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Abstract: The COVID-19 pandemic has impacted the whole world profoundly. For managing
the pandemic, the ability to forecast daily COVID-19 case counts would bring considerable benefit
to governments and policymakers. In this paper, we propose to leverage aggregate mobility statistics
collected from Google’s Community Mobility Reports (CMRs) toward forecasting future COVID-19
case counts. We utilize features derived from the amount of daily activity in different location
categories such as transit stations versus residential areas based on the time series in CMRs, as well
as historical COVID-19 daily case and test counts, in forecasting future cases. Our method trains
optimized regression models for different countries based on dynamic and data-driven selection
of the feature set, regression type, and time period that best fit the country under consideration.
The accuracy of our method is evaluated on 13 countries with diverse characteristics. Results show
that our method’s forecasts are highly accurate when compared to the real COVID-19 case counts.
Furthermore, visual analysis shows that the peaks, plateaus and general trends in case counts are
also correctly predicted by our method.

Keywords: COVID-19; forecasting; regression; applied machine learning; data science; time-series
analysis; mobility

1. Introduction

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a type of coron-
avirus that infects the respiratory system of humans and causes Coronavirus Disease 2019
(COVID-19). In late 2019, SARS-CoV-2 was first detected in Wuhan, China. In a short time,
the contagious virus originating from Wuhan spread to the whole world, and the World
Health Organization (WHO) declared the COVID-19 outbreak as a pandemic on 11 March
2020 [1]. The COVID-19 pandemic has enormously impacted the world and profoundly
changed life—as of August 2022, over 500 million cases of COVID-19 were observed
worldwide, and more than 6 million people have lost their lives [2].

When managing the pandemic, the ability to forecast future COVID-19 case counts
based on historical data and current trends would bring indisputable benefits to govern-
ments and policymakers. For example, if an increase in COVID-19 case counts can be
forecasted for the coming days, then plans can be made to ensure adequate treatment of in-
fected individuals (e.g., planning patient placement in hospitals), or countermeasures such
as bans on social gatherings and restaurant and school closures can be planned to prevent
further increase. For such plans to be effective, it is imperative that forecasts are accurate
and evidence-based.

Considering that SARS-CoV-2 is a contagious virus, we conjecture that the spread
of COVID-19 is impacted by human mobility. Consequently, we propose to leverage ag-
gregate mobility statistics toward forecasting COVID-19 case counts. For example, one would
expect an increase in population mobility to also increase the spread of SARS-CoV-2 and yield a
higher number of COVID-19 cases, e.g., due to infected individuals coming into contact with
non-infected individuals. Furthermore, one would also expect the virus to spread in certain
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location categories faster than others, such as public transport or workplaces, which may be
dense, closed-air, and cause close human contact. Thus, if individuals are found to be spending
more of their time in such location categories (compared to, e.g., residential areas), we can
forecast an increase in future COVID-19 case counts.

Motivated by the relationship between human mobility and the spread of COVID-19,
in this paper, we propose a method for forecasting COVID-19 case counts using three data
sources: (i) past daily case counts, (ii) past daily test counts, and (iii) aggregate mobility
statistics published in Google’s Community Mobility Reports (CMRs) [3]. CMRs are built
by collecting data from users who access Google services and have “location history”
feature enabled [3,4]. Users’ activity in different location categories such as Transit Stations
(TS), Retail and Recreation (RR), Workplaces (WP) and Residential (RS) locations are
recorded. Then, CMRs provide the percentage change in the amount of human activity
in each category compared to the activity levels on baseline days before the COVID-19
pandemic (5-week period between January and February 2020).

