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Abstract: The large volume of data generated with the increasing development of Internet of Things
applications has encouraged the development of a large number of works related to data management,
wireless communication technologies, the deployment of sensor networks with limited resources,
and energy consumption. Different types of new or well-known algorithms have been used for
the processing and analysis of data acquired through sensor networks, algorithms for compression,
filtering, calibration, analysis, or variables being common. In some cases, databases available on the
network, public government databases, data generated from sensor networks deployed by the authors
themselves, or values generated by simulation are used. In the case that the work approach is more
related to the algorithm than to the characteristics of the sensor networks, these data source options
may have some limitations such as the availability of databases, the time required for data acquisition,
the need for the deployment of a real sensors network, and the reliability or characteristics of acquired
data. The dataset in this article contains 4,164,267 values of timestamp, indoor temperature, and
relative humidity acquired in the months of October and November 2019, with twelve temperature
and humidity sensors Xiaomi Mijia at the laboratory of Control Systems and Robotics, and the De
La Salle Museum of Natural Sciences, both of the Instituto Tecnológico Metropolitano, Medellín—
Colombia. The devices were calibrated in a Metrology Laboratory accredited by the National
Accreditation Body of Colombia (Organismo Nacional de Acreditación de Colombia—ONAC). The
dataset is available in Mendeley Data repository.

Dataset: 10.17632/dxyvxk6h96.2

Dataset License: CC BY 4.0

Keywords: temperature; relative humidity; Internet of Things (IoT); indoor climate

1. Introduction

The measurement of humidity and temperature helps us determine the system’s be-
havior in a wide variety of applications. For this reason, these physical variables are among
the most used in multiple applications in very different work areas, such as health [1,2],
electronic circuits [3], precision agriculture [4], milk production [5], or climate change [6].

Within the measurements that we perform in the environment, there are two main
fields: the outdoor [7], that is, the measurement that is performed outside any structure built
by man, and the indoor [8,9] measurement, which is performed inside a building. Indoor
measurement is an area that has attracted interest in recent years with the modernization
of systems for indoor temperature control (cooling or heating) [10].

For example, in places where the temperature is not controlled and there is a con-
tinuous transit of people who inhabit the area, such as offices, gyms, event halls, or
residential buildings, the works using temperature and humidity are focused on comfort
studies [11–15]. In these places, the cooling or heating systems are turned on and off at the
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convenience of the people living in the space, doors and windows can be opened, or com-
puter equipment can be used with different computational intensities altering the internal
microclimates and, therefore, the comfort of the people. In this work, the measurements
were carried out in an office environment of the Control and Robotics Systems Laboratory,
with doors and windows opened without control and with occasional air conditioning
turned off.

In places where strict temperature and humidity control is needed, such as in food
warehouses, research can be focused on understanding the microclimates produced by the
heterogeneous distribution of air inside the warehouse [16]. There is usually no significant
human intervention in temperature-controlled sites for long periods, maintaining a low
temperature and humidity variation. The storage of museum pieces is also in temperature-
and humidity-controlled spaces because these two physical variables strongly impact the
deterioration of some museum pieces [17,18]. De La Salle Museum of Natural Science
conserves an extensive collection of stuffed animals, insects, reptiles, birds, and mammals
exhibited on a rotating basis in the different exhibition rooms of the museum. Still, they
are preserved in humidity- and temperature-controlled storage most of the time. In this
storage, the doors are opened for cleaning personnel and curators. The different storage
shelves and the contact of museum walls with the outside of the building generate different
microclimates. For this reason, this work can be interesting for researchers in indoor
microclimates with controlled temperatures and humidity [19–21].

Many state-of-the-art studies use the Intel Berkeley Research Lab dataset [22] for the
application of algorithms proposed to process data acquired with real-time wireless sensor
networks (WSN). In these works, classical processing techniques are used as in [23,24],
machine learning-based approaches as in [25–27], or both types of algorithms as in [28].

