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Abstract: Boosted by the progress in deep learning, Single Image Super-Resolution (SISR) has gained
a lot of interest in the remote sensing community, who sees it as an opportunity to compensate for
satellites’ ever-limited spatial resolution with respect to end users’ needs. This is especially true for
Sentinel-2 because of its unique combination of resolution, revisit time, global coverage and free
and open data policy. While there has been a great amount of work on network architectures in
recent years, deep-learning-based SISR in remote sensing is still limited by the availability of the large
training sets it requires. The lack of publicly available large datasets with the required variability
in terms of landscapes and seasons pushes researchers to simulate their own datasets by means of
downsampling. This may impair the applicability of the trained model on real-world data at the
target input resolution. This paper presents SEN2VENµS, an open-data licensed dataset composed of
10 m and 20 m cloud-free surface reflectance patches from Sentinel-2, with their reference spatially
registered surface reflectance patches at 5 m resolution acquired on the same day by the VENµS
satellite. This dataset covers 29 locations on earth with a total of 132,955 patches of 256 × 256 pixels
at 5 m resolution and can be used for the training and comparison of super-resolution algorithms to
bring the spatial resolution of 8 of the Sentinel-2 bands up to 5 m.

Dataset: https://zenodo.org/record/6514159.

Dataset License: Etalab Open Licence Version 2.0, Creative Commons BY-NC 4.0, Creative Commons
BY 4.0.

Keywords: single-image super-resolution; Sentinel-2; dataset

1. Introduction

Among the global coverage and free and open-data policy earth observation missions
in the optical domain, Sentinel-2 is currently the one with the highest spatial resolution.
There is currently no open alternative to Sentinel-2 10 m imagery with 5 days revisit on a
global or even a regional scale, and most probably there will not be any until the launch
of the next generation of Sentinel-2 satellites. A resolution of 10 m can be limiting for
some applications, and thus the promise of Single Image Super-Resolution (SISR), which
claims to offer a significant increase in resolution without any additional input but the 10 m
Sentinel-2 image itself, has raised a lot of interest in the remote sensing community.

Remote sensing satellites often offer several spectral bands with different resolutions
for a given sensor. For instance, Sentinel-2 has 10 m resolution blue, green, red and wide
near infrared channels but three red edge bands and a narrow infrared channel at 20 m
resolution and atmospheric correction bands at 60 m resolution. In the literature, there
are several model-based methods aimed at sharpening all bands to the highest sensor
resolution [1–3], as well as deep-learning-based methods [4–8]. Though this demonstrates
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a clear interest for improving the spatial resolution of existing sensors in remote sensing,
those algorithms differ from SISR by the fact that the target resolution is limited to the
highest resolution among bands (e.g., 10 m for Sentinel-2), whereas SISR targets resolutions
higher than the highest band’s resolution (e.g., higher than 10 m for Sentinel-2).

Single Image Super-Resolution is the task of obtaining a higher resolution version
of a single image, using no other inputs that the image itself. In the context of remote
sensing satellite imagery, higher resolution means that not only the same area on the
ground is covered by a higher number of smaller pixels, which can be achieved by means of
traditional spatial re-sampling techniques, but also that the super-resolved image exhibits
faithful higher spatial frequency content with respect to the original image.

Super-resolution is an ill-posed inverse problem, as many higher resolution predictions
can explain the same low-resolution image. Prior to the deep learning era, super-resolution
was considered as a blind deconvolution problem. It has therefore been traditionally tackled
by regularization constraints during optimization to promote desired properties of the
prediction, such as piece-wise smoothness, with total variation [9], or sparsity [10].

The advent of deep learning gave a fresh start to the Single Image Super-Resolution
problem, for which convolutional, residual and then generative–adversarial architectures
have been proposed with success [11,12]. Provided that enough data are available for
training, it is possible to estimate a nonlinear mapping with a few hundred thousand
parameters that undoes all the high frequency damping and aliasing occurring at sensor
level, and even generates plausible high resolution details past the cut-off frequency of the
sensor. To feed those data-hungry algorithms and lay grounds for architecture contests,
several natural images datasets have been published [13–15]. Most of these datasets are
put up by downsampling the high resolution image, using the original high resolution
image as a reference for training, validation and testing. In practice, this simulation of the
low resolution data leads to a simplified version of the problem by ignoring parameters of
low resolution acquisition, such as noise or compression artifacts. This, in turn, may lead
to lesser performances when applied to real world data.

Remote sensing images are very different in nature from natural images used in the
previously cited natural images datasets: the image content itself is different, consisting
in Earth surface observed from an almost fixed altitude, which means objects of typical
sizes will always be represented by roughly the same amount of pixels. More importantly,
remote sensing images can capture earth radiance in several wavelength bands that may
or may not include what is called red, green and blue in natural images, with a bit depth
exceeding the traditional 8-bits encountered in most natural images. Moreover, spectral
bands may be acquired at different spatial resolutions. There is therefore a need for a
dedicated dataset that can represent all the specifics of remote sensing imagery in the
development and comparison of super-resolution algorithms.