Our forecasting method trains a regression model to predict future COVID-19 case
counts using features extracted from past daily case counts, test counts and CMRs.
Several aspects are considered to maximize forecasting accuracy. First, considering that
the same feature set may not be optimal for every country, we introduce an adaptive feature
selection step to select the best feature set F for each country. Second, our analysis shows
that the correlation between mobility and COVID-19 case counts is not immediate, but
rather, it contains a time lag. For example, if a stay-at-home order is issued today to reduce
mobility, COVID-19 case counts do not decrease in the same day or the next day, but rather,
they decrease gradually over time. To account for this fact, we introduce a time period t
so that relevant features up to the past t days can be included in the forecasting model.
Third, considering that there are many types of regression models, we incorporate 12 differ-
ent regression types into our method (e.g., Linear, XGBoost, Ridge, Lasso, and RANSAC
Regression) and enable the selection of the best model type r among the set of regression
typesR empirically. Finally, we propose an algorithm for determining the best F , t and r
dynamically and in a data-driven fashion.

We evaluate the accuracy of our forecasts using data from 13 countries with diverse
characteristics in terms of COVID-19 case counts, population sizes, and geographic loca-
tions. We use 5-fold cross-validation and compute the difference between our forecast
COVID-19 case counts and real COVID-19 case counts using popular metrics such as Mean
Absolute Error (MAE) and Relative Error (RE). Results show that our forecasts are highly
accurate. Peaks and plateaus, as well as general increasing/decreasing trends in COVID-19
case counts can be accurately captured by our forecasts. Denoting by max(DC) the max-
imum number of daily cases observed in a country, the ratio MAE

max(DC) is below 3% for 10
out of 13 countries, and it is below 4.2% for 12 out of 13 countries. Similarly, RE values
are also typically low. Furthermore, detailed experiments show that RANSAC and Ridge
Regression are typically more preferred, with the optimal time period t typically between
12 and 15.

The rest of this paper is organized as follows. Section 2 surveys the existing related
work on COVID-19 forecasting and explains the main differences and advantages of our
work. Section 3 describes the data sources used in our work and performs preliminary
time-lagged cross-correlation analyses which inform the selection of parameter tmax in our
forecasting method. The main methodology and algorithms of our predictive forecasting
method are given in Section 4. Experiment results are reported and discussed in Section 5.
Section 6 concludes the paper.

2. Related Work

COVID-19 pandemic is an extraordinary circumstance that has impacted the whole
world and attracted many researchers’ attention. In particular, the relationship between hu-
man mobility and the growth of the pandemic has been investigated in several studies [5–8].
Mobility data used in these studies may contain inter-country mobility or intra-country



Data 2022, 7, 166 3 of 24

mobility. Zhang et al. [6] demonstrated a potential correlation between human mobility and
the COVID-19 pandemic using inter-country mobility data composed of global commercial
flights from 22 countries. On the other hand, Xiong et al. [9] used county-level mobility
inflow data, which relies on mobile device locations from 3141 US counties. It is also
possible to incorporate intra-country and inter-country mobility simultaneously to model
the epidemic dynamics of COVID-19 [7].

Considering the clear link between human mobility and the spread of COVID-19, social
distancing and staying at home are crucial countermeasures to reduce the spread of the pan-
demic [10]. Consequently, governments implemented several policies and restrictions to facilitate
social distancing and reduce human mobility. The effectiveness of such policies and restrictions
has been measured by several studies [11–17]. Nevertheless, a certain time lag exists between
the enforcement of a new policy/restriction and its impact on reducing COVID-19 case counts.
This time lag can be investigated using cross-correlation analyses. For example, Xi et al. [18]
analyzed the time lag using mobility data provided by Baidu, whereas Sulyok and Walker [8]
used mobility data provided by Google.