The dataset described in this article contains the information about the indoor temper-
ature in ◦C and relative humidity in %RH, acquired for two months with twelve Xiaomi
Mijia sensors at the laboratory of Control Systems and Robotics, and the storage room of the
De La Salle Museum of Natural Sciences, both of the Instituto Tecnológico Metropolitano,
Medellín—Colombia. The devices used for the acquisition are low-cost and have a cali-
bration certificate from a Metrology Laboratory accredited by the National Accreditation
Body of Colombia (ONAC). This dataset provides the timestamp, the measured variables,
and floor plans with the sensors distribution of the deployed WSN. In addition, the data
description presented in this article provides additional information about the sensors, the
deployed sensor network, and the sampling.

The installation of these sensor systems implies space adequacy, the researchers’ knowl-
edge of concepts of the Internet of Things (IoT), sensor networks, and embedded systems.
Having data available to serve as a basis for researchers interested in digital signal pro-
cessing and machine learning prevents them from deploying the sensor networks [29–31].
This work was chosen using wireless sensors using Bluetooth Low Energy (BLE) and a
single gateway to read all sensors’ temperature and humidity measurements [32–34]. This
configuration avoids having an embedded system for each sensor to store the data and
the need to have multiple power supply points. The setup presents the delays inherent to
communication, i.e., there is no constant sampling period, but this is typical of IoT system
implementations, where factors such as cost, energy savings, and reading multiple devices
to a single gateway are crucial. The dataset presented in this work can contribute to studies
on the behavior of sensor networks using BLE to develop techniques used in IoT [35,36].

For this work it is considered that the weather in Medellin, Colombia, has a negligible
variation throughout the year and has no climatic seasons due to its location near the Equa-
tor. In this work, the measurement was performed for one month at each site, considering
that the external weather factor in the city does not present significant changes. The set of
sensors used is the same in the museum and the laboratory, so it was, therefore, necessary
to acquire the data in two different months.

The paper is organized as follows. In Section 2, we present the acquisition devices, the
description of the measurement area, and the description of the dataset organization. The
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aspects related to the sampling and the analysis of some examples of the data acquired on
specific dates in the laboratory and the museum are shown in Section 3. Finally, conclusions
and future work are drawn in Section 4.

2. Materials and Methods

This section describes the devices used in the wireless sensor network (WSN) deployed,
the measurement areas, and the dataset organization.

2.1. Acquisition Devices

Twelve temperature and humidity sensors, Xiaomi Mijia model LYWSDCGQ/01ZM,
were used for data acquisition. These BLE devices are powered by an AAA battery that can
last up to one year, according to the specifications of the manufacturer. The devices were
calibrated in a Metrology Laboratory of the ITM accredited by the National Accreditation
Body of Colombia (Organismo Nacional de Acreditación de Colombia—ONAC). The
sensors calibration was performed using a Fluke 2626-H sensor as a reference measurement
instrument. The environmental conditions under which the calibration was performed are
between 19.30 ◦C and 20.50 ◦C for the temperature and between 56.4%RH and 60.5%RH
for the relative humidity. The calibration range for temperature is from 15◦ to 40◦ and for
relative humidity from 30%RH to 70%RH. The calibration summary of the temperature
sensors is shown in Table 1 and the calibration summary of the relative humidity sensors is
shown in Table 2.

The data from the twelve sensors are collected using a LoPy4 development board as
BLE gateway. Each sensor reports the measurements, and the values are read by the LoPy4.
The values of timestamp, temperature in ◦C, and relative humidity in %RH are added in
a new line of the corresponding file, separated by comma. There is one file for each of
the sensors and all twelve files are stored on the SD card of the development board. The
general diagram of the deployed network is shown in Figure 1.

Figure 1. General diagram of the deployed network.
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Table 1. Calibration summary of the temperature sensors.

