . , n.

(9)

The efficiency score is obtained by eliminating the DMU under evaluation from the PPS.
This results in θ values greater than one, which are then used to rank the efficient DMUs.

Model (9) can also be used to find the radial projection of an arbitrary point onto the
frontier. If (9) has an optimal solution, then (θ∗Xo, Yo) puts point (Xo, Yo) on the frontier. If
problem (9) is infeasible, then no projection exists.

Output-oriented modes can be written as follows:

max η

subject to
n

∑
j=1
j 6=o

Xjλj ≤ Xo,

n

∑
j=1
j 6=o

Yjλj ≥ ηYo,

n

∑
j=1
j 6=o

λj = 1,

λj ≥ 0, j = 1, . . . , n.

(10)

In the output-oriented model, radial projection is obtained with (Xo, Yo)→ (Xo, η∗Yo).

3.2. Assurance Region Method

Weight restrictions are used in DEA in order to incorporate implicit judgments in
the dual model for modeling production trade-offs (see, e.g., [64] for a review of weight
restriction approaches). For model (6), the dual input-oriented VRS model can be written
in the form:

max uTYo + u0

subject to − vTXj + uTYj + u0 ≥ 0, j = 1, . . . , n,

vTXo = 1,

v ≥ 0, u ≥ 0.

(11)

The dual model (11) provides another way of looking at the problem (6). Dual variables
u and v are often called weights in DEA because the efficiency score of DMU (Xo, Yo) is
defined as the ratio of a virtual output (weighted sum of outputs ∑r

i=1 uiyio + u0) to a virtual
input (weighted sum of inputs ∑m

k=1 vkxko). In the model (11), dual variables are supposed
to be non-negative, and therefore they can be equal to zero in the optimal solution. This
means that some variables are ignored in the efficiency evaluation. In order to overcome
this situation, it is proposed to insert weight restrictions into the model.

The assurance region (AR) method proposed by Thompson et al. [35,36] extends a DEA
model (11) by adding constraints for pairs of dual variables.
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lk ≤
vk
v1
≤ uk, k = 2, . . . , m,

Li ≤
ui
u1
≤ Ui, i = 2, . . . , r.

(12)

The VRS-AR model is written as follows.

max uTYo

subject to vTXo = 1,

− vTXj + uTYj + u0 ≤ 0, j = 1, . . . , n,

vTP ≤ 0,

uTQ ≤ 0,

u ≥ 0, v ≥ 0,

(13)

where

P =


l2 −u2 l3 −u3 · · ·
−1 1 0 0 · · ·
0 0 −1 1 · · ·

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

 and Q =


L2 −U2 L3 −U3 · · ·
−1 1 0 0 · · ·
0 0 −1 1 · · ·

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

,

respectively.
The primal VRS-AR model can be written in the following form, which is usually

easier to solve and interpret:

min θ

subject to
n

∑
j=1

Xjλj − Pπ ≤ θXo,

n

∑
j=1

Yjλj + Qτ ≥ Yo,

n

∑
j=1

λj = 1,

λj ≥ 0, j = 1, . . . , n,

π ≥ 0, τ ≥ 0,

(14)

where π = (π1, . . . , π2(m−1))
T and τ = (τ1, . . . , τ2(r−1))

T are extra variables that appear in
the primal model as a result of the constraints (12) imposed on the dual variables.

Output-oriented VRS-AR model is written as follows:

max η

subject to
n

∑
j=1

Xjλj − Pπ ≤ Xo,

n

∑
j=1

Yjλj + Qτ ≥ ηYo,

n

∑
j=1

λj = 1,

λj ≥ 0, j = 1, . . . , n,

π ≥ 0, τ ≥ 0.

(15)
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4. Results
4.1. Idea of the Proposed Approach

The assurance region method puts constraints on the ratio of input and output weights
in the form of lower and upper bounds. This approach is mainly used to eliminate the zero
weights that often appear in solutions of DEA models. However, weight restrictions (12) have
another feature. They reduce the feasible domain of multipliers while the feasible domains of
inputs and outputs are expanding. Figure 3a illustrates the incorporation of weight restric-
tions into the VRS model. As a result, the original production possibility set TVRS expands,
and weakly efficient parts of the VRS frontier become inefficient in the VRS-AR model.