Beyond the analysis of historical data and/or showing correlations therein, in order
to forecast future COVID-19 case counts, predictive models need to be built. Toward this
end, relevant studies in the literature rely on statistical techniques or machine learning (ML)
methods. Ilin et al. [19] developed a method that contains ML models for a 10-day forecast
using human mobility data from Google, Facebook, Baidu, and SafeGraph. The method
developed by Rostami-Tabar et al. [20] included a multiple linear regression model using
phone call data to capture human mobility, whereas Liu et al. [21] applied Lasso Regression
to the constructed model after using a clustering approach. To forecast COVID-19 case
counts in Greece, three ML methods (Random Forest, Artificial Neural Network, and Sup-
port Vector Machine) were used in [22]. To leverage the power of deep learning, the Long
Short-Term Memory (LSTM) algorithm was used to construct predictive models in [23–25].
Another deep learning approach, Graph Neural Networks (GNNs), was used in [23–25].
Among statistical techniques, Autoregressive Integrated Moving Average (ARIMA) and
Spatial Time-Autoregressive Integrated Moving Average (STARIMA) were used in [26,27]
for forecasting. Hawkes processes were used by Schwabe et al. [28] to predict COVID-19
spread using telecommunication data to capture human mobility. Partial differential equa-
tions (PDEs) and other mathematical modeling techniques were also used for COVID-19
forecasting [29–35].

Our work differs from the aforementioned works in several ways. First, some works
show the existence of correlations between mobility statistics and COVID-19 case counts
using historical data. However, despite showing correlations, they do not build predictive
models for forecasting, which is a key aspect of our paper. Second, several works are limited
to a single country or few countries [23,36–38]. It is not clear whether the methods proposed
in these papers will generalize to other countries. In contrast, we show the effectiveness
of our forecasting method on 13 countries with diverse case counts, populations, and
geographic locations. Third, some works use private datasets such as phone call records,
telecommunication records, or cell phone locations [9,16,28]. Since the underlying datasets
are private, it is difficult for other researchers to reproduce or advance these methods.
In contrast, our work uses Google’s Community Mobility Reports, which are free and
publicly available. Finally, several works consider a fixed feature set and fixed ML model
for forecasting. In contrast, our method enables selecting the best feature set and regression
model dynamically for each different country.

3. Background and Preliminary Analysis
3.1. Data Sources

Our forecasting method utilizes mainly three sources of information: confirmed
COVID-19 case counts from the past days, how many COVID-19 tests have been performed
daily, and aggregate mobility statistics from Google’s Community Mobility Reports (CMRs).
In this section, these data sources are explained in more detail.
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Confirmed COVID-19 Daily Case Counts: The World Health Organization (WHO)
states that a confirmed COVID-19 case is an individual who received a positive COVID-19
laboratory test [39]. We obtained the daily confirmed COVID-19 case count data for several
countries from [40]. In order to show the generalizability of our forecasting approach, mul-
tiple countries were considered in our study: Argentina, Austria, Canada, Denmark, India,
Italy, Japan, Netherlands, Norway, Poland, Portugal, Turkey, and the United Kingdom.
Each country is treated independently from others, and a separate forecasting model is
built for each different country. The data in [40] rely on information from Johns Hopkins
University, which itself is sourced from governments, national and subnational agen-
cies [41]. We downloaded and used data spanning the period from 25 February 2020 until
18 December 2021. The same time period was used when obtaining COVID-19 test counts
and mobility statistics.

In the rest of the paper, we use the abbreviation DC when referring to the time series
containing COVID-19 daily case counts. Furthermore, we use the notation DC[i] to denote
the daily case count on day i.

COVID-19 Daily Test Counts: The number of COVID-19 laboratory tests performed
in a country (i.e., COVID-19 test count) is a key factor that impacts the case counts in that
country. Typically, more testing will reveal more COVID-19 cases. We obtained the daily
COVID-19 test counts per country from [40]. We note that there can be discrepancies
in how daily test counts are computed in different countries. For example, in some coun-
tries, the reported daily test counts correspond to how many individuals were tested,
regardless of which test or how many tests they took on the same day. In other countries,
multiple tests from the same individual on the same day may be counted independently.
Another discrepancy is with respect to which tests are accepted as “official” tests. Some coun-
tries only counted the number of PCR tests, whereas other countries counted other tests such
as antigen tests. These discrepancies are one reason why we opted to build different forecasting
models instead of aggregating all data and building one model for all countries.

