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Abstract: Detection and Semantic Segmentation of vehicles in drone aerial orthomosaics has applica-
tions in a variety of fields such as security, traffic and parking management, urban planning, logistics,
and transportation, among many others. This paper presents the HAGDAVS dataset fusing RGB
spectral channel and Digital Surface Model DSM for the detection and segmentation of vehicles from
aerial drone images, including three vehicle classes: cars, motorcycles, and ghosts (motorcycle or car).
We supply DSM as an additional variable to be included in deep learning and computer vision models
to increase its accuracy. RGB orthomosaic, RG-DSM fusion, and multi-label mask are provided in Tag
Image File Format. Geo-located vehicle bounding boxes are provided in GeoJSON vector format. We
also describes the acquisition of drone data, the derived products, and the workflow to produce the
dataset. Researchers would benefit from using the proposed dataset to improve results in the case of
vehicle occlusion, geo-location, and the need for cleaning ghost vehicles. As far as we know;, this is
the first openly available dataset for vehicle detection and segmentation, comprising RG-DSM drone
data fusion and different color masks for motorcycles, cars, and ghosts.

Dataset: https://doi.org/10.5281/zenodo.6323712.
Dataset License: Licensed under Creative Commons Attribution 4.0 International.

Keywords: vehicle detection; semantic segmentation; orthomosaics; Geographic Information Systems
(GIS)

1. Summary

Vehicle Detection and Semantic Segmentation are widely studied areas in computer
vision and Artificial Intelligence; driverless cars are good evidence of this. Due to the
rapid development, ease of acquisition, and low cost of drone aerial imagery [1], it is
also becoming important to detect and segment vehicles in orthomosaics. However, deep
learning models applied in this field still need to solve challenges, such as the following;:

e  Orthomosaics are geo-located and have a larger number of pixels compared to ground
imagery [2].
Vehicles have different shapes, colors, sizes, and textures [3].
Spatial relations between vehicles and their surroundings are complex: densely-
parked, occluded by trees or buildings, and heading in different directions [4-6].

Figure 1 illustrates the aforementioned challenges.

Research studies have used and released publicly available datasets for vehicle detec-
tion, which consist of bounding boxes (BBs) [2—6]. Horizontal BBs were used for different
types of objects [7], and a dataset using horizontal BBs for cars was created by [7,8]. CARPK
dataset [6] proposed the use of rotated BBs, improving previous results [6]. Figure 2 shows
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illustrations of horizontal and rotated BBs; in those datasets, cars are annotated in oblique
drone images.

Figure 1. Challenges in the detection of vehicles. (a) Shadows, road marks, and the vehicle’s color
affect detection. (b) Occlusions caused by trees and buildings decrease the performance of detection.

Figure 2. Publicly available datasets for car detection. (a) Horizontal bounding boxes car dataset.
(b) Rotated bounding boxes car dataset.

Segmentation datasets of vehicles comprise binary image-masks, commonly obtained
from satellites [2,9] and more recently from drones [10,11]. They constitute the base for
training segmentation models, where pixel-level classification is performed and the U-Net
architecture dominates [12]. A dataset consisting of images and their masks, coupled
at the pixel level, is called a paired dataset [13]. Examples of other fields of research
which employ paired datasets are facades, shoes, handbags, maps, and cityscapes [14].
Las Vegas, SpaceNet, DeepGlobe, and Potsdam-Vaihingen datasets [2,12,14-18] are good
examples of detection and segmentation datasets created using satellite imagery. The
research study [19] proposed the use of line segments to annotate boat length and heading
direction using DigitalGlobe satellite imagery. The Stanford Drone Dataset (SDD) [4,20]
and the VisDrone2021 dataset [11,21] are video and oblique imagery for real-time object
detection. DroneDeploy dataset [10] is obtained from drone orthomosaics; it contains
separate DSM files [22] and segmentation masks for different objects to create landcover
maps. DroneDeploy dataset is considered imbalanced with respect to the ground class [10].
Figure 3 illustrates one example of image and mask of the Potsdam’s satellite dataset [23].
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Figure 3. Example of an image of the Potsdam dataset. In a segmentation dataset, every pixel of the
image is color-coded according to the object’s class. In this case, yellow pixels correspond to cars.