O

Z1

Z2

TVRS

TVRS-AR

x

y

(a)

O

Z1

Z′1

Z′′1

Z2

Z′2
Z′′2

T1

T2

x

y

(b)

Figure 3. Generation of artificial efficient units using the assurance region method. (a) Expansion of
a production possibility set TVRS as a result of incorporation weight restrictions; (b) Inserting artificial
DMUs obtained as projections onto the frontier of the TVRS-AR.

The VRS-AR model is used in this paper to expand the existing data by creating
artificial observations “at the edge” of the efficient frontier, i.e., where the efficient part of
the frontier adjoins the inefficient part. The proposed approach is illustrated in Figure 3b.

Initially, points Z1 and Z2 represent units which are the end-points of two infinite
edges of set T1. These edges are marked by dashed lines. After adding weight restrictions to
the model, the frontier transforms and artificial points Z′1 and Z′2 are inserted. The process
repeats, reducing the current feasible domain of dual multipliers. This leads to the artificial
units Z′′1 and Z′′2 . Finally, a synthetic set T2 is produced that includes DMUs from T1 and all
generated artificial DMUs. The frontier of T2 is indicated in Figure 3b by a thick solid line.
Inefficient units can be inserted into T2 by generating a random point on the frontier and
then reducing outputs or increasing inputs.

The idea of introducing artificial units into the production possibility set is not new. Al-
ready, Farrell has used artificial units to secure weights from being zero in his models [65,66].
Further, in the works of Thanassoulis and Allen [43,44,67], artificial units were used to
improve the envelopment of PPS. They used the observed extreme efficient units (vertices)
that lie on the boundary of the efficient part of the frontier as starting points for improv-
ing the frontier. In [67], such units are called anchor units. However, the approach of
Thanassoulis and Allen has no formalized algorithm for inserting artificial DMUs.

In this paper, we use the concept of the terminal unit that is proposed in [68,69] as
a point of departure for introducing artificial observations.

Definition 5. Extreme efficient unit is terminal if an infinite edge starts at this unit.

This definition is better than the approach of Bougnol and Dulá [70] which determines
an excessive number of anchor units and the approach of Thanassoulis et al. [44], which
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may not identify a sufficient number of units. The algorithm for determining terminal units
in the VRS model is described in [68].

4.2. Algorithm For Synthetic Data Generation

According to the principles described in the Introduction, the algorithm for synthetic
data generation should not change the original efficient frontier. Therefore, before starting
the generation of artificial efficient DMUs, we need to make sure that the initial VRS-AR
model does not violate (P1), i.e., that the efficient frontier is preserved after adding weight
restrictions to the VRS model. The proposed algorithm for the determination of initial
weight restrictions is based on the following propositions.

Proposition 1. If all efficient units of the VRS model stay efficient in the VRS-AR model, then the
efficient frontier of the VRS model belongs to the efficient frontier of the VRS-AR model.

Proof. Let E be the set of efficient units in the VRS model. Consider a set of extreme
efficient units E∗, which is a subset of E. According to Dulá and Thrall [71], the production
possibility set is determined by a set of extreme efficient units. Since all units of E are
efficient in the VRS-AR model, then all units from set E∗ are also efficient in the VRS-AR
model. It follows that any point of the original efficient frontier of the VRS model stays
efficient in the VRS-AR model. Thus, the efficient frontier of the VRS model belongs
to the efficient frontier of VRS-AR model.

The following proposition asserts the existence of weight restrictions in the VRS-AR
model such that all efficient units of the VRS model stay efficient in the corresponding
VRS-AR model.

Proposition 2. For a set of DMUs, there exist nonzero weight restriction coefficients lk > 0,
uk > 0, k = 2, . . . , m, and Li > 0, Ui > 0, i = 2, . . . , r in the VRS-AR model (14) such that the
set of efficient units of this model coincides with the set of efficient units of the VRS model.

Proof. According to Lemma 4.1 in [1], there exist dual optimal solution (v∗, u∗, u∗0) for
efficient unit, such that v∗ > 0 and u∗ > 0. Let v∗j > 0 and u∗j > 0 be the optimal dual
variables for jth DMU. Choose weight restriction coefficients as follows:

lk = min
1≤j≤n

v∗kj

v∗1j
> 0,

uk = max
1≤j≤n

v∗kj

v∗1j
> 0, k = 2, . . . , m,

Li = min
1≤j≤n

u∗ij
u∗1j

> 0,

Ui = min
1≤j≤n

u∗ij
u∗1j

> 0, i = 2, . . . , r.