In the rest of the paper, we use the abbreviation DT when referring to the time series
containing COVID-19 daily test counts. We use the notation DT[i] to denote the daily test
count on day i.

Aggregate Mobility Statistics from Google CMRs: Since the early days of the COVID-
19 pandemic, Google has been publicly releasing mobility statistics called Community
Mobility Reports (CMRs). These reports are built by collecting data from users who access
Google services and have “location history” feature enabled [3,4]. Users’ GPS presence
and time spent at different location categories are recorded. Then, CMRs are constructed
according to six categories: Transit Stations (TS), Retail and Recreation (RR), Parks (PR),
Grocery and Pharmacy (GP), Workplaces (WP), and Residential (RS). Each category
comprises a range of related and representative places. To exemplify, the Parks category
contains time spent in public gardens, castles, national forests, campgrounds, and observa-
tion decks. On the other hand, the Transit Stations category contains time spent in subway
stations, seaports, taxi stands, highway rest stops, and car rental agencies.

CMRs provide the percentage change in the amount of human activity (i.e., pres-
ence) in each location category compared to the activity levels on “baseline days” before
the COVID-19 pandemic. The baseline is considered to be a 5-week period between
3 January 2020 and 6 February 2020. Daily activity levels are compared to the correspond-
ing baseline day; e.g., activity on a Monday is compared to the median activity of Mondays
within the 5-week baseline. Then, the values in the CMRs represent the relative percentage
change of activity in a pandemic day versus the pre-pandemic baseline.

Similar to DC, we use the notation TS[i], WP[i], etc. to denote the reading from the cor-
responding time series on the i’th day. For example, TS[i] denotes the transit station reading
from day i, WP[i] denotes the workplace reading from day i, and so forth.
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3.2. Time-Lagged Cross-Correlation Analysis

COVID-19 is caused by a contagious virus, SARS-CoV-2, which infects human beings
who come in contact with it. For SARS-CoV-2 to spread, human mobility is highly important.
An increase in population mobility will facilitate the spread of the virus and increase
the number of COVID-19 cases, e.g., due to virus carriers (infected individuals) coming
into contact with non-infected individuals. We would expect the virus to spread especially
in location categories such as transit stations and workplaces, which are typically dense,
closed-air, and/or cause close human contact. In contrast, if individuals are found to be
spending more of their time at home (i.e., residential location category), then we would
expect the virus transmission rate to decrease. Consequently, COVID-19 case counts will
drop over time. Hence, overall, a correlation would be expected between certain mobility
statistics and daily COVID-19 case counts.

On the other hand, many infectious diseases, including COVID-19, do not develop symptoms
instantly when an individual is infected. In case of COVID-19, an incubation period is necessary
for SARS-CoV-2 to reproduce and cause the infected individual to develop symptoms such
as cough and fever. Therefore, although virus transmission takes place, some time will pass before
an individual tests positive for COVID-19 and causes a +1 increase in the number of COVID-19
case counts. As a result, it is natural to expect a time lag between the increase/decrease in human
mobility and an increase/decrease in COVID-19 daily case counts. In order to account for this
time lag, we use time-lagged cross correlation (TLCC) analysis to establish the correlation between
COVID-19 daily case counts and mobility statistics.

TLCC analyzes how a time series is correlated with another time series while taking
into account a time lag. One of the time series is shifted with a certain lag while holding
the other time series steady, and the Pearson correlation coefficient is computed between
them. The Pearson correlation coefficient between two time series X and Y, denoted by
ρX,Y, is defined as:

ρX,Y =
cov(X, Y)

σXσY
(1)

Here, σX and σY represent the standard deviation of X and Y. cov(X, Y) is the co-
variance between X and Y, which can be computed as: cov(X, Y) = E[(X− µX)(Y− µY)],
where µX and µY are the mean of X and Y, respectively.