Deep Learning Models’ robustness and accuracy depend on their learning from the
training data. Therefore, it is necessary to include variations in data and new information
for the model to better recognize the unknown data [24]. In [15], it was shown that
using additional information to the RGB satellite images, specifically the infrared band,
improved vegetation and building segmentation results. In [22], it was investigated how
RGB plus DSM information, obtained from UAV, improved the semantic segmentation of
multi-classes in landcover maps.

To help the deep learning community, we propose the HAGDAVS dataset, which
consists of vector bounding boxes and segmentation masks for motorcycles, cars, and
ghosts of vehicles. The two main outstanding characteristics of the proposed dataset are
as follows:

e  The fusion of height information of vehicles in one channel of the image. This aims
to help with segmenting vehicles of surrounding objects such as buildings and roads,
and perhaps enhancing model behavior in the case of shadows or partial occlusions
affect vehicle segmentation.

e Inclusion of ghost class. This dataset becomes the first in this category, which serves
the purpose of creating applications to improve orthomosaic quality and visualization.

The proposed dataset is described in the next section.

2. HAGDAVS Dataset Description

HAGDAVS dataset is obtained by the fusion of RG channels, from RGB high reso-
lution drone orthomosaics, with the DSM 1-channel image to obtain an RG-DSM image.
Height-augmentation of images aids in classifying pixels of vehicles, especially when their
spectral responses are similar to those of a vehicle’s surroundings. For detection of vehicles,
bounding boxes are drawn manually over geo-located orthomosaics, and provided in
GeoJSON vector opensource format [25]. This allows us to geo-locate vehicles as well. For
segmentation, RG-DSM images are spatially paired pixel by pixel with color mask images
that represent three classes: class 1 for motorcycles, class 2 for cars of any type, and class 3
for any undesired ghost object of the two previous classes.

Orthomosaics are created by stitching images that partially overlap, using a method
called Structure from Motion (SfM) [26]. Ghosts are formed when objects present in a scene
are not in the same position in the overlapping images [27]. This makes ghosts common
for moving objects, as they shift position between one image and the corresponding
overlapping images of a specific scene. Removing the ghost effect is a manual process
in which the user has to edit the mosaic in a proprietary software [26], drawing a region
around the vehicle and selecting an image in which the moving object does not appear [26].
To improve an orthomosaic, this process has to be followed for every existing ghost.
However, there are studies on performing this process automatically with the aid of
computer vision [28]. Class 3 supports the creation of Al-based image cleaning algorithms,
or removal of false positives caused by moving vehicles [19,29]. Finally, class 0 is the
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background, represented by black color. The proposed dataset aims to improve model
generalization and robustness by including diverse examples of vehicles and their classes,
occlusions caused by buildings or trees, and the unwanted ghosts of motorcycles and cars.
Table 1 describes orthomosaic characteristics and summarizes the total number of examples
per class and orthomosaic. Figure 4 shows examples of images and multi-class masks of
our paired dataset.

The dataset is comprised of five folders, with one for the RG-DSM images, one for the
multi-color image masks, and one for the bounding boxes. The other two are for RGB and
DSM images. These last two folders are in case researchers want to test the benefit of using
height in models, with respect to RGB-only or DMS-only images. Every image folder has
83 paired images of 2048 x 2048 pixels in TIFF format, 8 bit, and three channels, except for
the DSM. An RG-DSM image contains red and green colors in the first two channels and
Digital Surface Model’s height in the third channel [30]. Images are numbered in ascending
order. Table 2 summarizes our dataset specifications.

Table 1. Orthomosaic and DSM characteristics, and the number of examples per class.

. Class 1 Class 3
Orthomosaics DSM (Motorcycle) Class 2 (Car) (Ghosb) Total
El Retiro .
Cols, Rows: 8721, 15,332 I-zlig%tltz—;ai\ge.
GSD 7.09, Size: 510.1 MB o m

Format: TIEF. Bands: 3 Xmin,Ymin 209 527 94 830
Pixel Depth: 8 Bit (—755,057,859, 60,534,441) examples examples examples examples
Spatial Reference: Xmax, Ymax

GCS. WGS1984 (—754,977,854, 60,654,446)
La Ceja . .
Cols, Rows: 8361, 5375 Hetght Range:
GSD 5.51, Size: 171.4 MB . .

