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Abstract: One of the key functions of driver monitoring systems is the evaluation of the driver’s
state, which is a key factor in improving driving safety. Currently, such systems heavily rely on the
technology of deep learning, that in turn requires corresponding high-quality datasets to achieve
the required level of accuracy. In this paper, we introduce a dataset that includes information about
the driver’s state synchronized with the vehicle telemetry data. The dataset contains more than
17.56 million entries obtained from 633 drivers with the following data: the driver drowsiness and
distraction states, smartphone-measured vehicle speed and acceleration, data from magnetometer
and gyroscope sensors, g-force, lighting level, and smartphone battery level. The proposed dataset
can be used for analyzing driver behavior and detecting aggressive driving styles, which can help to
reduce accidents and increase safety on the roads. In addition, we applied the K-means clustering
algorithm based on the 11 least-correlated features to label the data. The elbow method showed
that the optimal number of clusters could be either two or three clusters. We chose to proceed with
the three clusters to label the data into three main scenarios: parking and starting driving, driving
in the city, and driving on highways. The result of the clustering was then analyzed to see what
the most frequent critical actions inside the cabin in each scenario were. According to our analysis,
an unfastened seat belt was the most frequent critical case in driving in the city scenario, while
drowsiness was more frequent when driving on the highway.

Keywords: driver state; driving data; smartphone data; vehicle telemetry

1. Introduction

Human safety has always been the ultimate goal of researchers. According to the
World Health Organization (WHO), approximately 1.3 million people die every year as a
result of road traffic accidents [1]. These accidents often happen due to the drivers’ lack
of attention or to their risky driving style. With the advance of machine learning and
computer vision techniques, the research interest has been drawn to the reduction of car
accidents by building driver assistance and driver behavior analysis systems. Such systems
aim to evaluate the driving style and the driver’s behavior to detect any risky situation that
can cause an accident. In-cabin driver monitoring includes systems aimed at analyzing the
driver’s state (drowsiness [2–4], sleepiness [5,6], fatigue [7–9], and not paying attention to
the road [10,11]), and systems aimed at analyzing the driver’s driving style [12–14]. The
latter systems can use data collected by smartphones’ sensors, such as a gyroscope and an
accelerometer, which can be analyzed as indicators to detect aggressive driving such as
sudden braking, speeding, and sudden turns. Palimkar et al. [15] used machine learning
algorithms to recognize different human activities using data collected from various sensors
(magnetometer, accelerometer, and gyroscope) attached to the human body.
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To detect fatigue and sleepiness, two approaches have been adopted: the first approach
uses physiological signals such as heart rate [16], the time percentage of eye closure [17],
and the behavioral characteristics of the driver such as the head position and the posture.
The other approach relies on information about the driving behavior such as the vehicle
speed and position in the lane, the steering wheel movements, and the steering angles.
The first approach focuses on the driver and shows more accurate results than the second
approach, but it requires more sensor data.

In this paper, we introduce the DriverSVT dataset to investigate driver behavior us-
ing data collected from smartphone sensors such as an accelerometer, gyroscope, etc. In
contrast to our previous DriverMVT dataset [18], we present all our anonymized vehicle
telemetry data collected during the last 5 years as well critical events (drowsiness, distrac-
tion, etc.) associated with the data. The data were recorded using different smartphones
in real driving scenarios that took place in different traffic and road circumstances using
the previously developed Drive Safely system [19,20]. The dataset contains more than
17.56 million entries collected from 633 different drivers and can be used to improve driver
safety by building a driver behavior classifier. It also can be used to analyze the driving
style and build a driver recognizing system. Since the dataset contains information about
the driver’s heart rate and dangerous situations detected by the monitoring system (normal,
drowsiness, distraction, unfasten belt, smartphone usage), this information can be used
additionally to enhance the accuracy of driver behavior classifiers. In addition, we used
K-mean clustering to label the data. K-means clustering [21] is a widely used algorithm
in machine learning. The goal of using this method is to divide the dataset into a prede-
fined number K of clusters. The number of clusters was calculated based on the elbow
method. The cluster can be defined as a group of data points whose interpoint distances
are small if compared with the distances of points outside of the cluster. We chose the
K-means clustering over other unsupervised methods such as hierarchical clustering, and
density-based spatial clustering, because it is more efficient at handling large datasets such
as ours. Our main motivation was to provide the scientific community with a dataset that
can help develop models to increase the safety on the road. The contributions of this paper
can be summarized as follows:

1. We introduced a diverse dataset collected using different sensors in real-time driving
scenarios for analyzing driver behavior.