The progress of Single Image Super-Resolution of course raised a lot of interest in the
field of remote sensing optical imagery [16] and its never-ending race for better resolution.
In [17], the authors train a CNN to super-resolve Landsat images by using Sentinel-2 as
the target. In [18], the authors use nine RapidEye images at 5 m resolution as a target
to train a Sentinel-2 super-resolution EDSR network. More recent work includes [19]
in which the authors train the ESRGAN network with Sentinel-2 images as input and
32 Worldview-2/3 images over European cities at 2 m resolution as target, thus achieving
a factor of five in spatial resolution. In [20], the authors train the SRGAN network with
Sentinel-2 images as input and 41 PeruSat-1 images over Peru at 2.8 meter resolution as
target. In [21], the authors propose the TARSGAN network, which is trained with data
simulated from 102 Deimos-2 images at 1 m resolution and then apply the method to
super-resolve Sentinel-2 images. In [22], the author trained a modified EDSR network with
12 pairs of Sentinel-2 and PlanetScope images, for a target resolution of 2.5 m to 5 m.

If the results presented in those works are promising, they are using very limited
datasets in terms of landscape and season variability, which can be explained by the scarcity
of available very high resolution commercial imagery for research. Most importantly,
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none of those datasets has been made publicly available to allow the scientific community
members to reproduce and challenge those results and improve their own methods. In fact,
to the best of our knowledge, no remote sensing Single Image Super-Resolution dataset
has been made publicly available yet. There is, however, a public dataset dedicated to
the super-resolution of Proba-V images using multiple images (Multiple Images Super-
Resolution) [23].

This paper does not propose any new SIRS method, nor is it benchmarking existing
SISR methods. Instead, the aim of this paper is to describe the source data, generation pro-
cess and content of SEN2VENµS, an open dataset for the super-resolution of Sentinel-2 im-
ages built by leveraging simultaneous acquisitions with the VENµS satellite (see Section 2.1
for a detailed description of those satellite missions). This dataset has been made pub-
licly available in hopes to laying the groundwork for future work in the remote sensing
community for fair benchmarking, comparison and further research on SISR methods,
using data that are representative of remote sensing usages. The dataset is composed of
10 m and 20 m cloud-free surface reflectance patches from Sentinel-2, with their reference
spatially registered surface reflectance patches at 5 m resolution acquired on the same
day and within 30 min at most by the VENµS satellite. It covers 29 locations with a total
of 132,955 patches of 256 × 256 pixels at 5 m resolution. It can be used for the training
and comparison of super-resolution algorithms to bring spatial resolution of eight of the
Sentinel-2 bands up to 5 m.

2. Dataset Generation
2.1. Sentinel-2 and VENµS Missions

Sentinel-2 is the well known high revisit optical Copernicus mission operating since
mid-2015 [24]. It provides full coverage of all lands between 56° south and 84° north, every
5 days at most, in 13 spectral bands in 3 different resolution groups: 10 m for visible bands
and wide near infrared (NIR), 20 m for red edges bands and narrow NIR and 60 m for
coastal blue and atmospheric corrections bands. Viewing angles from a given orbit are
constant and lower than 12°, and the orbit crosses the equator at 10h30 local time. Sentinel-2
data are distributed with an open-data policy, and recurring satellites are provisioned until
2035. Sentinel-2 is therefore a major stable source for remote sensing optical imagery and
widely used in many applications [25–27].

Vegetation and environment monitoring on a New Micro-Satellite (VENµS) is a French–
Israeli satellite providing a very high revisiting frequency of 2 days on a selection of 125 sites
around the world, with constant viewing angles since 2017 [28,29]. VENµS provides 5 m
observations in 12 spectral bands, among which traditional visible bands, red edge and
near infrared bands closely match Sentinel-2 spectral bands, as shown in Figure 1. Note
that despite its very large bandwidth that does not really match any band in VENµS,
the Sentinel-2 B8 band has been kept, since it is the only near infrared domain Sentinel-2
band sampled at 10 m resolution.

2.2. Product Levels and Processing

Remote sensing imagery products come in different levels depending on the applied
processing. End users usually work with products of at least level 2A, which includes,
among other things:

• Ortho-rectification (geometric processing);
• Atmospheric correction: Conversion of radiance to surface reflectance values, includ-

ing estimation and compensation of aerosol content and water vapor amount;
• Screening of clouds and cloud shadows.
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Figure 1. Spectral sensitivity response of corresponding spectral bands between Sentinel-2 (top) and
VENµS (bottom).