Format: TIFF. Bands: 3 Xmin,Ymin 47 120 71 238
Pixel Depth: 8 Bit (—754,379,007, 60,342,695) examples examples examples examples
Spatial Reference: Xmax, Ymax

GCS. WGS1984 (—754,332,962, 60,313,098)
Rionegro . .
Cols, Rows: 8847, 18,895 Dleight Range:

GSD 6.08, Size: 637.7 MB Xmin,Ymin 271 1051 321 1643
Format: TIFF, Bands: 3 (—753,809,074, 61,394,740) examples examples examples examples
Pixel Depth: 8 Bit 07T 01T p P p P

Spatial Reference: Xmax, Ymax
GCS. WGS1984 (—753,760,197, 614,98,805)
Pradolargo . .
Cols, Rows: 14,919, 6666 Delght Range:
GSD 6.30, Size: 379.4 MB . .
Xmin, Ymin 12 32 104 148

Format: TIFF, Bands: 3 (—755,311,888, 61,563,654) xampl xampl xampl xampl
Pixel Depth: 8 Bit ,311,888, 61,563, examples examples examples examples
Spatial Reference: Xmax, Ymax

GCS. WGS1984 (—755,226,877, 61,601,860)
TOTAL 539 1730 590 2859
Table 2. The HAGDAVS dataset specifications.
Item Description
Field of application Vehicle detection or segmentation
Collected data Aerial images
Method for data acquisition Drone flights
Used drone DJI Phantom 4 Pro V2
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Table 2. Cont.

Item

Description

Camera resolution and sensor size
Software for processing of collected data and products
GSD of obtained orthomosaics and DSM

Method of annotation
Dataset production

Language for scripts
Used GIS software

Number of classes and objects

20Mpx, 1 inch CMOS
Opendronemap [1], Orthomosaics and DSM
55t07.1 cm/px
Manually in GIS and semi-automated via Python scripts
GDAL scripts in Jupyter Notebook
Python 3.7
QGIS V3.22.2-Biatowieza, ArcGIS
4: motorcycle, car, and ghost (motorcycle or car), background

Number of orthomosaics 4
Data collected by Authors of this paper
Year of collection 2018-2020
Detection dataset Geo]SON bounding boxes
Segmentation dataset RG-NDSM !, Multi-class color mask images
Additional information RGB, DSM
Dataset size 1.34 Gb compressed
Image format tiff
Image quantity 83 images
Cols, Rows of images 2048 x 2048 px
RGB, RG-DSM1 Image average memory size 16 Mb
RGB, RG-DSM1, Mask, Image spectral resolution 3 bands
RGB, RG-DSM, Mask Image radiometric resolution 8 bit
RGB, RG-DSM, Mask Image Coordinate System WGS1984
! Inclusion of DSM’s height in an RGB image.
' /7
’
’ s
/S -

(c)

Figure 4. HAGDAVS image example of the proposed dataset. Image shows examples of vehicle
classes in the dataset. (a) RG-DSM'’s bluish color indicates the fusion of height in the blue channel of
images. (b) Multi-label mask of vehicles. (c) Vector Bounding Boxes.

3. Methods

Aerial imagery, especially drone orthomosaics, is becoming ubiquitous. Ease of use
and affordable price of consumer and professional drones are making this happen, rapidly
increasing its availability and quality [4]. Methods applied to acquire and process drone
data to produce the HAGDAVS dataset are presented in the next section.

3.1. Data Acquisition and Processing

Data was acquired by executing several autonomous flights, using a drone Dji Phantom
4Pro V2 and the Capture App [31]. Four small urban areas, located in Colombia, South
America, were photographed at heights between 100 and 150 m above ground level (AGL).
Mapping areas were covered with flight lines using a frontal overlap of 85% and a lateral
overlap of 75%. Individual images and GPS Log obtained during the flights were processed
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in Open Drone Map [32], an open-source software, to produce the orthomosaics, the DSM,
and a 3D point cloud of every mapping area. These three are the most representative
products when processing drone images [1]. The WGS1984 is the Geographical Coordinate
System chosen for the products. Figure 5, illustrates the workflow for the acquisition and
processing of individual images to obtain orthomosaics, DSM, and 3D point cloud.

image i
S P . frontal overlap
IA image i+l
“~ /
¢
/f
N Individual
L e drone images Orthomosaics
"*.‘\\30/“\._ ~ and and
. flight GPS Log DSM
., e N .~
¥, L a
. N
2,
7
"-’!‘(/ A

Figure 5. Drone data acquisition and processing. Individual drone images and GPS Log are processed
in Open Drone Map software to obtain drone orthomosaics and DSM [1].