In TLCC, a time lag t is applied to time series X, and the Pearson correlation coefficient
is computed using the original version of Y and the lagged version of X. We denote this
by ρ[X+t],Y. Since virus transmission can only affect future case counts and not past case
counts, we keep DC fixed and shift the mobility time series (e.g., TS, RR, WP) in the forward
direction. Thus, t > 0 is a positive integer in our setup. As a visual example, in Figure 1,
we show the time series for a fixed DC, the original TS, and a 15-day shifted version of TS.
Using our TLCC notation, the Pearson correlation coefficient would be given by ρ[TS+15],DC.

An important question is how to select the optimal time lag, t. We performed heatmap
analyses to investigate the answer to this question, an example of which is shown in Figure 2.
For each mobility time series (WP, RS, TS, RR), we computed ρ with varying t between
0 and 29 days. Since correlation can be positive for some mobility types yet negative
for others, and since minimum/maximum correlation strength can vary for different time
series, we individually standardized the correlation results obtained under each time series.
The standardized correlation numbers are colored according to the scale shown on the right
of Figure 2. Lower correlations are shown in blue, whereas higher correlations are shown in red.
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Figure 1. Original time series for daily case counts (DC), transit station mobility (TS), and a 15-day
shifted version of TS. All time series are from the United Kingdom. Since the ranges of DC and TS
are different, two y-axes are constructed. The axis on the left is for DC (black curve), and the axis
on the right is for TS (blue and red curves).

Figure 2. TLCC between COVID-19 daily case counts and different mobility time series (workplaces,
residential, transit stations, retail and recreation), for varying t between 0 and 29. Higher correlations
are shown in red, and lower correlations are shown in blue.

As Figure 2 demonstrates, the correlation values are relatively higher between t = 7
and t = 21 days, and they reach their peaks around t = 14± 3 days. Therefore, t = 15
(which we had used in Figure 1) seems to be a near-optimal choice. It can also be observed
that correlations are quite low when t is either excessively small (such as t = 0, 1, 2)
or excessively large (such as t = 27, 28, 29). These results are intuitive—for example, high
human mobility and density in public transport today will likely not yield many COVID-19
cases within the next 1–2 days, but rather, its effects will start to show in a week or more
due to the COVID-19 incubation period. Similarly, mobility today will have little effect
on COVID-19 cases 25+ days later. Therefore, the results in Figure 2 corroborate our
expectations and show that we can indeed establish correlations between mobility statistics
from CMRs and COVID-19 case counts.

4. Forecasting Methodology

Our methodology for forecasting future COVID-19 case counts is based on regression,
which is a type of supervised machine learning. The general overview of our methodology
is shown in Figure 3. The methodology consists of several steps; the details of each step
will be explained in the next sections.
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Figure 3. Overview of our forecasting methodology.

First, as shown on the leftmost end of Figure 3, data from Section 3.1 are modeled
as individual time series. A moving average is applied to DC time series for smoothing.
Second, considering that data are collected from different sources and data availability
may differ from one source to another, common time intervals are determined for each
country. Third, features are extracted from underlying time series so that they can be used
in training regression models. Fourth, using the extracted features, a regression model
is trained to predict COVID-19 case counts. To maximize forecasting accuracy, multiple
regression model types are implemented and dynamically tested, ranging from linear re-
gression to gradient boosting regression. Our method empirically finds the best performing
regression model type (i.e., the type that yields most accurate forecasts) in each setting.
Finally, cross-validation is applied with splitting and re-shuffling when evaluating forecast-
ing accuracy, model performance, and the impacts of various parameters in our method.

Difference with ARIMA-Based Methods: It is worthwhile to note that ARIMA-based
methods are popular for time-series analysis. They have also been applied to COVID-19
forecasting [26,27], but typically, they have been used when there is only a single time
series available (e.g., only DC). In contrast, our method fuses features from multiple time
series: DC, DT, and multiple mobility time series. In order to take advantage of features
from multiple time series and to build the most accurate regression model using the best
feature set, our method utilizes a custom algorithm for optimized feature extraction, feature
selection, and regression-type selection.