Then, for each efficient DMU optimal solution (v∗, u∗, u∗0) of the VRS model satisfies
the AR constraints. This means that the optimal solution of the VRS model is also optimal
in the VRS-AR model (14). Hence, the efficient units of the VRS model stay efficient in the
VRS-AR model.

From Propositions 1 and 2 we obtain that there exist nonzero weight restriction
coefficients in the VRS-AR model that do not change the efficient frontier of the VRS
model. However, these statements do not give us an explicit expression for calculating such
coefficients. The algorithm proposed below determines the maximal weight restrictions
coefficients lk, Li, and minimal coefficients uk, Ui, which does not change the original
efficient frontier. This algorithm is close to the concept of Constrained Facet Analysis,
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which was originally proposed in [72,73] and clarified in [74]. Since, for our purpose, it is
not necessary to determine these weight limits precisely, we use a simple approximating
algorithm. Algorithm 2 for the determination of initial weight restrictions that does not
change the efficient frontier can be written as follows:

Algorithm 2 Determine initial weight restrictions.

Input: Initial dataset D; small parameter ε, parameter w.
Output: Coefficients lk, uk, k = 2, . . . , m, and Li, Ui, i = 2, . . . , s.

1: procedure INITWEIGHTRESTRICTIONS
. Initialize weight restrictions

2: Set lk := ε, uk := 1/ε, k = 2, . . . , m, Li := ε, Ui := 1/ε, i = 2, . . . , r.
. Correct initial weight restrictions

3: Determine a set of efficient units E in model (8) for dataset D.
4: Solve model (14) for dataset D. Find the set of efficient units EAR.
5: while sets E and EAR are not equal do
6: Set lk := lk/w, uk := uk · w, k = 2, . . . , m, Li := Li/w, Ui := ui · w, i = 2, . . . , r.
7: Solve model (14) again and determine the set of efficient units EAR.
8: end while

. Adjust input weight restrictions
9: for each input k = 1, . . . , m do

10: Increase lk := lk · w until efficient units in model (14) coincide with the set
of efficient units in model (8).

11: Decrease uk := uk/w until efficient units in model (14) coincide with the set
of efficient units in model (8).

12: end for
. Adjust output weight restrictions

13: for each output i = 1, . . . , r do
14: Increase Li := Li · w until efficient units in model (14) coincide with the set

of efficient units in model (8).
15: Decrease Ui := Ui/w until efficient units in model (14) coincide with the set

of efficient units in model (8).
16: end for
17: end procedure

In the algorithm, a small parameter ε is used to initialize the coefficients of the weight
restrictions. Parameter w (0 < w < 1) characterizes the change of the weight coefficients
during the iterations.

Lemma 1. Algorithm 2 converges in a finite number of steps and does not violate (P1).

Proof. In step 2 of Algorithm 2, coefficients lk, uk, Li, and Ui are initialized with some
values controlled by a small parameter ε.

Next, in steps 3–8, we check that the set of efficient units E in the VRS model and the
set of efficient units EAR in the VRS-AR model are equal. This guarantees that (P1) is held
according to Proposition 1. If the weight restrictions chosen in step 2 violate (P1), then
lower bounds lk and Li are decreased by factor w, while upper bounds are increased by w.
These steps are repeated until coefficients that meet (P1) are found. Proposition 2 says that
such coefficients exist and are positive. Thus, they can be found in a finite number of steps.

In steps 9–16, lower and upper bounds of weight restrictions are adjusted until efficient
units in the VRS model coincide with the set of efficient units in the VRS-AR model, i.e., (P1)
does not violate here. The adjustments lead to a consistent increase in the lower bounds
and a decrease in the upper bounds. Hence, this process will be finished in a finite number
of steps because lower bounds cannot be greater than upper bounds.