ID Control
Standard

Indication
[°C]

Sensor
Measurement

[°C]

Correction
[°C]

Coverage
Factor

k

Expanded
Uncertainty

[°C]

1 15 15.30 15.45 −0.15 2 ±0.49
1 20 20.03 20.00 0.03 2 ±0.49
1 30 29.59 29.45 0.14 2 ±0.49
1 40 38.75 37.85 0.90 2 ±0.78
2 15 15.30 15.60 −0.30 2 ±0.49
2 20 20.03 20.00 0.03 2 ±0.49
2 30 29.59 29.35 0.24 2 ±0.49
2 40 38.75 37.75 1.00 2 ±0.77
3 15 15.30 15.45 −0.15 2 ±0.49
3 20 20.03 19.90 0.13 2 ±0.49
3 30 29.59 29.25 0.34 2 ±0.49
3 40 38.75 37.50 1.25 2 ±0.76
4 15 15.30 15.35 −0.05 2 ±0.49
4 20 20.03 19.90 0.13 2 ±0.49
4 30 29.59 29.70 −0.11 2 ±0.49
4 40 38.75 38.45 0.30 2 ±0.77
5 15 15.30 15.35 −0.05 2 ±0.49
5 20 20.03 20.00 0.03 2 ±0.49
5 30 29.59 29.70 −0.11 2 ±0.49
5 40 38.75 38.30 0.45 2 ±0.76
6 15 15.30 15.35 −0.05 2 ±0.49
6 20 20.03 19.95 0.08 2 ±0.49
6 30 29.59 29.55 0.04 2 ±0.49
6 40 38.75 38.30 0.45 2 ±0.77
7 15 15.30 15.50 −0.20 2 ±0.49
7 20 20.03 20.10 −0.07 2 ±0.49
7 30 29.59 29.50 0.09 2 ±0.49
7 40 38.75 38.40 0.35 2 ±0.76
8 15 15.30 15.55 −0.25 2 ±0.49
8 20 20.03 20.10 −0.07 2 ±0.49
8 30 29.59 29.50 0.09 2 ±0.49
8 40 38.75 38.55 0.20 2 ±0.76
9 15 15.30 15.30 0.00 2 ±0.49
9 20 20.03 19.90 0.13 2 ±0.49
9 30 29.59 29.35 0.24 2 ±0.49
9 40 38.75 38.55 0.20 2 ±0.76

10 15 15.30 14.85 0.45 2 ±0.49
10 20 20.03 19.60 0.43 2 ±0.49
10 30 29.59 29.30 0.29 2 ±0.49
10 40 38.75 39.10 −0.35 2 ±0.76
11 15 15.30 14.85 0.45 2 ±0.49
11 20 20.03 19.70 0.33 2 ±0.49
11 30 29.59 29.45 0.14 2 ±0.49
11 40 38.75 39.45 −0.70 2 ±0.76
12 15 15.30 14.70 0.60 2 ±0.49
12 20 20.03 19.70 0.33 2 ±0.49
12 30 29.59 29.45 0.14 2 ±0.49
12 40 38.75 39.25 −0.50 2 ±0.77
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Table 2. Calibration summary of the relative humidity sensors.

ID Control
Standard

Indication
[%HR]

Sensor
Measurement

[%HR]

Correction
[%HR]

Coverage
Factor

k

Expanded
Uncertainty

[%HR]