4.1. Moving Average for DC

The raw DC data may contain strong fluctuations due to a variety of factors such
as the number of tests in a given day (e.g., weekday versus weekend), certain countries
or hospitals reporting case counts not daily but once every two days, holidays, temporary
lockdowns, and so forth. In order to counter the fluctuations caused by these factors,
smoothing techniques can be used. In our work, we use moving average as the smoothing
technique, which takes one time series as input and produces another time series by
averaging consecutive readings according to a window size w.

More formally, recall from Section 3.1 that DC[i] denotes the i’th reading in time series
DC. Let us denote DCw as the smoothed version of DC according to a moving average
with window size w. DCw[i] is computed as:

DCw[i] =

w−1
∑

j=0
DC[i− w−1

2 + j]

w
(2)

By the nature of Equation (2), we use odd window sizes such as w = 3, 5, 7. w is positively
correlated with how much DC is smoothed, e.g., a larger w makes Equation (2) take the average
of a higher number of consecutive points; therefore, DCw will be smoother. After obtaining
DCw in this step, the rest of the forecasting methodology utilizes DCw in place of DC.
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4.2. Time Intervals

Recall from Section 3.1 that DC, DT, TS, RR, WP and RS time series are collected
from different resources. Because of this, different countries may have different time
intervals in which all time series are simultaneously available. For example, while country
X may provide DC data since March 2020, they may not provide DT data until the beginning
of April 2020. For a different country Y, these dates may also be different. If all time series
are not simultaneously available on a particular day, this leads to missing data in the feature
extraction and regression steps, which should be avoided. Therefore, we consider each
country individually and find the largest time interval for that country in which all time
series are simultaneously available.

The time intervals resulting from our analysis are provided in Table 1. For many
countries, the time intervals cover around 20–21 months. The start dates are near March
2020 (which is close to when the first major lockdowns started taking place) and the end
dates are mostly in December 2021. Due to reasons explained in the previous paragraph,
there can be slight differences in the start and end dates for each country. One exception
is Turkey, for which the start date is much later than other countries (November 2020).
The reason is because the Ministry of Health in Turkey provided daily COVID-19 patient
counts before November 2020, which are significantly lower than case counts (i.e., DC).
The lack of DC data before November 2020 prompted us to set the start date for Turkey
as 25 November 2020.

Table 1. Final time intervals (start date–end date) for each country. Dates are given in format:
dd/mm/yyyy.

Country Time Interval Country Time Interval

Argentina 03/04/2020–
18/12/2021 Netherlands 01/06/2020–

17/12/2021

Austria 03/03/2020–
14/12/2021 Norway 01/04/2020–

12/12/2021

Canada 12/03/2020–
17/12/2021 Poland 29/04/2020–

18/12/2021

Denmark 27/02/2020–
15/12/2021 Portugal 02/03/2020–

18/12/2021

India 24/04/2020–
18/12/2021 Turkey 25/11/2020–

08/11/2021

Italy 25/02/2020–
18/12/2021 United Kingdom 21/04/2020–

28/11/2021

Japan 02/04/2020–
18/12/2021 - -

4.3. Feature Extraction and Selection

In order to build a regression model that is capable of forecasting future COVID-19
case counts, we need to train it with training data which contains features that are good
predictors of future case counts. In our method, the feature set consists of two main
data sources. First, historical daily case and test counts (i.e., DC and DT) are always
included in the feature set, since they are clearly correlated with future daily case counts.
Second, a subset of mobility time series (TS, RR, WP, RS) is dynamically selected using
Algorithm 1, which is our custom search algorithm. It aims to find the best feature set
leading to the best regression model by testing different combinations of mobility time
series, considering that not all mobility time series may be significant in predicting future
daily case counts in all countries. Another important aspect, which is also dynamically
selected by Algorithm 1, is: Data from how many past days t should be used as features?
When t is too long or too short, the predictive power of the features will be low, as shown
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in Figure 2. To find the best time period t, Algorithm 1 searches between t = 1 and t = tmax,
where tmax is an input parameter. Considering the results from Figure 2 which show that
TLCC steadily decreases after t > 25, we use tmax = 30 as the default value.