Though ESA delivers L2A products from their own processor Sen2Corr, L2A products
generated by the MAJA open-source processing chain developed by CNES and CESBIO [30]
have been used in this work. The rationale behind this is that both VENµS archive and
a subset of the Sentinel-2 archive is produced by CNES at level 2A with MAJA and dis-
tributed on the Theia portal (https://theia.cnes.fr) (accessed on 12 May 2022). Therefore,
VENµS and Sentinel-2 images used in the proposed dataset were produced by the exact
same algorithms and code, which enforces the coherence between both products. Table 1
summarizes the corresponding spectral bands between Sentinel-2 and VENµS that are
sampled in the SEN2VENµS dataset. For both sensors, surface reflectance with adjacency
effect compensation has been used.

Both sensors offer the same range of validity flags, namely:

• A mask of no-data pixels, which are out of the sensor swath;
• A mask of clouds and clouds shadows;
• A mask of saturated pixels;
• A mask of geophysically invalid pixels (water, out of sight pixels due to relief, etc. . . ).

From all those masks, a single validity mask is derived for each product by taking
their union.

Sentinel-2 L2A products distributed by Theia are subject to the Etalab Open Licence
Version 2.0 (https://theia.cnes.fr/atdistrib/documents/Licence-Theia-CNES-Sentinel-ETAL
AB-v2.0-en.pdf) (accessed on 12 May 2022). VENµS L2A products distributed by Theia are
subject to the Creative Commons BY-NC 4.0 (https://creativecommons.org/licenses/by-nc
/4.0/) (accessed on 12 May 2022).

Table 1. Corresponding Sentinel-2 and VENµS bands used in the SEN2VENµS dataset. Note that B11
is used as a high resolution band for both B8 and B8A Sentinel-2 bands.

Sentinel-2 10 m bands 20 m bands
B2 B3 B4 B8 B5 B6 B7 B8A

VENµS 5 m bands 5 m bands
B3 B4 B7 B11 B8 B9 B10 B11

https://theia.cnes.fr
https://theia.cnes.fr/atdistrib/documents/Licence-Theia-CNES-Sentinel-ETALAB-v2.0-en.pdf
https://theia.cnes.fr/atdistrib/documents/Licence-Theia-CNES-Sentinel-ETALAB-v2.0-en.pdf
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
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2.3. Site Selection

Figure 2 shows the available VENµS sites as well as the Sentinel-2 coverage available
on Theia. One can see that many VENµS sites are not covered by available Sentinel-2 tiles,
for instance in North America, Australia and Japan. Among the covered VENµS sites,
29 sites have been selected based on the amount of same day co-ocurrences, represented by
red dots in Figure 2. Note that since there are many more VENµS sites available, the dataset
can always be extended by producing the corresponding Sentinel-2 tiles to level 2A with
the MAJA processor. It would of course also be possible to use Sen2Cor L2A products
distributed on Scihub (https://scihub.copernicus.eu/) (accessed on 12 May 2022), at the
expense of less consistency due to the use of different L2A processing chains between
VENµS and Sentinel-2. Each site is identified by a unique name for which country, province
name and center location are summarized in Table 2. One can observe than more than half
of the sites are located in Europe, and that nine sites are located in tropical areas. The swath
of the VENµS instrument is 27.8 km, and most sites correspond roughly to a square area.

To show the variability of this selection of sites with respect to land cover, Figure 3
shows the proportions of land-cover classes from the Copernicus 2019 Land-Cover map [31]
within each selected Venµs site. In total, half of the covered area contains forests, one-third
contains croplands and 5% correspond to built-up areas. These proportions vary greatly
depending on the site, with sites in South America being almost fully covered by forests,
while others in Europe, North America and India are mostly covered by croplands. Urban
areas account for up to 15% at most, and the Kyrgyzstan site is almost fully covered with
herbaceous vegetation.

It is important to note that if the viewing angles of VENµS are guaranteed to be
constant for a given site due to its limited swath, to acquire as many sites as possible, most
sites are acquired under a large viewing angle. As a result, at least half of the selected sites
have a zenith viewing angle greater than 25°, as can be seen in Figure 4. On the other hand,
the Sentinel-2 field of view is 21°, always looking at nadir, so that the maximum zenith
viewing angle is around 11°. Moreover, higher angles will also yield parallax effects, which
will modify the apparent position of objects above ground. For this reason, VENµS sites
with higher viewing angles might exhibit more difference with respect to the corresponding
Sentinel-2 image.

150 100 50 0 50 100 150

75

50

25

0

25

50

75
Available VENµS sites
Selected VENµS sites
Available S2 tiles on Theia

Figure 2. Map of Sentinel-2 coverage on Theia (orange), available VENµS sites (green) and 29 selected
sites (red) for the dataset.

https://scihub.copernicus.eu/
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Table 2. Country and province of each of the selected VENµS sites, sorted by decreasing latitude
(from north to south).