This completes the proof.
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Next, we describe the algorithm for generating efficient units using a three-dimensional
VRS model. In Figure 4a, the PPS of the VRS model is determined by observed production
units A−G. According to (P2), artificial efficient DMUs should extend the efficient part of
the frontier. Units B and D are efficient, but they cannot be used for extending the efficient
frontier because they are located in the interior part of it. Units A, C, E, F, and G are
terminal since the infinite edges start at these units. These units are vertices of unbounded
inefficient facets where the efficient frontier can be expanded. To explain the process of
generating artificial efficient units, consider terminal unit G. Two unbounded facets, Γ1
and Γ2, contain this unit. In order to identify these facets, several points Rj are randomly
generated in the vicinity of unit G such that

∥∥G− Rj
∥∥

∞ ≤ δ.

(a) (b)

Figure 4. Illustration of generating artificial efficient units in the three-dimensional VRS model.
(a) Production possibility set TVRS before inserting artificial efficient unit, (b) Production possibility
set TVRS after inserting artificial efficient unit H.

Variables in DEA models may have various units of measurement, and their values
may be of different order. In order to avoid numerical difficulties, we use a weighted
infinite norm

‖Z‖∞ = max
1≤k≤m+r

βk|zk|, Z ∈ Rm+r

to determine the vicinity of the terminal unit. Here, weights βk > 0 are chosen to “normal-
ize” each coordinate k. For the vicinity of unit G = (g1, . . . , gm+r), its coordinates gk are
used for normalization, i.e., weights of the norm are obtained as βk = 1/gk, k = 1, . . . , m+ r.

By choosing the radius of vicinity 0 < δ < 1 and using uniformly distributed random
values wkj ∼ U[−δ, δ], k = 1, . . . , m + r, j = 1, . . . , p, the coordinates of random points
Rj = (r1j, . . . , r(m+r)j) are derived as follows:

rjk = gk(1 + wk), k = 1, . . . , m + r, j = 1, . . . , p, (16)

where p represents the number of randomly generated points.
Next, each random point Rj is projected onto the frontier by solving models (9) and (10).

If all slacks in the optimal solution are zero, then the facet is bounded and is not being used
further. Otherwise, using the optimal solution of model (9) or (10), an unbounded facet
that contains radial projection can be determined.

Suppose the projection lies in the facet Γ1 and the optimal solution contains the
following nonzero optimal λ-variables λ∗j > 0, j ∈ J, and optimal slacks s−∗k > 0, k ∈ I1,
s+∗i > 0, i ∈ I2, then an unbounded facet Γ1 that contains the radial projection of some
random point can be represented in the form:
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Γ1 =

{
Z
∣∣∣∣ Z = ∑

j∈J
Zjλj + ∑

k∈I1

µkek − ∑
i∈I2

ρiei, ∑
j∈J

λj = 1,

λj ≥ 0, j ∈ J, µk ≥ 0, k ∈ I1, ρi ≥ 0, i ∈ I2

}
, (17)

where index set J represents the vertices of Γ1, and index sets I1 and I2 correspond to the
rays of Γ1.

Since inefficient facet Γ1 is found, it can be used for the construction of artificial efficient
units. For this purpose, a point Z̃ belonging to an unbounded facet is generated:

Z̃ = Z + ∑
k∈I1

αZek − ∑
i∈I2

αZei, (18)

where α is a parameter that determines the shift from point Z̄ along the rays of Γ1; Z is the
centroid of all vertexes of facet Γ1 given by

Z =

(
∑
j∈J

Zj

)/
|J|,

where J is a subset of the vertices of Γ1. In accordance with the recommendation of
Dulá [47], point Z̃ is constructed with the aim of ensuring the uniformity of the distribution
of artificially generated DMUs.

In Figure 4a, the face Γ1 has two vertices A and G and one ray e1 corresponding to
the axis x1. Therefore, point Z lies in the middle of segment AG, i.e., Z = 0.5A + 0.5G.
According to (18), point Z̃ is obtained as Z̃ = Z + αZe1.

After that, Z̃ is projected radially onto the frontier of the VRS-AR model by solving
problems (14) or (15). The projection of Z̃ is the new artificial efficient unit H that is added
to the PPS. In Figure 4b, we can see we can see how the PPS has changed after adding
unit H. It is worthy of note that the original efficient frontier has not changed, while a new
efficient facet, AGH, has appeared.