Algorithm 1: Custom search algorithm to construct best model
Input : Maximum period length tmax, set of regression typesR,

error metric Err,
mobility time series TS, RR, WP, RS,
time series DC, DT

Output : Best regression model Ropt

1 min_error ← +∞
2 Ropt ← null
3 MTS← {TS, RR, WP, RS}
4 L ← all 1-elt, 2-elt, 3-elt, and 4-elt combinations of MTS
5 for t ∈ [1, tmax] do
6 Initialize empty feature set F
7 Let i denote the current day
8 Add DC[i− 1], DC[i− 2], . . . , DC[i− t] to F
9 Add DT[i− 1], DT[i− 2], . . . , DT[i− t] to F

10 for comb ∈ L do
11 for X ∈ comb do
12 Add X[i− 1], X[i− 2], . . . , X[i− t] to F
13 for r ∈ R do
14 Rcurr ← train regression model with features F and type r
15 curr_error ←measure error of Rcurr using metric Err
16 if curr_error < min_error then
17 min_error ← curr_error
18 Ropt ← Rcurr

19 return Ropt

In addition to the maximum period length tmax, mobility time series (TS, RR, WP,
RS), and the DC and DT time series, Algorithm 1 takes two more inputs. The first one is
the set of regression types, R. There exist several regression types in the literature, such
as Linear Regression, Decision Tree Regression, Ridge Regression, and so forth. The goal
of Algorithm 1 is to find and use the regression type that maximizes forecasting accuracy.
Thus, we construct a setR which consists of 12 different regression types and feed it as an
input to Algorithm 1. Then, Algorithm 1 can train a model with each type r ∈ R and
eventually select the model which has highest forecasting accuracy. More details regarding
which regression types we use will be given in Section 4.4. The other input of Algorithm 1
is the error metric, Err. Error metrics are necessary to measure forecasting accuracy.
When evaluated with metric Err, the model that yields lowest error is the one which has
highest accuracy. Thus, Algorithm 1 builds models and evaluates them using Err, and it
eventually returns the optimal regression model Ropt with the lowest error. More details
regarding error metrics will be given in Section 4.5.

Algorithm 1 works as follows. On lines 1 and 2, the minimum error min_error and
optimal regression model Ropt found thus far are initialized via placeholder (dummy)
values. On line 3, the four different mobility time series are collected in a set called MTS.
On line 4, all 1-element, 2-element, 3-element and 4-element combinations of MTS are
constructed. (1-element combinations of MTS are: {TS}, {RR}, {WP}, {RS}. 2-element
combinations of MTS are: {TS, RR}, {TS, WP}, {TS, RS}, ...). This step exhaustively enu-
merates all possible combinations of MTS. Then, on line 5, the search for the best Ropt
begins. The outermost for loop considers all possible t values between 1 and tmax. Denoting
the feature set by F and the current day as i, lines 8 and 9 add the daily case and daily test
counts from the previous i− 1 to i− t days to F as features. Then, between lines 10 and 12,
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for every possible combination of mobility time series, values of the corresponding time
series from the previous i− 1 to i− t days are added to F as features. Lines 13–15 ensure
that a model with each different regression type r ∈ R is trained and its error with respect
to metric Err is calculated. Between lines 16 and 18, if the current model Rcurr’s error is
lower than the previously found optimal model Ropt, then Ropt is replaced by Rcurr. This
ensures that the algorithm keeps track of the best model in the variable denoted by Ropt.
Finally, after all loops terminate (i.e., all t values, time series combinations, and regression types
are explored), the algorithm terminates on line 19 by returning the overall best model, Ropt.