2. We applied an unsupervised method (the K-means clustering) for labeling the data,
then we analyzed the obtained results to detect the most frequent dangerous situations
in each scenario.

The rest of the paper is organized as follows: Section 2 summarizes the datasets and
methods used for driving assistance systems. Section 3 contains information about the
dataset. Section 4 shows the experiments for data evaluation. Finally, the conclusion is
presented in Section 5.

2. Related Work

In this section, we briefly overview the datasets and methods used for driver monitor-
ing and analysis systems. The authors of paper [22] presented a video dataset for a driver
behavior classification task. The dataset was collected from twenty drivers and contained
manual annotations for the image segmentation, namely, the location of the driver (the
ground truth) alongside with the corresponding classes. Each driving posture in the dataset
belonged to one of six activity classes (talking on the phone, eating, grasping the steering
wheel, operating the shift gear, smoking, and phone play).

The MPIIGaze dataset [23] was built over 3 months using a monocular camera with
15 subjects simulating driving activity on a computer. The dataset has 213,659 images
with gaze positions annotations. The dataset has different conditions of illuminance and
movement and can be used to detect a driver’s lack of attention.

The DrivFace dataset [24] was published in 2016 with the purpose of estimating
the driver’s level of attention. It contains 606 samples from four drivers in real driving



Data 2022, 7, 181 3 of 11

scenarios. The dataset has frame-aligned annotations for the driver’s head pose angles and
the looking direction.

The UAH-DriveSet dataset [25] contains 500 min of driving videos collected from
six different drivers driving on two different road types: highways and secondary roads.
The data simulated three different driving behavior styles: normal, drowsy, and aggressive.
The videos were associated with raw and processed metadata collected using different
sensors, including data from GPS and accelerometer. The dataset can be used for event
recognition (acceleration, braking, turning, lane weaving, lane drifting, overspeeding, car
following) and for driving style (normal, drowsy, and aggressive).

The authors of paper [26] introduced a dataset for classifying the driver behavior.
The dataset had over 15,000 entries obtained from experienced drivers using smartphone
sensors (accelerometers, gyroscopes, etc.) in real driving scenarios.

Machine learning methods have been widely used in driver monitoring and behavior
analysis systems. Some researchers used traditional machine learning techniques such
as [27], who used a support vector machine (SVM) to detect the activity state of the driver
based on head pose, eye state, and hand cues. Ref. [28] used dynamic Bayesian networks
and [29] used a logistic regression to detect drowsiness, while other researchers [30,31]
used deep neural networks for drowsiness recognition.

Kontaxi et al. [32] used high-resolution smartphone data to investigate the impact of
detailed trip characteristics on the frequency of harsh acceleration and harsh braking events.
They used the sensors embedded in smartphones to collect the data (e.g., accelerometers
and gyroscopes, magnetometers, and global navigation satellite system).

Liu et al. [33] proposed a motion-capture-based driving behavior analysis and moni-
toring system aimed to classify driver’s actions as normal or abnormal driving behaviors
based on inertial measurement units, and the body’s joint angle series obtained by the
iterative operation of a consecutive segment under the assumption of a rigid structure.

3. Dataset

In this section, an overview of the dataset is presented. Section 3.1 describes the
methodology used for collecting the dataset, while Section 3.2 addresses the description of
the dataset, and finally, in Section 3.3, an exploratory analysis of the dataset is presented.

3.1. Collection Methodology

The data were collected from 633 different drivers using smartphones with embedded
accelerometer and gyroscope sensors while driving a vehicle. The data contain more than
17.56 million samples that describe driving behavior. Mobile devices were used to collect
the accelerometer, the gyroscope, and the magnetometer data, as well as recording videos
of the drivers. These videos were then analyzed by a set of deep-NN-based models to
calculate the driver’s head pose [34], the safety belt state [35], the mouth openness ratio,
and to detect dangerous states (e.g., eating, smoking, using phone, distraction, etc.) using
trained neural networks. Additional features such as the heart rate were measured using a
Xiaomi Mi Band 5 smartwatch.