Site Name Country Province Longitude Latitude

ALSACE France Alsace 7.46897 48.379
FR-LQ1 France Auvergne 2.72879 45.6397
ESGISB-1 France Aquitaine −0.692399 45.1198
ESGISB-2 France Aquitaine −0.767621 44.869
ESGISB-3 France Aquitaine −0.865341 44.5389
FR-BIL France Aquitaine −0.959032 44.49
SO2 France Midi-Pyrenees 1.26464 43.6105
ES-LTERA France Midi-Pyrenees 1.23902 43.5
FR-LAM France Midi-Pyrenees 1.17814 43.44
SUDOUE-2 France Midi-Pyrenees 1.09625 43.0986
SO1 France Midi-Pyrenees 1.02816 42.97
SUDOUE-3 France Midi-Pyrenees 1.01046 42.836
SUDOUE-4 Spain Catalonia 0.924987 42.5734
SUDOUE-5 Spain Catalonia 0.857221 42.3638
SUDOUE-6 Spain Catalonia 0.742541 41.9899
ES-IC3XG Spain Galicia −8.0173 41.9893
LERIDA-1 Spain Catalonia 0.636121 41.6624
NARYN Kyrgyzstan Naryn 76.5615 41.6096
ARM United States of America Oklahoma −97.4884 36.6097
ANJI China Zhejiang Sheng 119.839 30.58
BENGA India West Bengal 87.6132 23.609
KUDALIAR India Telangana 78.6974 17.9402
BAMBENW2 Senegal Diourbel −16.3837 14.6176
ESTUAMAR French Guyana Guyane −54.038 5.58975
ATTO Brazil Amazonas −59.0103 −2.15005
FGMANAUS Brazil Amazonas −59.7905 −2.43994
K34-AMAZ Brazil Amazonas −60.2103 −2.6098
MAD-AMBO Madagascar Vakinankaratra 47.1392 −19.6701
JAM2018 Brazil Sao Paulo −47.5153 −22.7496

2.4. Pair Selection

For each selected site, the whole Theia archive has been harvested to select pairs
of VENµS and Sentinel-2 dates acquired on the same day to minimize changes in image
content. This leads to a variable number of pairs across sites, as shown in Figure 5. This can
be explained by the fact that both the Level1 and the MAJA processors do not produce dates
that are estimated as fully cloudy. One can see that sites such as FGMANAUS or ATTO,
in Amazone state, Brazil, have fewer pairs than other sites. Some sites were also redesigned
or split during the course of the mission, leading to artificially fewer acquisitions. A total
of 579 pairs of images have been selected, with a maximum of 39 pairs for ARM site in
Oklahoma state, USA, and a minimum of 4 pairs for FGMANAUS in Amazone state, Brazil.

Figure 6 shows the distribution of acquisition dates for each site. The sites are sorted
by decreasing latitude (from north to south). One can observe that for European sites,
there is a drop in the number of pairs in the 2019–2020 winter season, while the 2018–2019
winter season is better sampled. In the 2018 fall season, one can also observe a drop in pairs
density. This can be explained by the higher cloud cover in winter and fall in the northern
hemisphere. Nevertheless, the dataset contains samples covering all seasons from late 2019
to September 2020. In tropical areas, the cloud cover is usually higher through the year,
which results in large gaps in temporal coverage.
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Figure 3. Proportions of Copernicus 2019 Land-Cover [31] classes for each site. Sites are sorted by
decreasing latitude (from north to south).
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Figure 6. Distribution of acquisition dates of selected pairs for each site. Colors are used to increase
readability. Sites are sorted by decreasing latitude (from north to south). European and equatorial
sites are distinguished with background colors (light orange for European, light green for equatorial)
to assess seasonal coverage.

Sentinel-2 and Venµs are two sun-synchronous satellites, which means that their orbits
always cross the equator at the same local time (10:30 a.m. for both Sentinel-2 and Venµs).
Therefore, the difference in acquisition time for a given site should be very limited. This is
highlighted in Figure 7, which shows the difference in acquisition time between Sentinel-2
and Venµs acquisitions for all pairs in the dataset, for each site. One can observe that this
delta never exceeds 30 min, and for a good half of the sites, it is less than 10 min. For a given
site, the range of deltas across pairs is very stable, and lower than 10 min for most sites.

20 10 0 10
Time delta between Venµs and Sentinel-2 acquisitions in minutes (negative if Venµs acquisition is later than Sentinel-2)

ALSACE
FR-LQ1

ESGISB-1
ESGISB-2
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Figure 7. Distribution of time deltas in minutes between Venµs and Sentinel-2 local time (if negative,
Venµs acquisition is later than Sentinel-2 acquisition). Colors are used to increase readibility. Sites are
sorted by decreasing latitude (from north to south).

2.5. Sampling Patches in Pairs

Each pair of VENµS and Sentinel-2 images identified in Section 2.4 underwent the
same patch sampling procedure, which is further described in this section.

