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Abstract: The calculated photodissociation data of some small molecular ions have been reported.
The cross-sections and spectral rate coefficients data have been studied using a quantum mechanical
method. The plasma parameters, i.e., conditions, cover temperatures from 1000 to 20,000 K and
wavelengths in the EUV and UV region. The influence of temperature and wavelength on the spectral
coefficients data of all of the investigated species have been discussed. Data could also be useful for
plasma diagnostics in laboratory, astrophysics, and industrial plasmas for their modelling.

Dataset: Supplementary File.

Dataset License: CC-BY 4.0
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1. Summary

Atomic and molecular databases and data have become crucial for data interpretation,
diagnostics, and the creation of models and simulations of intricate physical processes [1–4].
The importance of studying optical properties in different fields, especially when modelling
those systems, is of particular interest [5–7]. If the required data, i.e., information, are
available, we can simulate the spectral properties [8–11].

One can note the current importance of the investigation of optical properties of
various small molecules and corresponding atomic and molecular data [12–17]. Here,
we investigate the photodissociation processes that occur in non-symmetric systems that
contain hydrogen and helium, and alkali atoms, ions, and molecular-ions. As noted
in [18], the helium hydride ionic molecule has been discovered to be one of the primary
constituents in He/H plasma sources, including synchrotron devices, high voltage glow
discharges, inductively coupled plasma generators, capacitively coupled RF discharges,
and magnetically confined plasmas, and plays a very special role in the advancement
of thermonuclear fusion nowadays. The majority of alkali hydride species, both ionic
and neutral, are highly important for comprehending how the molecular universe was
created and developed [19]. Although they have a role in a number of astrophysical and
astrochemical processes such as radiative transfer, their spectroscopy is mostly unknown
in both theory and observation, especially when it comes to molecule ions [20]. In addition,
one can note the potential importance of the aluminum monohydride cation in solar and in
laboratory investigations [21,22].

Our aim is to obtain spectroscopic information, i.e., data, about such systems. We
determined the spectral absorption rate coefficients and average cross-sections for molec-
ular ions AlH+, HeH+, and HK+. The outcomes, i.e., the data gathered, could be used
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for various applications, such as plasma chemistry or experiments such as PLEIADES
synchrotron [23–25], for modelling atmospheres of diverse environments such as the inter-
stellar medium, planets, and dwarf stars, and also in the plasma fusion area [7,26–30].

2. Data Description

A dataset, i.e., new results for the average cross-section, as well as the spectral absorp-
tion rate coefficients for small molecular ions AlH+, HeH+, and HK+ has been provided
(see Tables S1–S9). In addition, the results are illustrated in this section by Figures 1 and 2
and also in Supplementary Materials.
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Figure 1. Examples of the averaged cross-section for photodissociation for some small molecular ions
for the wide region of temperatures in EUV and VUV spectral region. (a) The averaged cross-section
for photodissociation of the HeH+ molecular-ion, as a function of wavelength and temperature.
(b) The averaged cross-section for photodissociation of the AlH+ molecular-ion, as a function of
wavelength and temperature.
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Figure 2. The photodissociation spectral rate coefficients K(λ, T) for the case of AlH+ molecular ions
as a function of wavelength and temperature.

The averaged cross-section for photodissociation for some small molecular ions for the
wide region of temperatures in EUV and VUV spectral region are depicted in Figure 1a,b.
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Figure 1a,b demonstrates that the temperature dependence of the mean thermal
photoionization cross-section differs considerably for those species. In addition, the maxima
of the cross section for those molecular ions are located at different wavelengths and with
different behaviors (with slow and faster changes). Looking at Figure 1a,b and the data in
the tables, it can be seen that cross-section maxima for HeH+ are located around 50 nm. It is
very wide (several tens of nm), i.e., cross-section slowly increases and also slowly decreases.
The opposite behavior is shown by the KH+ cross-section. The maxima are very sharp and
at a wavelength of about 125 nm. In addition, AlH+ has sharp maxima, but is located at
higher wavelengths. All average cross-section data for photodissociation are presented in
the Supplementary Material.

As an example, the behavior of the aluminum hydride cation photodissociation rate
coefficient K(λ, T) data is graphically shown in Figure 2 as a function of wavelength and
temperature. A similar behavior, i.e., shape can be observed as its average cross section.
All of the data are organized into tables in the Supplementary Material for all of the
analyzed species.