1 30 30.3 32.3 −2.0 2 ±1.6
1 50 49.7 52.1 −2.4 2 ±2.5
1 60 59.7 61.5 −1.8 2 ±2.1
1 70 69.8 70.8 −1.0 2 ±2.3
2 30 30.3 33.8 −3.5 2 ±1.6
2 50 49.7 53.4 −3.7 2 ±2.5
2 60 59.7 62.5 −2.8 2 ±2.1
2 70 69.8 71.1 −1.3 2 ±2.3
3 30 30.3 32.4 −2.1 2 ±1.6
3 50 49.7 52.4 −2.7 2 ±2.5
3 60 59.7 61.6 −1.9 2 ±2.1
3 70 69.8 71.0 −1.2 2 ±2.3
4 30 30.3 34.3 −4.0 2 ±1.6
4 50 49.7 53.3 −3.6 2 ±2.5
4 60 59.7 62.3 −2.6 2 ±2.1
4 70 69.8 71.2 −1.4 2 ±2.3
5 30 30.3 34.3 −4.0 2 ±1.6
5 50 49.7 53.7 −4.0 2 ±2.5
5 60 59.7 62.9 −3.2 2 ±2.1
5 70 69.8 71.4 −1.6 2 ±2.3
6 30 30.3 31.8 −1.5 2 ±1.6
6 50 49.7 51.8 −2.1 2 ±2.5
6 60 59.7 61.0 −1.3 2 ±2.1
6 70 69.8 70.4 −0.6 2 ±2.3
7 30 30.3 34.1 −3.8 2 ±1.6
7 50 49.7 53.6 −3.9 2 ±2.5
7 60 59.7 62.6 −2.9 2 ±2.1
7 70 69.8 71.8 −2.0 2 ±2.3
8 30 30.3 32.1 −1.8 2 ±1.6
8 50 49.7 51.9 −2.2 2 ±2.5
8 60 59.7 61.5 −1.8 2 ±2.1
8 70 69.8 70.7 −0.9 2 ±2.3
9 30 30.3 32.2 −1.9 2 ±1.6
9 50 49.7 52.4 −2.7 2 ±2.5
9 60 59.7 61.4 −1.7 2 ±2.1
9 70 69.8 71.6 −1.8 2 ±2.3
10 30 30.3 32.8 −2.5 2 ±1.7
10 50 49.7 52.6 −2.9 2 ±2.6
10 60 59.7 62.1 −2.4 2 ±2.1
10 70 69.8 70.7 −0.9 2 ±2.3
11 30 30.3 32.6 −2.3 2 ±1.6
11 50 49.7 52.2 −2.5 2 ±2.5
11 60 59.7 61.6 −1.9 2 ±2.1
11 70 69.8 70.3 −0.5 2 ±2.3
12 30 30.3 32.4 −2.1 2 ±1.6
12 50 49.7 52.3 −2.6 2 ±2.5
12 60 59.7 62.0 −2.3 2 ±2.1
12 70 69.8 70.7 −0.9 2 ±2.3

2.2. Description of the Measurement Areas

The laboratory of Control Systems and Robotics of the Instituto Tecnológico Metropoli-
tano size is 1350 cm by 620 cm. It has a single entrance, which is not airtight and is made
of tempered glass. The room is distributed in two zones separated by a door in tempered
glass and a division formed by a drywall in the lower part and tempered glass in the upper
part. In the larger area are the workplaces and in the smaller area mainly the laboratory
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equipment. The air conditioning system has three branches, two of which have their outlet
in the area of workplaces and the other in the area of equipment. The air conditioning
control system is located in a technical room adjacent to the laboratory, for which the access
door is located outside the laboratory. The control system is configured with a temperature
set point ranging between 18 ◦C and 20 ◦C.

The deployed network is distributed in nine nodes inside the laboratory, near the
workstations, and three nodes outside the laboratory. One of the external nodes are in the
technical room and two are in the hallway. The distribution of the sensors is shown in
Figure 2. The external nodes were placed in order to have a reference of the temperature of
the technical room and ambient temperature of the external area of the laboratory.
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220cm

200cm

240cm

3 24

1

10

180cm

11 200cm

9

400cm 510 cm

12

Hallway

Technical

room

LSCR

Figure 2. Floor plan with the distribution of the sensors at the laboratory of Control Systems and
Robotics of the Instituto Tecnológico Metropolitano.