2.5.1. Reprojection and Common Bounding Box Cropping

Sentinel-2 image layouts follow the MGRS tile system, where each tile corresponds to
a specific area using the local Universal Transverse Mercator (UTM) projection. VENµS
data also follows the local UTM projection but with a grid specific to each site. A first
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step is therefore to determine the common bounding box between the Sentinel-2 and
VENµS images.

2.5.2. Spatial Registration

It is well known that remote sensing sensors may suffer from absolute location error.
According to ESA data quality reports, Sentinel-2 absolute location accuracy is 11 m for
95.5% of the products. Of course, this is prior to the new GRI processing that was set up in
April 2021, but since the reprocessing is still ongoing, most products in the Theia archive
will have this accuracy, which corresponds to two pixels from VENµS. On the VENµS
side, partly because of the narrower field of view, accuracy is measured to be 3 m for 93%
of the images [32]. Since the aim of the SEN2VENµS dataset is to serve for the training
of super-resolution algorithms, correct alignments of images is of great importance. The
following procedure has therefore been implemented to register the Sentinel-2 image onto
the VENµS image of a given pair.

A global translation is estimated between the two images. This translation is estimated
on the blue channel of both sensors, at 10 m resolution, which means that the VENµS image
is first downsampled by a factor of two using a bicubic kernel.

To estimate the translation, the SIFT key-points detection and matching algorithms [33]
have been used in a similar way as in [34] :

1. Divide the downsampled VENµS image and the Sentinel-2 in non-overlapping corre-
sponding patches of 366 × 366 pixels;

2. For each patch, compute SIFT matches;
3. Discard matches that are masked by the respective validity masks;
4. Discard matches that are further that 15 m apart (obvious outliers);
5. Compute the average shift in both directions from the collection of remaining matches.

The idea behind this process is that while individual SIFT matches are highly unreli-
able, estimating a two parameter transform from a collection of several thousands of points
is reliable. In all cases, because of step 4), the applied shift magnitude will not be greater
than 15 m.

Once the average shift is estimated, it is applied to the Sentinel-2 image with bicubic
resampling to obtain registered Sentinel-2 images at both 10 m and 20 m.

2.5.3. Patchification and Invalid Patch Filtering

Once data have been registered, images are divided into corresponding triplets
of patches. All 5 m bands from VENµS are divided into patches of 256 × 256 pix-
els. Consequently, the corresponding patches of Sentinel-2 10 m bands have a shape
of 128 × 128 pixels, and the corresponding patches of Sentinel-2 20 m bands have a shape
of 64 × 64 pixels.

If any pixel of any patch in the triplet (either VENµS 5 m, Sentinel-2 10 m or Sentinel-2
20 m) is invalid according to the corresponding validity mask, due to a detected cloud for
instance, the triplet is entirely discarded, so that after this process all patches are composed
of valid pixels only.

2.5.4. Radiometric Adjustments

Despite both Sentinel-2 and VENµS products being processed to level 2A, which
includes atmospheric corrections, remaining differences in sensor spectral sensitivity re-
sponses (see Figure 1) as well as differences in acquisition angles (see Figure 4) and time (see
Figure 7 ) will result in slight radiometric differences. Since the aim is to provide a dataset
for the super-resolution of Sentinel-2 images,VENµS radiometries are adjusted to increase
their coherence with Sentinel-2. Because those parameters can vary between sites and pairs,
a separate adjustment is performed for each pair. A previous work [35] showed that linear
regression was sufficient to compensate for discrepancies between surface reflectances from
different sensors with similar spectral bands.
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For each pair, a linear least-square radiometric fit is performed between all source and
target bands, separately for the group of 10 m bands and the group of 20 m bands (see
Table 1). This is described in Equation (1) for the 10 m bands, where W is a 5× 4 containing
the linear regression weights, V is the source matrix containing n rows of VENµS surface
reflectances from n randomly selected pixels, and S is the target matrix containing n rows
of Sentinel2 surface reflectances in the corresponding bands. The equation holds separately
for Sentinel-2 20 m bands.

VENµS patches are downscaled beforehand, so that the fit is performed at Sentinel-2
resolution. Prior to fitting, patches with a global RMSE greater than 0.2 reflectance count
are discarded to avoid obvious outliers.

W? = argmin
W
||VW − S||22

W ∈ R5×4

V =


1 ρ

venµs,b2
1 ρ

venµs,b4
1 ρ

venµs,b7
1 ρ

venµs,b11
1

1 ρ
venµs,b2
2 ρ

venµs,b4
2 ρ

venµs,b7
2 ρ

venµs,b11
2

...
...

...
...

...
1 ρ

venµs,b2
n ρ

venµs,b4
n ρ

venµs,b7
n ρ

venµs,b11
n



S =


ρsentinel2,b2

1 ρsentinel2,b3
1 ρsentinel2,b4

1 ρsentinel2,b8
1

ρsentinel2,b2
2 ρsentinel2,b3

2 ρsentinel2,b4
2 ρsentinel2,b8

2
...