3. Methods

The spectral rate coefficients and average cross-sections were obtained using a quan-
tum mechanical method in which the photodissociation process was studied as an outcome
of radiative transitions among the ground state and the first excited adiabatic electronic
state of the species, i.e., molecular-ion [5]. Here, in the dipole approximation, the transitions
were caused by the electronic component of the ion-atom system interacting with the
electromagnetic field. Within this theory, the mean thermal photodissociation cross-section
can be given by:

σ(λ, T) =
∑
J,υ

(2J + 1)e
−EJ,υ

kT · σJ,υ(λ)

∑
J,υ

(2J + 1)e
−EJ,υ

kT

(1)

where EJ,v denotes the energies of the states with the respect to the ground rovibrational
states. In the above equation, σJ,v(λ) is the partial cross-sections for the rovibrational states
with specified quantum numbers J and v, given, e.g., in [5], with the dipole approximation.
According to the processes’ stated mechanism, the photon with energy ελ is absorbed
close to the resonance point R = Rλ, where Rλ is the root of the equation U12(R) ≡ U1(R) −
U2(R) = ελ. Here, the ground electronic state is represented by U1(R), while the first excited
electronic state is represented by U2(R).

The photodissociation spectral rate coefficient can be presented using Equation (1) by
the expression

K(λ, T) = σ(λ, T) ·

 g1g2

g12

(
µkT
2π}2

) 3
2
· 1

∑
J,υ

(2J + 1)e
Edest−EJ,υ

kT


−1

(2)

In Equation (2) g12, g1, and g2 denote the electronic statistical weights of the considered
species, i.e., molecular ions, atoms, and ions, and Edest is the molecular-ion dissociative
energy. The theory, mechanism, and other needed quantities can be found in [5] in detail.

To prepare easier and more satisfying usage of calculated data in modelling as well as
in an explanation of the experimental results in laboratories, we provide a simple fitting
formula. We provide a simplified formula to prepare the calculated data for easier and more
satisfactory employment in modelling and in the justification of experimental results in lab
settings. Based on a least-square method, the photodissociation spectral rate coefficients
for investigated small molecular ions can be presented as a logarithmic second-degree

polynomial: log(K(λ, T)) =
2
∑

k=0
pk(λ)(log(T))k. In the Supplementary Tables coefficients,
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pk(λ) for the selected fits and range of parameters for the aluminum hydride cation, helium
hydride cation, and potassium hydride cation are given. We note that the simplified
expression can be valid outside the range of defined plasma conditions, but their use
should be taken with caution. In addition, we present Figure S1 in the Supplement Material,
which simultaneously presents the photodissociation spectral rate coefficients data and
simplified formula data on the example of HeH+.

We note that both the cross-section and rate coefficient can be described by more
sophisticated formulas. However, it is unclear how simple some of them are to use and
whether they are appropriate when quick analysis and product delivery are crucial. The
formula should be simple to use and allow for quick computations and practical analysis.

4. User Notes

A dataset with new results for photodissociation for corresponding molecular ion
species is shown in Supplementary Material Tables S1–S9, which is appropriate for fur-
ther use.

The presented data can be used in practice in different areas of science and in several
possible ways:

• for laboratory research (spectroscopic investigation, synchrotron experiments, etc.)
• for industry and technology application
• for the advancement of chemistry and modelling of various layers of different atmo-

spheres
• for potential astrophysical use (early universe chemistry and interstellar gas investiga-

tion)
• for various theoretical studies

Notably, the data and its analysis highlight interdisciplinary nature and usage, e.g., in
physics, chemistry, astrophysics, astroinformatics, and astrobiology [24,31–35].

Supplementary Materials: The following supporting information are available online at https:
//www.mdpi.com/article/10.3390/data7090129/s1. Tables S1, S2, and S3 present data for average
photodissociation cross-sections for molecular ions AlH+, HeH+, and KH+. Tables S4, S5, and S6 the
photodissociation spectral rate coefficients for investigated species. Tables S7, S8, and S9 present
data for simplified formulas for photodissociation spectral rates. Figure S1 presents the simultaneous
photodissociation spectral rate coefficients data and simplified formula data for the example of HeH+.
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