Drone orthomosaics have a very high spatial resolution, measured by the Ground
Sample Distance (GSD) [10,15,33,34], which is the physical pixel size; a 10 cm GSD means
that each pixel in the image has a spatial extent of 10 cm. The GSD of an orthomosaic
depends on the altitude of the flight (AGL). Figure 6 shows a snapshot of one of the obtained
orthomosaics and corresponding DSM.

Figure 6. Drone orthomosaic and DSM [1]. Both images are fused to produce the RG-DSM image
in the dataset. This example corresponds to the urban area of El Retiro, Colombia, with a GSD of
7.09 cm/px.

3.2. Height Augmentation

Due to computational restrictions, deep learning models commonly use RGB three
channel images [10-14,16,17,35-38] and this is also the case for image datasets [2,9,10,18,20].
This situation may limit model generalization in the case of similarities of spectral response
between neighbor objects, for instance, between vehicles and buildings, vehicles and trees,
or vehicles and roads. The proposed dataset comprises red and green; instead of the blue
channel, which is removed, we use height values of the DSM. Figure 7 shows the height
value profile of the DSM in an urban scene.
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Figure 7. Height values of the DSM.

The RG-DSM is a false color composite image [15,22,23,30], bluish in terms of objects’
height; the more blue the image, the higher the objects in the image. Height values may
segment objects when spectral information is not enough [15]. Since RGB values are in
range (0, 255), DMS height values should be rescaled to the interval (0, 255); this is called
the NDSM, and it is calculated as follows:

NDSM = 255 * (DSM — minHeight) / (maxHeight — minHeight) 1)

where DSM is the Digital Surface Model (in meters), which has the same extension and
GSD of the corresponding orthomosaic; and minHeight and maxHeight are the minimum
and maximum height values (in meters) of the DSM, respectively. Figure 8 shows the tool
used in QGIS to obtain the RG-NDSM false color composite. The Virtual Raster Builder
tool allows us to combine raster bands by dragging them in an appropriate order.

Q Virtusl Raster Buides 0.9.20210222T174536 mastes -

| Fies View Help
LeBRRy OeL2NPPPABeatUOR Q5| nro @

ROV.ZeB B~ v 4 st Soures

% B About VRT Bulder

[ Output
g g VRIS B 2 < e
Virtua/Source Ba ¥ Source Path
{FiefBong  ~ Vaueresaotion * 4 A it ighbon:
8anda 1: Red
~ M ta Ceja Ciptit o dta

Banda 2: Green
Path  C:Users/joha/D, Bancle 3: NOSM Casdification not inglemented
CRS WGSBAE v Raster Grid
~ Bands a
1 Bands 1
2 Bands2
nds

» [ CA Windows)
» [ DA LENOVO)
GA (Google Drive)

RS |EPSa325 - WG 84 - @
Bxent v automatic from inputs

R rostGis
Capas o Pl Welh 0,000000 3
avv - e e e
v ¥ La Cai o -
I Banda 1 (Rech) Rt W 0525
M Banda 2 (Green) » 3750
1 Banda 3 (Bhse) height
v Output

\datos\1pxiLa_Ccja_RGNDSM. €1
Path | in-Memory
V' open after creation

Coordenada 75,433 Bsvewr || cemar

Figure 8. RG-NDSM Height-Augmented Image. Red and green bands of every orthomosaic are
put in the respective band, and the NDSM (re-scaled DSM) is put in the place of the blue band. All
the process is done in the Virtual Raster Builder tool of QGIS. The image on the left is the resultant
RG-NDSM; images on the right are the inputs RGB and NDSM.

3.3. Data Annotation and Data Curation

Initially, the three types of vehicles in the dataset (motorcycles, cars, and ghosts) are
digitized on the screen over each orthomosaic as a base layer. This was done in the QGIS
open-source software [37], obtaining a polygon GIS layer in shapefile format (*.shp). An
integer field called “Class” was created in the shapefile to distinguish the type of vehicle,
with values as follows: 1 for motorcycles, 2 for cars, and 3 for ghosts. Digitation zoom is
between 1:40 and 1:80 for all the orthomosaics, to ensure capture of details. This task is
time consuming, but it is the base for obtaining detection bounding boxes and multi-class
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masks for segmentation. Figure 9 shows resulting bounding boxes in GeoJSON format [25].
Figure 10 illustrates the data annotation process.