Such operations are repeated for all the facets that contain terminal units. As a result,
a number of artificial efficient units are included in the PPS. Next, weight restrictions are
slightly relaxed by multiplying coefficients lk and Li by factor w and dividing coefficients uk
and Ui by w. Thus, the iterations continue with a new PPS until the number of efficient
DMUs reaches the set value.

The pseudocode of the proposed Algorithm 3 is given below. Parameter p in algorithm
represents the number of random units generated for each terminal unit in order to find
unbounded facets that contain this unit. The smaller value of the parameter p will result
in fewer facets being detected. The higher the p value, the more test points are checked
and the more facets the algorithm can potentially detect. However, too high a value of p
leads to excessive computations. Therefore, we recommend choosing the p value in the
range of 10 to 30. Parameter w (0 < w < 1) characterizes the strategy of changing the
weight restrictions.

Lemma 2. Algorithm 3 converges in a finite number of steps and does not violate (P1) and (P2).

Proof. The algorithm stops when the number of efficient units in SE is equal to or greater
than NE. Hence, to prove the convergence of the algorithm, it is sufficient to show that at
every iteration at least one artificial efficient unit is added to the SE.

The frontier of the VRS model always has unbounded facets due to the free disposabil-
ity of inputs and outputs. Additionally, every PPS has at least one terminal unit and all
terminal units can be determined in a finite number of steps using the algorithm described
in [68]. For each terminal unit, by Definition 5, there exists an infinite edge starting at this
unit. The production possibility set of the VRS model is a convex polyhedral set [1]. Hence,
there exist a number of unbounded facets that contain the infinite edge and terminal unit
itself. This means that there are points in the vicinity of the terminal unit belonging to
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unbounded facets or projected onto these facets. Thus, there is a nonzero probability that
the projection of the random point will belong to an unbounded facet. With a sufficiently
large number of random points, there will be at least one point that is projected onto an
unbounded facet. If at least one unbounded facet is found, then it is projected onto the
efficient frontier of the VRS-AR model. According to Theorem 5 in [33], this projection
always exists and represents an efficient artificial DMU. Thus, at least one artificial efficient
unit is generated at every iteration and the algorithm converges.

At every iteration of the Algorithm 3 in Step 18, weight restrictions are being relaxed
by multiplying lower bounds lk and Li by parameter w < 1 and by dividing upper bounds
uk and Ui by the same value. This ensures that the existing efficient frontier will not change
after such a correction of the weight restrictions and that (P1) is not violated.

By construction, unit Z̃ belongs to an unbounded facet of VRS frontier, then it will
be projected onto an unbounded facet of the VRS-AR frontier. In Step 15, this projection
becomes an artificial efficient unit that does not belong to the initial efficient frontier of
the VRS model because unbounded facets in the VRS model are inefficient. Thus, artificial
efficient DMUs extend the efficient part of the frontier, and (P2) also holds.

This completes the proof.

Algorithm 3 Generation of artificial efficient units.

Input: Initial dataset D; number of efficient units NE; initial weight restrictions lk, uk,
k = 2, . . . , m, and Li, Ui, i = 2, . . . , r.

Output: Synthetic dataset SE.
1: procedure GENERATEEFFICIENTDMUS
2: Set SE := D. . Initialization
3: while number of efficient units in SE is less than NE do
4: Set F := ∅, P := ∅.
5: Find the set of terminal units Et in dataset S using the algorithm

described in [68].
6: for each terminal unit Zt in Et do
7: Generate random units Rj, j = 1, . . . , p in the vicinity of unit Zt using (16).
8: Find projections of units Rj onto the boundary of PPS by solving

models (9) and (10).
9: Find vertices and direction vectors of unbounded facets,

where units are projected.
10: Add facets to the set F, keeping only distinct facets.
11: end for
12: for each facet f in F do
13: Generate artificial unit Z̃ according to Equation (18).
14: Project unit Z̃ onto VRS-AR frontier by solving models (14) and (15).
15: Append projected unit to the set P.
16: end for
17: Set SE := SE ∪ P.
18: Set lk := lk · w, uk := uk/w, k = 2, . . . , m, Li := Li · w, Ui := ui/w, i = 2, . . . , r.
19: end while
20: if number of efficient units in S is greater than NE then
21: Remove artificial efficient units in S to make it equal to NE.
22: end if
23: return SE