The De La Salle Museum of Natural Sciences was founded in 1913 by the De La
Salle Brothers. It is committed to preserving, researching, and disseminating the cultural
and natural heritage of the Antioquia region in Colombia. The zoological collection con-
sists of 18,955 specimens, including amphibians and reptiles, birds, insects, crustaceans
and arachnids, mammals, shells and molluscs, microorganisms, fish, and invertebrates.
The anthropological collection contains elements that are more than 500 years old, made
up of pre-Hispanic ceramics with a total of 383 pieces. Additionally, the museum has
89 ethnographic objects ranging from ceremonial costumes to bows, arrows, and distinc-
tive clothing of different indigenous cultures in Colombia. Other collections in the museum
include geology (2504 pieces), palaeontology (1009 pieces), history (89 historical objects),
and botany (644 specimens).

The museum keeps the specimens and pieces of the collections that are not on exhi-
bition in a storage room with controlled temperature and humidity. The room has a size
of 1000 cm × 1600 cm and is full of cabinets for the storage of the specimens. There are
cabinets placed along the walls and a larger one in the center of the room. In the latter,
sensors were placed at the top and inside the cabinet (ID 1, 2, 3). The ID 12 sensor was
placed outside the room in an environment without temperature and humidity control.
The room has a humidifier where the ID 11 sensor is located and has air conditioning inlets
on the wall next to the ID 7 and 8 sensors (see Figure 3).
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Figure 3. Floor plan with the distribution of the sensors at the storage room of De La Salle Museum
of Natural Sciences of the Instituto Tecnológico Metropolitano.

2.3. Description of the Dataset Organization

The dataset consists of a total of 4,164,267 values. The data are organized in two folders
named October and November, according to the month in which the data were acquired.
The data were collected under everyday operating conditions, at the laboratory from 1 to
31 October 2019, and at the museum from 1 to 30 November 2019. Each folder contains
twelve files in text format, corresponding to each sensor. Each file contains an average of
approximately 58,300 values of each variable. In the files, the first column corresponds to
the timestamp, the next column corresponds to the relative humidity measurements, and
the last column corresponds to the temperature measurements. The values in the rows are
separated by commas. The dataset is available in Mendeley Data repository, and can be
downloaded in a 17 MB ZIP file from [37].

The dataset files information is presented in Table 3. The sensor ID allows to identify
the location of the sensors according to the distributions shown in Figures 2 and 3. The
MAC addresses of the sensors are shown in the second column. The filename of the file
associated with each sensor is shown in the third column and it corresponds to the MAC
address with the pairs of digits ordered in reverse order.

Table 3. ID, MAC, and filename of each sensor.

ID MAC-M J_HT_V1 Filename

1 58:2D:34:32:3C:EA ea3c32342d58
2 4C:65:A8:DA:08:16 1608daa8654c
3 58:2D:34:32:3C:97 973c32342d58
4 4C:65:A8:DA:07:AC ac07daa8654c
5 4C:65:A8:DA:08:46 4608daa8654c
6 58:2D:34:32:3C:BB bb3c32342d58
7 4C:65:A8:DA:08:2E 2e08daa8654c
8 58:2D:34:32:41:23 234132342d58
9 58:2D:34:36:17:4D 4d1736342d58

10 58:2D:34:36:18:E6 e61836342d58
11 58:2D:34:36:16:D4 d41636342d58
12 58:2D:34:36:14:D6 d61436342d58

3. Temperature and Relative Humidity Dataset

This section presents some aspects related to the sampling and the analysis of some
examples of the data acquired on specific dates in the laboratory and the museum.
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3.1. Sampling Times