3.2. Data Description

The collected data contained information about the driving behavior (see Table 1),
including the starting time of the trip presented in milliseconds (Unix timestamp), the date
time represented in milliseconds (Unix timestamp), which describes the time of current
entry, the car speed and acceleration, the acceleration on the X, Y, and Z axes, the light
level, the driver’s head pose angles (roll, pitch, and yaw) calculated using the method
proposed in paper [34], the data from the gyro sensor (accelerometer data, gyroscope data,
and magnetometer data), the PERCLOS, the Euler angle of the phone rotation, the user id to
detect different drivers, the g-force (the acceleration data from the g-force (g-shock) sensor
that can be used to detect small sudden movements), the device information that contains
a description of the device used to collect data such as the device type and its specification
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(e.g., RAM capacity), the mouth openness ratio, the heart rate measured using a Xiaomi Mi
Band 5 smartwatch, and dangerous states detecting a driver’s abnormal behavior such as
using the phone while driving.

Table 1. Dataset features’ description.

Column Name Description Notation/Unit

datetime Time the entry was recorded Unix timestamp (ms)
datetimestart Driving trip starting time Unix timestamp (ms)
speed Vehicle speed km/h
acc_X,acc_Y,acc_Z Linear acceleration on X, Y, Z axes, respectively m/s2

lightlevel Light level lux
euleranglerotatephone The Euler angles of the used phone degrees
perclos Percentage of time when the driver’s eyes were closed -
userid The id of the driver -
accelerometer_data_raw Raw data from the accelerometer m/s2

gyroscope_data_raw Raw data from the gyroscope degree/s
magnetometer_data_raw Raw data from the magnetometer Tesla
deviceinfo Specifications of the device used to collect the information -
gforce Data provided by the g-force sensor -
head_pose Raw Euler angles (pitch, yaw, roll) degrees
accelerometer_data Changes in velocity m/s2

gyroscope_data Angular velocity degree/s
magnetometer_data Magnetic field intensity Tesla
face_mouth Mouth openness ratio -
heart_rate Driver’s heart rate beats per minute
dangerousstate A critical event -

3.3. Data Exploration

In this section, we present an exploratory analysis of the data. The experiments were
carried out using an Intel Core i9 server with 3.7 GHz processor frequency, 64 Gb RAM,
and RTX 2080 Ti GPU.

The histogram distribution of nonzero speed is presented in Figure 1. The dataset
contained 6,176,105 entries with zero speed (caused by being stuck in traffic jams).

Figure 1. Distribution of vehicle speed in the whole dataset.

Figure 2 shows the number of samples for each critical event. Since there was a huge
difference in the number of samples, the logarithmic scale of the count-axis was used.
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Figure 2. Distribution of the critical events calculated using camera images.

Table 2 shows the maximum values for the sensors’ data for each critical event.

Table 2. Sensors’ data maximum values for each critical event.

Critical Event Speed acc gforce gyro_X gyro_Y gyro_Z mag_X mag_Y mag_Z grv_X grv_Y grv_Z

No attention 139.65 2.75 6.0 0.49 0.46 0.46 361.23 586.99 556.92 9.79 9.8 9.74
Smoking 79.81 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Eating 127.02 6.32 7.84 1.24 1.27 0.25 20.57 0.0 12.21 2.1 3.6 9.8
Unfastened belt 127.09 3.84 12.93 1.312 0.99 0.66 60.7 61.48 175.75 9.8 9.78 9.74
Using phone 129.65 7.76 4.08 0.38 1.52 0.74 110.68 46.09 11.53 2.8 9.8 9.78
Camera off 71.3 15.13 21.81 2.79 3.05 3.01 286.97 589.69 559.71 9.8 9.8 9.8
Distraction 169.97 44.55 69.58 7.35 5.57 4.84 818.10 851.94 213.20 - - -
Drowsiness 163.65 44.55 22.52 6.39 4.29 2.66 828.6 871.86 261.53 1.52 9.75 0.0
Normal 169.89 46.85 105.819 8.36 12.7 11.71 2603.9 1902.78 4915.05 9.8 9.8 9.8

Figure 3 shows the histogram distribution of the acceleration data.

(a) (b) (c)

Figure 3. Histogram of the acceleration distribution. (a) Acceleration along X-axis. (b) Acceleration
along Y-axis. (c) Acceleration along Z-axis.