24: end procedure

At the next stage, inefficient artificial DMUs are generated. In order to generate arti-
ficial units with realistic input-output mixes, we used the convex hull of DMUs from the
original dataset together with previously generated efficient DMUs because the convex hull
contains all possible proportions between inputs and outputs contained in the data. Uni-
form sampling from a convex hull of points is computationally hard due to the large number
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of vertexes and large dimension of space. Hence, we chose the simpler and more computa-
tionally efficient method. First, we randomly select m + r + 1 different DMUs. These points
form a random simplex that is contained in a convex hull. Next, a random point is chosen
by uniform sampling from the derived simplex using the method proposed in [75].

After that, to generate inefficient artificial DMUs, random points from the convex
hull of the dataset SE produced by Algorithm 3 are projected onto the frontier. Inefficient
artificial DMUs are generated relative to those projections by proportionally increasing
inputs or proportionally contracting outputs. In the first case, inputs are increased as

Xk = X̃k
/

exp(−ui),

where ui ∼ |N (0, σ2
u)|, i.e., ui has a half-normal distribution that is produced by the

underlying normal. In the output case, inefficient DMUs are generated according to

Yk = Ỹk × exp(−ui).

In the proposed algorithm, both methods alternate when generating inefficient
artificial DMUs.

To ensure that the generated data has a distribution of efficiency scores close to the
original, σ2

u can be estimated from the initial dataset as the sample variance

σ̂2 =
1
n

n

∑
i=1

u2
i , (19)

where ui = − ln(θi), and θi is the efficiency score of inefficient DMUi from initial dataset D.
Combining the steps described above, we obtain the following Algorithm 4.

Algorithm 4 Generating inefficient DMUs.

Input: Synthetic dataset SE; estimate σ̂2
v for input efficiencies; estimate σ̂2

u for output
efficiencies; number of inefficient units N.

Output: Set of inefficient DMUs SI .
1: procedure GENERATEINEFFICIENTDMUS
2: SI := ∅. . Initialization
3: Generate N random points (XR

i , YR
i ), i = 1, . . . , N in CH(SE).

4: for i := 1 to N do
5: if (i mod 2) = 1 then . Alternate between the input and output models
6: Solve model (9) on SE for unit (XR

i , YR
i ).

7: Find projection (X̃R
i , ỸR

i ) := (θiXR
i , YR

i ).
8: Generate random ui ∼ |N (0, σ̂2

u)|.
9: Zi := (X̃R

i
/

exp(−ui), ỸR
i ).

10: else
11: Solve model (10) on SE for unit (XR

i , YR
i ).

12: Find projection (X̃R
i , ỸR

i ) := (XR
i , ηiYR

i ).
13: Generate random vi ∼ |N (0, σ̂2

v )|.
14: Zi := (X̃R

i , ỸR
i × exp(−vi)).

15: end if
16: Append Zi to the set SI .
17: end for
18: return SI

19: end procedure

The full algorithm for synthetic data generation can be summarized as Algorithm 5. In
the first step, we determine restrictions on weights that are large enough but do not change
the efficient frontier. Then, we generate efficient units according to Algorithm 3. Finally, we
generate inefficient units with Algorithm 4 using σ̂2

u determined from the original dataset.
The correctness of the algorithm is confirmed by the following theorem.
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Theorem 2. Algorithm 5 converges in a finite number of steps and does not violate (P1) and (P2).

Algorithm 5 Synthetic data generation.

Input: Initial dataset D; total number of units N; number of efficient units NE.
Output: Synthetic dataset S.

1: Find initial weight restrictions according to Algorithm 2.
2: Generate NE efficient units using Algorithm 3.
3: Find σ̂2

v and σ̂2
u of dataset D according to Equation (19).

4: Generate (N − NE) inefficient units using Algorithm 4.
5: S := SE ∪ SI .
6: return S.

Proof. According to Lemmas 1 and 2, steps 1 and 2 of the algorithm are executed in a finite num-
ber of steps. Steps 3–6 also consist of a limited number of steps. Thus, Algorithm 5 converges.