...
...

...
ρsentinel2,b2

n ρsentinel2,b3
n ρsentinel2,b4

n ρsentinel2,b8
n



(1)

Note that the VENµS B11 band is processed twice and fitted separately to the wide
near infrared B8 channel at 10 m and to the narrow near infrared B8A Sentinel-2 channel at
20 m (see Figure 1). This allows us to build consistent 5 m references for those two bands,
as discussed in Section 3.2.

2.5.5. Random Selection and Outlier Removal

A random selection of at most 500 patches is performed for each pair, which in
most cases samples all the valid patches, since a squared VENµS site should contain
at most 484 patches. This allows us to limit the imbalance with respect to sites with a
longer segment.

After this selection, a final outlier removal is carried out. This removal has been added
afterward after finding some patches with spurious differences, such as unmasked cloud
shadows or specular reflections. To eliminate those patches, any patch for which the RMSE
between the Sentinel-2 10 m band and their corresponding VENµS bands downsampled at
10 m is greater than 0.02 has been discarded. This operation discards approximately 6.75%
of the patches.

3. Dataset Content

In this section, the characteristics of the generated dataset are further described .

3.1. Quantitative Analysis

In total, the SEN2VENµS dataset contains 132,955 patches. Figure 8 presents the
number of patches sampled from each site. One can observe that only five sites have more
than 8 k patches, and that only the ARM site has more than 12 k patches. On the other
hand, 16 sites have less than 4 k patches sampled. While this imbalance might be seen as
problematic for the training of some algorithms, it must be stressed that this imbalance is
different in nature than the classical class imbalance problem in classification tasks: what
really matters is variability and equity of different kinds of landscape, which cannot be
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reduced to sites. For instance, several sites in southwest France will exhibit the same kind
of landscape.

FR
-LQ

1
NARY

N

FG
MANAUS

MAD-AMBO ARM

BAMBEN
W2

ES
-IC

3X
G

ANJI
AT

TO

ES
GISB

-3

ES
GISB

-1
FR

-BIL

K3
4-A

MAZ

ES
GISB

-2

ALS
AC

E

LER
IDA-1

ES
TU

AMAR

SU
DOUE-5

KU
DALIA

R

SU
DOUE-6

SU
DOUE-4

SU
DOUE-3 SO

1

SU
DOUE-2

ES
-LT

ER
A

FR
-LA

M SO
2

BEN
GA

JAM20
18

0

2000

4000

6000

8000

10,000

12,000

14,000

16,000

Nu
m

be
r o

f p
at

ch
es

Figure 8. Total number of patches sampled from each site.

Figure 9 allows us to dig further into the sampling of each site. One can observe that if
the maximum number of patches per pair reaches our 500 limit for most sites, the minimum
is almost always very small because of pairs suffering from heavy cloud cover. Other sites,
such as ARM in Oklahoma, USA, ESGIS-B3 in the west of France or LERIDA-1 in Spain
show a median number of patches per pair close to the maximum, which denotes a fair
sampling across pairs.
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Figure 9. Statistics of number of patches per pair for each site.

One important thing to know is whether VENµS 5 m patches are faithful to Sentinel-2
radiometry in each band, so as to avoid capturing radiometric biases in the course of a
learning process involving the dataset. To answer this question, the mean average error
and root mean square error have been computed in each band for a random selection of
200 patches involving at most 10 different pairs for each site, by first downsampling VENµS
patches to the Sentinel-2 corresponding resolution (either 10 m or 20 m depending on the
band). Downsampling is achieved by first convolving the 5 m image with a Gaussian spatial
kernel whose standard deviation is tuned to the known values of the modulation transfer
function at the Nyquist rate for Sentinel-2 and then decimating to the target resolution.
Those metrics are presented in Figures 10 and 11. The first thing to note from those two
figures is that for all bands and all sites, mean average error is lower than the expected
absolute surface reflectance error specification of the MAJA algorithm, which is set to 0.01
for all bands. It is therefore safe to say that the dataset has a good spectral consistency
between Sentinel-2 and VENµS, for all bands. One can also observe that the Sentinel-2 B8
band is often the band with the higher MAE and RMSE, which can be explained by its
lesser match with the VENµS band. Nevertheless, being the only 10 m band in the near
infrared, it seemed reasonable to keep it in the dataset. One can also observe a tendency
of the MAE error to increase with the zenith viewing angle, which may be explained by
higher BRDF and parallax effects. This trend is not confirmed for all sites, however, as site
BENGA, located in India, has almost the highest viewing angles and better performances
than its high angle siblings. On the other hand, one can observe that the root mean square
error does not show a clear trend related to the viewing angle, and that the root mean
square error is quite stable across sites for a given spectral band. It is worth noting that all
bands have a RMSE below 0.03 for all sites.
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Figure 10. Mean average error per band and per site computed on a random selection of 200 patches
from at most 20 pairs at Sentinel-2 resolution.
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Figure 11. Root mean square error per band and per site computed on a random selection of
200 patches from at most 20 pairs at Sentinel-2 resolution.