To analyze the data, we calculated the correlation matrix between the features. The
“corr” function from the Python library “pandas” was used to compute pairwise correlation
of the columns, then using the heatmap function from the Python library “seaborn”, we
plotted the correlation matrix as a color-encoded heatmap. The results are shown in Figure 4.
It can be observed that features had different levels of correlation and some of them were
highly correlated. When the highly correlated features were removed, 24 features were left
in dataset. Figure 5 shows the correlation matrix of these features.
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Figure 4. Feature correlation matrix.

Figure 5. The correlation matrix of the selected features.
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4. Data Evaluation

We applied unsupervised learning method (K-means clustering) on the following
features: speed, acc_X, acc_Y, acc_Z, gforce, accelerometer_data_X, accelerometer_data_Y,
accelerometer_data_Z, gyroscope_data_X, gyroscope_data_Y, gyroscope_data_Z to explore
the underlying patterns. We grouped the entries based on their similarity and showed
whether clusters were related to critical events in the dataset. The K-means clustering
technique is the most widely used in machine learning; it finds similar groups by minimiz-
ing the Euclidean distances between cluster centroids. To choose the optimal number of
clusters to be used in the K-means procedure, the elbow method was used based on inertia.
Inertia is defined as the sum of the samples’ squared distances to their closest cluster’s
center. The elbow method suggests selecting the number of clusters when a significant
change in inertia occurs. Figure 6 shows the change in inertia per number of clusters where
the number of clusters was between one and eight.

Figure 6. The change of inertia with respect to the number of clusters.

As we can see from the graph shown in Figure 6, the optimal number of clusters
could be either two or three. To decide on the number of clusters we visualized 500 K
samples of the data for both two and three clusters. Since the number of features was
too high to visualize them in the conventional way, a dimensionality reduction technique
was required to reduce the number of features to a more interpretable combination. The
principal component analysis (PCA) is an unsupervised technique for dimensionality
reduction that transforms correlated features linearly to a new set of uncorrelated principal
components. Figure 7 shows the K-means clustering results with two and three clusters
after representing the features using a PCA for 500 K randomly selected entries.

We counted the number of samples per cluster in the cases of two and three clusters.
The results can be seen in Tables 3 and 4.
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(a) (b)

Figure 7. K-means with two and three clusters after representing the features using PCA. (a) K-means
clustering results with two clusters. (b) K-means clustering results with three clusters.

Table 3. Number of samples per cluster for two clusters.

Cluster Number of Samples

Cluster 0 16,257,599
Cluster 1 1,303,902

Table 4. Number of samples per cluster for three clusters.

Cluster Number of Samples

Cluster 0 2,187,217
Cluster 1 933,391
Cluster 2 14,440,893

After clustering the data, we analyzed the data for each cluster. Table 5 shows the
analysis of the data for each cluster.

Table 5. Analyzing the data for each cluster.

Cluster 0 Cluster 1 Cluster 2
min Mean max min Mean max min Mean max

speed 18.96 36.31 70.38 69.29 103.35 169.97 0.00 2.31 19.62
gforce −13.18 0.11 69.58 −11.14 0.25 30.67 −24.85 0.14 105.82
acc_X 0.00 0.07 9.00 0.00 0.43 9.00 0.00 0.04 9.00
acc_Y 0.00 0.06 9.00 0.00 0.11 9.00 0.00 0.04 9.00
acc_Z 0.00 0.50 9.00 0.00 1.62 9.00 0.00 0.19 9.00
accelerometer_data_X −18.05 1.32 22.84 −14.01 4.07 23.54 −55.13 0.80 49.67
accelerometer_data_Y −32.74 0.75 27.81 −10.60 2.83 22.72 −78.44 0.76 39.23
accelerometer_data_Z −42.55 1.04 32.44 −18.14 1.43 20.41 −63.33 2.00 54.54
gyroscope_data_X −5.99 0.00 3.89 −5.71 0.00 3.59 −11.93 0.00 8.36
gyroscope_data_Y −8.10 0.00 5.25 −4.32 0.00 3.03 −17.82 0.00 12.70
gyroscope_data_Z −4.69 0.00 4.84 −2.55 0.00 1.61 −9.31 0.00 11.71
magnetometer_data_X −963.73 −3.88 816.90 −963.73 −11.56 828.60 −1448.70 −1.23 2603.90
magnetometer_data_Y −2596.39 −4.56 863.88 −2535.17 −7.85 871.86 −2599.13 8.55 1902.78
magnetometer_data_Z −775.52 −1.67 852.60 −734.27 −6.55 381.81 −1160.90 0.67 4915.05
gravity_X −9.70 0.00 9.81 −9.71 −0.04 9.75 −9.80 −0.02 9.81
gravity_Y −9.36 0.05 9.81 −3.44 0.01 9.81 −9.81 0.40 9.81
gravity_Z −6.09 0.58 9.81 −3.43 0.09 9.78 −9.80 1.20 9.81
euleranglerotatephone_roll −180.00 −3.03 180.00 −180.00 −13.02 180.00 −180.00 1.58 180.00
euleranglerotatephone_pitch −85.18 7.18 90.00 −84.70 6.50 89.95 −89.88 15.18 90.00
euleranglerotatephone_yaw −180.00 −13.53 180.00 −180.00 −33.41 180.00 −180.00 −9.36 180.00