Pruper Lies . g
s + “Class": 1
4 - 1
+ Add row J show style properties "geometry”: {
Properlies Info 7 "‘-pr”: llp()lygo"”»
] "coordinates": [
Save [eELE O Delete feature o 3 [
£ o : :
L’)v —75.50143028073246,
0 @ 6.064346013886078
1} i ]:
20m [
(=) | —75.50143028073246,
(=) 50 ft
.ﬂ «2 6.064352285353993
n o=

Figure 9. Bounding Boxes in GeoJSON Format. The BBs for the vehicles are in the WGS84 geographic

coordinate system.
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(a) (b)

Figure 10. Data annotation process. (a) Manual digitation of vehicles in polygons. (b) Polygon vector
layer (top image), and corresponding multi-class masks raster layer (image at the bottom).

The polygon shapefile of each orthomosaic is converted to Geo]JSON vector format
using a script in Python. Every GeoJSON file has the same extension and spatial reference
system of the corresponding orthomosaic. At the same time, a multi-class mask raster layer
is created for each orthomosaic by rasterizing every polygon shapefile, using the “Class”
field, including the background as an extra class (class 0). It is exported in Tiff format
with 8-bit radiometric resolution. Resultant images have the same spatial reference and
extension of the corresponding orthomosaic. In a mask raster layer, red pixels represent
ghost objects, green pixels represent cars, blue pixels represent motorcycles, and black color
pixels represent the background.

The dataset has been curated in terms of exhaustive revision of images to avoid
violation of privacy and affectation of third parties.

3.4. Data Tessellation and Cutting

Every RG-NDSM and corresponding mask raster layer (four in total) is tessellated
into 2048 x 2048-pixel Tiff images, and saved in two separate folders (RG-NDSM, Masks).
Tessellation was made using a GDAL-OGR python script that keeps spatial reference.
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RGB and DSM are also tessellated and saved in folders (RGB, DSM) following the same
procedure. All corresponding images are named with integer numbers in ascending order.
Images without multi-color vehicle masks (completely black) or with dimensions less than
2048 x 2048 pixels are deleted in all folders. Bounding boxes are obtained by cutting
GeoJSON files for each orthomosaic with the same size of tessellated RG-DSM or Masks;
these files are saved in the BBs folder using Python script. Jupyter Notebook Scripts
(*.ipynb) can be downloaded from the GitHub directory of this paper (https://github.com/
jrballesteros/Vehicle_extraction_Dataset accessed on 8 March 2022). Figure 11 shows the
tessellation process for RG-DSM and mask images. Figure 12 shows the complete workflow
to obtain the proposed dataset.

Figure 11. Data tessellation and pairing. RG-NDSM and Raster mask images, with the same spatial
extension and reference of respective orthomosaics, are tessellated into images of 2048 x 2048 pixels
that form the dataset.

Data Annotation Rasterization of polygon
layer o o
i Python S t: H
Manual digitazion F— y't on Seripts
« of polygon vector — »  Multi-class mask raster QGIS
layer for vehicles layer
classes
e - ,
Data Tessellation &
Drone Data Cutting ; Height-augmented
Orthomosaic geo-located
and DSM : RGDSMand Mask ! dataset
images | Raster Layer | (image, mask, BB)
: (2048x2048) ! HAGDAVS
;. BBs cutting (GeoJSON) |
77777 Spectral o o Geometrlc o Height Augmentation
Augmentation ! Augmentation
' [ i RG-DSM = RG & NDSM
1 Brightness, —» Rotations (10 degree —+
i Intensity and ! increments),
! contrast variations | | deformations and
in % [ mirrorings

Figure 12. Dataset workflow.

3.5. Dataset Bias

In general, computer vision, as well as digital image analysis, tend to be fields with a
high degree of data imbalance. Within an image, only a portion of it corresponds to the
feature of interest; this is the positive class. The rest of the image is usually assigned to
another category or negative class, although there are also several other classes. This simple
but convenient way of labeling images is often the biggest cause of imbalanced dataset
generation. The acquisition process, the device used, and the illumination limitations
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among others constitute additional causes for imbalanced image dataset generation [38].
This class imbalance within a dataset is called dataset bias.