3.2. Qualitative Analysis

Figure 12 shows one sample patch per site, drawn at random. One can observe the
variety of landscapes covered by the dataset, including natural, semi-natural and urban
areas, as well as forest and shorelines. One can also observe the spectral consistency
between Sentinel-2 (odd columns) and Venµs (even columns) patches. Note the high
consistency of the 5 m B8 (columns 4 and 12) and B8A (columns 8 and 16) bands with their
Sentinel-2 10 m (columns 3 and 11) and 20 m (columns 7 and 15) corresponding bands,
though being generated from the same B11 VENµS band. The wider bandwidth B8 has less
distinctive features, whereas B8 accurately responds to vegetated areas, and this difference
is also visible in the 5 m reference patches.

Despite a very high consistency between VENµS and Sentinel-2 patches, local discrep-
ancies remain between the 5 m VENµS patch and its corresponding 10 m or 20 m Sentinel-2
patch. For instance, when comparing A9 with A10, one can see cars on the road on the
VENµS patch that have no match in the Sentinel-2 patch. Other differences include changes
in water surfaces (C1 vs. C2), and artifacts related to viewing angles (shadowed area in
G1 appear larger than in G2). Nevertheless, it must be stressed that those discrepancies
are expected when using two different sensors as it is impossible to filter out or model all
the differences between sensors specifications and viewing conditions. This dataset can be
used as a real world case for algorithms, which should be resilient to those discrepancies.

3.3. Format and Distribution

The dataset is composed of separate sub-datasets, one for each site. For each site,
the sub-dataset folder contains a set of files for each date, following this naming convention
as the pair id: {site_name}_{mgrs_tile}_{acquisition_date}. For each pair, five files
are available, as shown in Table 3. Patches are encoded as ready-to-use tensors as serialized
by the well known Pytorch library [36]. As such, they can be loaded by a simple call to the
torch.load() function. Note that bands are separated into two groups (10 m and 20 m
Sentinel2 bands), which leads to four separate tensor files (two groups of bands × source
and target resolution). Tensor shape is [n,c,w,h] where n is the number of patches, c = 4
is the number of bands, w is the patch width and h is the patch height. To save storage
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space, they are encoded as 16 bit signed integers and should be converted back to floating
point surface reflectance by dividing each and every value by 10,000 upon reading.

A

1
B4B3B2, 10m

2
B4B3B2, 5m

3
B8, 10m

4
B8, 5m

5
B7B6B5, 20m

6
B7B6B5, 5m

7
B8A, 20m

8
B8A, 5m

9
B4B3B2, 10m

10
B4B3B2, 5m

11
B8, 10m

12
B8, 5m

13
B7B6B5, 20m

14
B7B6B5, 5m

15
B8A, 20m

16
B8A, 5m

B

C

D

E

F

G

H

I

J

K

L

M

N

O

Figure 12. Examples of patches from left to right: columns 1–8 and 9–16 show rendering of two
different patches; columns 1 and 9: B4, B3, B7 (RGB natural) at 10 m; columns 2 and 10: B4, B3, B7
(RGB natural) at 5 m; columns 3 and 11: color-mapped B8 at 10 m (wide near infrared); columns 4 and
12: color-mapped B8 at 5m (wide near infrared); columns 5 and 13: B7, B6, B5 color composition (red
edge 3 to 1) at 20 m; columns 6 and 14: B7, B6, B5 color composition (red edge 3 to 1) at 5 m; columns 7
and 15: color-mapped B8A at 20 m (narrow near infrared), columns 8 and 16: color-mapped B8A at
5 m (narrow near infrared). A total of 29 patches are displayed, one random patch for each site. Only
64 × 64 pixels crops of the patches are displayed to improve readability. High resolution and low
resolution patches radiometries where scaled to 8 bits with the same scaling factors.

Table 3. Naming convention for files associated to each pair. {id} is {site_name}_{mgrs_tile}_
{acquisition_date}.

File Content

{id}_05m_b2b3b4b8.pt 5 m patches (256× 256 pix.) for S2 B2, B3, B4 and B8
{id}_10m_b2b3b4b8.pt 10 m patches (128× 128 pix.) for S2 B2, B3, B4 and B8
{id}_05m_b5b6b7b8a.pt 5 m patches (256× 256 pix.) for S2 B5, B6, B7 and B8A
{id}_20m_b5b6b7b8a.pt 20 m patches (64× 64 pix.) for S2 B5, B6, B7 and B8A
{id}_patches.gpkg GIS file with footprint of each patch

Each file comes with a master index.csv CSV (comma separated values) file, with one
row for each pair sampled in the given site, and columns as described in Table 4, separated
with tabs.
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Table 4. Columns of the index.csv file indexing pairs for each site. For file naming conventions,
refer to Table 3.