We show in Table 5 that cluster 0 contained entries with a speed range from 20 up to
70 km/h, which mostly represented driving in the city scenarios. Cluster 1 represented
driving on highway trips. Cluster 2 contained entries with a speed range between 0 and
19.62 km/h, which mostly represented parking and starting driving scenarios.

Table 6 shows the percentage of critical events for each cluster. We excluded the critical
events for cluster 2 since our system for detecting dangerous states was automatically
turned off for speeds less than 20 km/h.
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Table 6. Critical event clusters.

State Cluster 0 Cluster 1

Unfastened belt 14.88% 0.09%
Drowsiness 6.34% 21.29%

Eating 0.35% 0.41%
Distraction 6.50% 11.36%

Normal 58.10% 62.86%
Smoking 0.04% 0.05%

No attention 8.96% 2.31%
Camera off 1.15% 0.01%

Using phone 3.67% 1.61%

One can see from Table 6 that the most frequent critical event when driving in the
city was an unfastened belt, while in highway driving scenarios, drowsiness was the most
common dangerous situation. Therefore, we proved the general concept that usually, in the
city, drivers do not like to use a seat belt since the speed is not very high and on highways,
they often become drowsy since highway driving is monotonous.

5. Discussion

In this paper, we presented an extensive new dataset containing data on vehicle drivers’
physiological characteristics, together with the vehicles’ telemetry data and some auxiliary
technical data. The anonymized data were collected from 633 different drivers driving in
different conditions. All these data were analyzed in order to evaluate the driver state and
behavior, taking into account the context of the vehicle.

The primary goal of the dataset is for studying and training machine learning models
when developing driver monitoring systems. However, the variety of data included
makes it possible to apply it to different tasks as well, such as the dependence between
car movement and driver state or even driver identification based on the behavior and
driving style.

The limitation of the dataset can be related to the fact that some of the drivers’ charac-
teristics were obtained via computer vision models applied to recorded videos. Thus, in
certain extent, the data depended on the quality of the applied models. However, in our
previous works, we analyzed the quality of the applied models and showed that it was
high enough not to affect the results significantly (e.g., [34,35]).

We believe that this dataset opens a wide range of possibilities for solving various
tasks related to building machine learning models aimed at driver behavior and vehicle
movement analysis.

6. Conclusions and Future Work

In this paper, we introduced a new extensive dataset for driver monitoring and
behavior analysis. The dataset contained more than 17.56 million entries obtained from
633 different drivers in different illumination and road circumstances. The dataset contained
a large number of raw and processed features. The raw features were collected using
smartphones’ sensors such as accelerometer, magnetometer, gyroscope, and others, as well
as a Xiaomi Mi Band 5 smartwatch that measured the driver’s heart rate. The processed
features contained the drivers’ head pose and critical event detection (driver drowsiness,
distraction, smartphone usage, etc.).

The dataset can be used for analyzing driver behavior and detecting aggressive driving
style, which can help reduce accidents and increase road safety.

In addition, we applied K-mean clustering to the dataset for analyzing and labeling.
The relationship between the clusters and the critical events were discussed. We proved
the general concept that usually, in the city, drivers do not like to use a seat belt and on
highways they often become drowsy.

Our future work will aim to extend the dataset by increasing the number of samples
and adding more information about the driver’s vital signs such as respiratory rate and
blood pressure values.
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