Models trained with imbalanced datasets may be affected by the dataset bias. Many
techniques are proposed to face this problem. Resampling techniques are the most tradi-
tional approach. Over-sampling the minor class, under-sampling the majority class, or
combining over- and under-sampling belong to this category. However, recent techniques
seem to help resolve this problem in a more convenient way, for example, data augmenta-
tion, adequate data split, and the design of optimization functions that allow the inclusion
of weights for each class, penalizing according to the number of samples in the dataset.

In HAGDAVS, the number of samples by class are shown in Table 1. The Background
Class has significantly more information than the other classes. Additionally, sample
differences between vehicle classes are also present. The Car class has around three times
more samples than the Motorcycle and Ghost classes. We suggest the following techniques
to mitigate the class imbalance problem in the proposed dataset.

3.5.1. Data Augmentation and Splitting

Data augmentation tends to improve model generalization [2,10,19,23,24], increasing
the number of available examples to train a model. Two other types of data augmentation
may be applied to the dataset before training a model or during the training: spectral
and geometric augmentation [24]. Spectral refers to the change in contrast, intensity, or
brightness of images [24]. Values of 25% above and below normal contrast and brightness
may be used. The intensity or gamma value improves contrast in dark or highly illuminated
parts of images [39]. Geometric augmentation refers to rotations, zooming, and deformation
of images. Images and corresponding image masks can be rotated clockwise in 10-degree
increments [19]. Vertical and horizontal mirroring is a transformation in which upper and
lower, or right and left, parts of images interchange position [24]. In some cases, geometric
augmentation improves a model’s metric performance more than spectral augmentation [1].
Figure 13 shows some examples of spectral and geometric data augmentation.

Figure 13. Data augmentation. (a) Spectral augmentation. (b) Geometric augmentation.

Since the HAGDAVS dataset has not been augmented or split, researchers can use any
previously described procedure to increase the number of examples, or apply a specialized
library to do it [24]. Researchers may also randomly split the dataset or use a special
technique that, for instance, guarantees the number of vehicles per training image.

3.5.2. Data Imbalance and Sample Weights

In deep learning algorithms, sample weights in the loss or optimization functions can
be introduced. The weight class is estimated according to its distributions in the dataset.
For the loss functions, a larger weight is assigned to the samples belonging to the minor
class; conversely, lower weights are assigned to the samples of the dominant class. In
order to calculate the class weights, we suggest the Median Frequency Balancing approach,
which is formulated in (2).

ae = median_freq/ freq(c) 2)
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where «, is the weight for all samples of the c class, median_freq is the median of the
calculated frequencies for all classes, and freq(c) is the total number of pixels of class ¢
divided by the total number of pixels in the dataset.

3.6. Practical Applications of the HAGDAVS Dataset
The proposed dataset has the following practical applications:

e  Detecting and enumerating vehicles over large areas is one of the primary interests
in aerial imagery analytics [6]. End-to-end automation of vehicle detection and seg-
mentation helps security and traffic agencies with quick processing and analysis
of images.

e  The creation of a ghost cleaner for orthomosaics to improve drone imagery quality.

The production workflow of the dataset can be applied not only to drones, but also to
satellite imagery and other objects [2,15,40].
Figure 14 presents some examples of the dataset.

Figure 14. Examples of the dataset.
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4. Conclusions

This work developed the HAGDAVS dataset, consisting of 83 height-augmented
images and corresponding vehicle multi-class masks, representing motorcycles, cars, and
ghosts. Height values from the DSM may contribute to detection or segmentation model
performance, compared with non-height-augmented images, which are also included.
Although paired datasets can be difficult or even impossible to obtain in certain cases [13,14],
the use of open-source software and tools such as QGIS and GDAL-OGR libraries help in
the dataset production workflow [1]. Multi-class masks may help to enumerate different
vehicle classes and to geo-locate vehicles. The ghost class allows researchers to create Deep
Learning models for drone imagery cleaning of unwanted objects. This study presents the
workflow for dataset production, which researchers can utilize as a guideline for producing
a custom dataset, even in other fields of interest. Al practitioners can use this dataset for
working in an end-to-end automation for the detection and segmentation of vehicles in
drone imagery.

5. Future Work

e Increase the dataset size in terms of more images or the inclusion of additional classes
of vehicles, vehicle models, and traffic signs.

e  Create a drone thermal infrared image dataset. Images that include a spectral band
that senses heat could make the detection of vehicles easier.

e  Employ automatic data annotation. This makes the dataset production task simpler
and quicker.

e Use of Deep Learning models on the proposed dataset to evaluate and compare
its performance.
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