Column Description

venus_product_id ID of the sampled VENµS L2A product
sentinel2_product_id ID of the sampled Sentinel-2 L2A product
tensor_05m_b2b3b4b8 Name of the 5 m tensor file for S2 B2, B3, B4 and B8
tensor_10m_b2b3b4b8 Name of the 10 m tensor file for S2 B2, B3, B4 and B8
tensor_05m_b5b6b7b8a Name of the 5 m tensor file for S2 B5, B6, B7 and B8A
tensor_20m_b5b6b7b8a Name of the 20 m tensor file for S2 B5, B6, B7 and B8A
s2_tile Sentinel-2 MGRS tile
vns_site Name of VENµS site
date Acquisition date as YYYY-MM-DD
venus_zenith_angle VENµS zenith viewing angle in degrees
patches_gpkg Name of the GIS file with footprint for each patch
nb_patches Number of patches for this pair

Figure 13 shows the size in gigabytes for each site in the dataset. Altogether the dataset
weighs 116 Gb. Each site is compressed into a separate archive.
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Figure 13. Uncompressed files sizes for each site in gigabytes. The full dataset weighs 116Gb .

The SEN2VENµS dataset is distributed on Zenodo (https://zenodo.org/record/
6514159) (accessed on 12 May 2022). Files {id}_05m_b2b3b4b8.pt and {id}_05m_b5
b6b7b8a.pt are distributed under the the original licence of the Sentinel-2 Theia L2A
products, which is the Etalab Open Licence Version 2.0 (https://theia.cnes.fr/atdistrib/do
cuments/Licence-Theia-CNES-Sentinel-ETALAB-v2.0-en.pdf) (accessed on 12 May 2022).
Files {id}_05m_b2b3b4b8.pt and {id}_05m_b5b6b7b8a.pt are distributed under the origi-
nal licence of the VENµS products, which is Creative Commons BY-NC 4.0 (https://creati
vecommons.org/licenses/by-nc/4.0/) (accessed on 12 May 2022). Section 2.2. Remaining
files are distributed under the Creative Commons BY 4.0 (https://creativecommons.org/li
censes/by/4.0/) (accessed on 12 May 2022) licence.

Note that even if the SEN2VENµS dataset is sorted by sites and by pairs, it is strongly
encouraged to apply the full set of machine learning best practices when using it: random
keeping separate pairs (or even sites) for testing purposes and randomization of patches
across sites and pairs in the training and validation sets.

4. Conclusions

SEN2VENµS is the first Single Image Super-Resolution open dataset to be made
publicly available for the remote sensing research community. It is tailored for the training,
evaluation and benchmarking of super-resolution algorithms for Sentinel-2 data, including
red edge bands and narrow near infrared bands, and it targets

the 5 m resolution for all bands, thanks to simultaneous VENµS 5 m acquisitions.
SEN2VENµS covers a wide variety of seasons and landscapes across 2 years and 29 different
sitesand exhibits a very strong radiometric consistency between the Sentinel-2 patches and
their corresponding VENµS patches, with a top of canopy surface reflectance RMSE of at
most 0.03 across all bands and sites. SEN2VENµS aims at becoming a reference dataset

https://zenodo.org/record/6514159
https://zenodo.org/record/6514159
https://theia.cnes.fr/atdistrib/documents/Licence-Theia-CNES-Sentinel-ETALAB-v2.0-en.pdf
https://theia.cnes.fr/atdistrib/documents/Licence-Theia-CNES-Sentinel-ETALAB-v2.0-en.pdf
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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in the Single Image Super-Resolution for the remote sensing scientific community, and its
strong radiometric consistency may be able to drive researchers toward better radiometric
faithfulness of those methods .

As any dataset composed of real world data, the SEN2VENµS has some limitations
and discrepancies that have been identified and analyzed in this paper. First, most sites are
acquired from high viewing angles at 5 m (greater than 20°), whereas Sentinel-2 is acquired
under at most 12°. This might cause differences in radiometry because of BRDF effects,
and local misregistration because of parallax effects. A second limitation is the imbalance
of number of dates and number of patches across sites. Though this cannot directly be
related to an imbalance in landscape variability, extra care must be taken during training
to avoid specialization on the most represented sites. Third, as any real world dataset,
and despite all precautions taken during its preparation, additional discrepancies may
occur for some individual patches, including rapid change of landscape between the low
and high resolution acquisitions and spurious image quality artifacts. However, , any super-
resolution method aiming at operational use must be able to cope with such discrepancies.

It is also interesting to note that a smaller version of the SEN2VENµS dataset has
been successfully used in the Sentinel-HR study [37] to train the CARN super-resolution
network [38].
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