Inefficient units generated in Algorithm 4 are located inside PPS; they cannot change
the efficient frontier. Taking into account the results of Lemmas 1 and 2, it follows that
Algorithm 5 does not violate (P1) and (P2).

This completes the proof.

4.3. Computational Experiments

The work of Algorithm 5 is illustrated using two small datasets. For the first dataset,
Case 1, we took the data from a Russian bank’s financial accounts for 2008. The dataset
contains 200 DMUs with 6 variables (3 inputs and 3 outputs), see [76]. For Case 2, we took
the data from the paper of Charnes et al. [53]; this dateset is described in Section 2. The
distributions of the efficiency scores in Cases 1 and 2 are presented in Figure 5.
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Figure 5. Distribution of efficiency scores in the original datasets.

The computational experiments were conducted on a PC with Intel Core i3 CPU
3.33 GHz. We use CPLEX [77] version 12.6.2 to solve optimization problems.

In Algorithm 3, we set a small parameter ε = 10−3 to initialize the coefficients of the
weight restrictions. Parameter w, which characterizes the change of the weight coefficients
during the iterations, is equal to 0.5. The number of generated random points in Algorithm 3
is regulated by the parameter p, which is selected as 20.

Our computations confirmed that the algorithm works correctly, and all initially
efficient DMUs remained efficient in the expanded dataset. In other words, the algorithm
does not violate the established principles.

Table 1 illustrates the work of Algorithm 3 for Case 1. At the beginning of the
first iteration, there were 200 DMUs, of which 28 were efficient and terminal. Then,
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229 artificial DMUs are created, and the total number of DMUs becomes 429. After the
second iteration, 1140 artificial DMUs were added to the dataset, and the total number of
DMUs reached 1369. In the third iteration, 6452 DMUs are produced, bringing the total
number of artificial DMUs to 7821. We see that the number of artificial units is increasing
rapidly with each iteration, so it turned out that only three iterations were enough to obtain
a sufficient number of efficient DMUs.

Table 1. Iterations of Algorithm 3.

Iterations

Number of DMUs

Initial Efficient Terminal Generated Total Artificial

1 200 28 28 229 229
2 429 194 194 1140 1369
3 1569 1122 1096 6452 7821

Before generating inefficient units, the variances σ̂2
v and σ̂2

u should be estimated from
the original dataset. Applying (19) to the input and output efficiency scores of observed
DMUs, the following estimates were obtained

σ̂2
v = 1.2921, σ̂2

u = 0.7548.

According to Algorithm 4, inefficient units were added so that the total number of
DMUs became 50,000. The synthetic dataset contains 7440 efficient DMUs, so the share of
efficient units is equal to 14.88%, which is approximately the same as in the original dataset.

The distribution of the efficiency score of the original dataset in comparison with
artificially generated dataset for Case 1 is presented in Figure 6.
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Figure 6. Distribution of efficiency scores in real and synthetic datasets in Case 1.

Figure 7 represents the correlation between variables in the original dataset and in
the synthetic dataset. It can be seen from the figure that after completing the dataset with
artificial DMUs, some coefficients become smaller. However, the Algorithm 5 retains the
positive correlation between inputs and outputs.
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Figure 7. Correlation between variables in Case 1.

For Case 2, the original dataset contains 70 DMUs, and 27 (or 38.57%) of those are
efficient. After three iterations of Algorithm 3, the number of efficient DMUs become 19,480.
The variance estimates for input and output efficiency measures in the original dataset are
obtained as σ̂2

v = 0.0091 and σ̂2
u = 0.0094. Next, 30,477 inefficient DMUs were generated

according to Algorithm 4, and the total number of DMUs in the synthetic dataset was
reached 50,000. The share of efficient units in the produced dataset is equal to 38.96%.

In order to investigate the multicollinearity in synthetic datasets for Cases 1 and 2,
we use the variance inflation factor (VIF). According to the test results presented in
Tables 2 and 3, the proposed algorithm reduces multicollinearity among the variables
as a whole. The value of VIF has increased only for variable x5 in Case 2.

Table 2. Variance inflation factors of variables in Case 1.

Dataset x1 x2 x3 y1 y2 y3

Original 127.99 323.18 397.85 54.90 40.04 100.83
Synthetic 24.22 86.09 139.04 19.16 39.14 16.48

Table 3. Variance inflation factors of variables in Case 2.