The acquisition system used in this work, which resembles the commercial acquisition
methodology, presents physical challenges due to changes in the propagation medium of
the signals that are common in real applications. For this reason, the dataset is also useful
for the development of processing algorithms at the edge or post-processing, to mitigate
some of these drawbacks derived, as we said, from electromagnetic propagation problems
and connected with the use of sensors and low-cost systems that make the applications
economically achievable. Given the above acquisition conditions, there is no defined
sampling period for the acquisition performed. Sampling times can be obtained from the
timestamp information of the collected data. In order to provide more information about
the sampling, Figure 4 shows histograms, taking as reference the sampling time for each
of the sensors in the November measurement. Ninety-nine percent of the sampling times
were ordered from lowest to highest value to eliminate outliers corresponding to high
sampling times. The red line shows the fit to a Weibull function, where it is observed that
the reliability of the sampling time is clustered in the lower part of the distribution.
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Figure 4. Cont.
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Figure 4. Histograms of the sampling time of the sensors. The red line shows the fit of the data to a
Weibull distribution with 99% confidence interval. Sensor ID: (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, (g) 7,
(h) 8, (i) 9, (j) 10, (k) 11, and (l) 12.

The general description of the sampling times of the sensors is shown in Table 4. For
the sensor network deployed in the museum storage room, some very high tsmax values are
presented. However, from the histograms in Figure 4 and the tsmean column, it is inferred
that these values occurred rarely.

Table 4. Sampling features of the dataset: number of samples (NS), minimum sampling time (tsmin ),
the maximum sampling time (tsmax ), and the average sampling time (tsmean ).

ID LSCR Museum

NS
tsmin tsmax tsmean NS

tsmin tsmax tsmean

[ms] [ms] [ms] [ms] [ms] [ms]

1 56,679 3133 746,917 47,199 57,854 3116 1,198,834 46,267
2 59,385 3126 623,010 45,050 56,019 3129 1,798,383 47,766
3 58,519 3101 618,195 45,718 42,931 3151 62,836,468 60,775
4 60,707 3162 638,357 44,070 75,982 3128 763,660 35,228
5 61,802 3144 688,769 43,289 73,195 3083 1,226,431 36,574
6 55,462 2451 725,660 48,236 48,053 3158 1,250,817 55,705
7 58,147 3160 698,166 46,009 67,127 3070 639,113 39,876
8 62,730 3139 643,523 42,648 57,893 3100 720,683 46,237
9 60,256 3077 782,862 44,399 72,080 3105 603,800 37,140

10 54,308 3117 669,049 49,263 62,108 3117 678,896 43,094
11 56,976 3134 685,116 46,957 33,267 3140 83,725,641 77,941
12 55,194 3053 844,396 48,472 41,415 3157 4,635,723 64,555

3.2. Examples of Temperature and Humidity Data

The analysis of some examples of the data acquired on specific dates in the laboratory
and the museum is presented below. In Figure 5, the plots of temperature data acquired
on 2 October in the laboratory are shown. It is shown that during most of the day the
sensors located inside the laboratory have a similar behavior. However, some sensors have
close values depending on the area of the laboratory in which they are located. In addition,
when there is an abrupt change in the temperature, all sensors report a close value. These
changes generally occur when the air conditioning system is turned on or off.

Sensors with ID 1 and 10 generally indicate the lowest temperature values. The sensors
with ID 2, 3, and 4 show very close values in the morning. In the afternoon, sensor 2 has a
value of approximately one degree below sensors 3 and 4. Finally, in the evening, sensor 4
indicates a value higher than 1 degree above sensors 2 and 3. These sensors show values
that are slightly above sensors 1 and 10. Sensors with ID 5, 6, and 7 show close values for
the whole day, which are usually higher than the values of sensors 2, 3, and 4. The sensor
with ID 8 shows the highest temperatures in the morning and the evening, which makes
sense because it is located 80 cm higher than the other sensors. It should also be noted
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that this sensor is located above the laboratory access door. Of the sensors external to the
laboratory, the sensors with ID 11 and 12 have a similar behavior and provide information
on the ambient temperature. The sensor with ID 9 has the smallest temperature variation
range and its value is the closest to the temperature set point.