Dataset x1 x2 x3 x4 x5 y1 y2 y3

Original 11.77 198.11 83.28 57.58 1.73 69.32 55.32 186.80
Synthetic 8.25 22.36 18.57 17.82 5.82 17.31 11.85 11.85

Table 4 presents the execution time for Algorithm 5 in Cases 1 and 2. Only the main
steps of the algorithm are included in the table because the remaining steps are performed
in a very short time, which can be neglected compared to the other steps. The computational
experiments show that the total execution time for Case 2 is greater than in Case 1. This is
due to the fact that the number of variables of Case 2 is greater, and the initial number of
DMUs is almost three times smaller than in Case 1.

Table 4 shows that the running time of Algorithm 5 is sufficiently long. It is obvious
that the proposed approach has worse time complexity than other algorithms for synthetic
data generation in DEA because it requires solving a large number of LPs. However,
compared to other algorithms, Algorithm 5 has certain advantages.

The basic assumption of a production theory is the monotonicity of the production
process. This means that as inputs increase, outputs also increase. Using a uniform
distribution as a DGP leads to input-output combinations that violate this assumption.
Figure 1 shows that the Cobb–Douglas approach also produces datasets where negative
correlation coefficients are presented for some pairs of inputs and outputs. At the same
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time, computational experiments show that our algorithm preserves isotonicity and does
not increase the collinearity of the original data as a whole.

Table 4. Execution time for Algorithm 5.

Stages of Algorithm 5
Execution Time, s

Case 1 Case 2

Finding initial weight restrictions (Algorithm 2) 27 9
Generating efficient DMUs (Algorithm 3) 434 994
Generating inefficient DMUs (Algorithm 4) 603 422

Total 1064 1425

Our approach uses the partial synthetic generation of the DEA datasets. This makes
it possible to use the properties of real DMUs to generate artificial ones. Furthermore,
the proposed algorithm has a number of useful properties. First, it does not change the
existing efficient frontier. In the DEA approach, the efficient frontier contains valuable
practical information, so it must be preserved when artificial units are added to the dataset.
Second, the algorithm extends the efficient frontier in the borderline region, which makes
the frontier more versatile.

The approach proposed in this paper differs from the method of Wimmer and
Finger [56] for two reasons. First, the objective is different: they tried to replicate the
original dataset, i.e., just replace the original DMUs by artificial ones, and they were not
intended to generate a large dataset. Moreover, Algorithm 1 does not preserve the existing
frontier since it is designed to replace the original data with artificial ones. Second, in order
for the statistical models in Algorithm 1 to be sufficiently accurate, the dataset must be
large enough. Our approach does not have such limitations and works well even with
small datasets.

5. Conclusions

Some DEA studies need large-scale datasets to test the methods that they propose.
The algorithms for applying DEA to big data are most in need because there are not enough
open datasets with a large number of DMUs. Thus, these studies mainly use synthetic
datasets for testing. Existing data generation algorithms in DEA produce datasets from
scratch and cannot provide sufficient statistical variability that is inherent in real data. To
fill this gap, a new method is proposed for generating synthetic data. This method receives
a real dataset as input and complements it with artificial DMUs. Artificial efficient units
are generated in the regions of input-output space that are not covered by the available
data. For this reason, weight restrictions are used, which helps to adjust the properties of
the efficient frontier in the data neighborhood. Inefficient DMUs are generated taking into
account the statistical characteristics of the original dataset. Our computational experiments
using two real datasets demonstrate that the proposed algorithm works reliably and can
increase the number of DMUs up to 50 K.

The main limitation of the study is that the proposed algorithm has a worse time
complexity compared to other existing algorithms in DEA. However, this disadvantage
is not so critical. The implementation of parallel computations in the algorithm can sig-
nificantly reduce the calculation time because many LPs in Algorithm 5 can be solved
independently. Moreover, for DEA computations with large datasets, the faster algorithms
can be applied [32,54]. So, the authors will address this issue in future works.

In this paper, an algorithm for generating synthetic data is presented only for the
VRS model. The generalization to other DEA technologies leaves room for future research.
Furthermore, the analysis of the proposed algorithm could be extended with other tests
such as rules of thumb and sensitivity analysis.
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