Figure 5. Temperature data acquired in the LSCR on 2 October.

In Figure 6, the plots of relative humidity data acquired on 2 October in the laboratory
are shown. Although the inverse relationship between the two variables is evident, there
are some differences in relation to the behavior of temperature. For example, the values
indicated by sensor 6 in the morning are below the values of the other sensors located in
the laboratory, which have values close to each other. A similar behavior is observed at
night, with the difference in the slight increase of humidity indicated by sensor 10.

Figure 6. Relative humidity data acquired in the LSCR on 2 October.
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In Figure 7, the plots of temperature data acquired on 20 October in the laboratory are
shown. This date is a non-working day because it is a Sunday, and the air conditioning was
off all day. It is observed that the temperature changes inside the laboratory are smooth. It
is also observed that, except for sensor 8, the sensors in the laboratory present close values.
Before 06:00 h and after 18:00 h, a significant relationship between sensor location and
measured temperature can be observed. The behavior observed in Figure 5 for the sensors
inside the laboratory is preserved, where sensors 10 and 1 show the lowest values, followed
by sensors 2, 3, and 4. Then, with a slightly higher temperature value, are the sensors 5, 6,
and, 7. Finally, sensor 8 shows the highest temperature values, close to 0.5 ◦C difference.

Figure 7. Temperature data acquired in the LSCR on 20 October.

In Figure 8, the plots of humidity data acquired on 20 October in the laboratory are
shown. It is observed that the changes in the values of humidity inside the laboratory are
smooth. Most of the sensors in the laboratory indicate close values of humidity, while
sensor 6 reports values that are below the average of the other sensors. External sensors
show a wider range of variation and more pronounced changes.

In Figure 9, the plots of temperature data acquired in the museum storage room on
20 November are shown. It is observed that the sensors with ID 1, 2, 3, and 5, which
are located inside the central cabinet, present a similar behavior and with close values.
The sensors with ID 4, 9, and 10, which are located above the cabinets, have a similar
behavior, with sensor 4 having a value of approximately 0.5 degrees less than the other
two sensors. The sensors with ID 7 and 8, which are located above the cabinets and near
the air conditioning system outlet, indicate the lowest values. In most cases, we observed
the relationship between the temperature measurements with the temperature changes
indicated by the sensor with ID 12, which is located outside at the entrance of the storage
room. The sensors with ID 6 and 11 indicate the values with the smallest variation.

In Figure 10, the plots of humidity data acquired in the museum storage room on 20
November are shown. It is observed that there is a greater variation in the measurements
provided by the sensors during the first 9 h of the day. Similar behavior is observed at the
end of the day. The measurements of sensor 11 show a different behavior from the other
sensors, although their values are close.
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Figure 8. Relative humidity data acquired in the LSCR on 20 October.
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Figure 9. Temperature data acquired in the museum storage room on 20 November.
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Figure 10. Relative humidity data acquired in the museum storage room on 20 November.

4. Conclusions

In this paper, the description of a dataset with the measurements of indoor temperature
and relative humidity, acquired for two months with twelve Xiaomi Mijia sensors at
the Instituto Tecnológico Metropolitano, Medellín—Colombia, is presented. The WSN
deployed in this work for data acquisition presents physical challenges due to changes in
the propagation medium of the signals that are common in real applications. For this reason,
the dataset is useful for IoT researchers to develop processing algorithms at the edge or
post-processing, to mitigate some of these drawbacks derived. In addition, data acquisition
can be time-consuming, and having data to serve as a basis for researchers interested in
digital signal processing and machine learning saves them from deploying sensor networks
and focusing on algorithms implementation and evaluation. This dataset provides the
timestamp, the measured variables, and floor plans with the sensors distribution of the
deployed WSN. The data description presented in this article provides information about
the sensors, the deployed sensor network, and the sampling, which can be useful for the
use and analysis of the data.
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