4.4. Regression

In this section, we describe how regression is used as part of our methodology for fore-
casting COVID-19 case counts and which regression types are implemented and used
in Algorithm 1.

Regression is an analytical method that facilitates predicting how a dependent vari-
able is related to one or more independent variables (features). More formally, denoting
the dependent variable by Yn, the independent variables as Xn, the error term by en,
and the unknown regression parameters as β, a regression problem can be formulated
as a mathematical function f :

Yn = f (Xn, β) + en (3)

In our work, we treat COVID-19 case counts as Yn and the feature values
(according to feature set F constructed by Algorithm 1) as Xn. Thus, we have train-
ing data consisting of (Xn, Yn) pairs. The goal is to find the best function f with ideal
parameters β which closely fits the training data. This problem corresponds to training
an optimal regression model to act as f .

In the literature, there exist several possible types of functions to model the relation-
ship between Xn and Yn, ranging from linear f to high-dimensional f . We refer to these
different options as regression types. To build the most accurate COVID-19 forecasting
model, it is beneficial to try different regression types and select the best-performing one.
Thus, we utilize 12 different regression types, which are briefly introduced below. The set
of all of these regression types is denoted by R, which is given to Algorithm 1 as input.
Note that our overall methodology is not limited to the 12 regression types given below;
new types can be integrated by adding them toR.

Linear Regression: Linear regression is one of the most commonly used regression
types. It fits a linear function f to the underlying data. The coefficients of the linear function
are chosen to minimize the residual sum of squares between the observed Yn and the values
approximated by the output of the regression function.

Decision Tree Regression: Decision trees can be used in both classification and regres-
sion problems [42]. They create models which predict outcomes by learning decision rules
from the underlying training data. These decision rules are stored and queried in a tree
structure (hierarchically), starting from the root and moving toward the leaves in each step.
Deeper trees imply a higher number of decision rules.

Random Forest Regression: Random forest regression is an ensemble learning method [43].
It fits multiple decision trees on different subsets of the training data, where each subset is con-
structed by drawing samples from the training data with replacement. The collection of these
decision trees constitute the random forest ensemble. Afterwards, in the prediction (forecast-
ing) phase, each tree is used to make a prediction and then the predictions are combined, e.g.,
by averaging.

Extra Trees Regression: “Extra trees” stands for “extremely randomized trees”, which
is also an ensemble learning method similar to Random Forest Regression. In random
forests, when splitting each node during the construction of a decision tree, the best split
rule (i.e., the most discriminative threshold) is found either from all features or a random
subset of features. Yet, in extremely randomized trees, instead of the most discriminative
threshold, thresholds are drawn randomly for each feature and the best of the randomly
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generated thresholds is selected as the split rule. This adds another level of randomness
to the overall regression model, which reduces overfitting.

KNN (K-Nearest Neighbors) Regression: KNN is a popular algorithm for both clas-
sification and regression problems [44,45]. In KNN regression, the label assigned to a query
point is computed as the mean of its k nearest neighbors in the feature space. That is, given
the features of a test sample as X̄, KNN regression predicts Ȳ as:

Ȳ = ∑
Xj∈Nk(X̄)

Yj

k
(4)

where Nk(X̄) denotes the k closest points to X̄ in the training dataset.
AdaBoost Regression: AdaBoost is a popular boosting algorithm introduced by Fre-

und and Schapire [46]. Its main idea is to fit a sequence of models on iteratively modified
versions of the training data. Samples in the data are given weights, and in each iteration,
weights are updated so that samples which were incorrectly predicted in the previous
iteration will have their weights increased in the next iteration. Consequently, models
will improve as iterations proceed, since models in the next iterations focus on addressing
the weaknesses of the previous iterations [47].

Gradient Boosting Regression: Gradient boosting combines the intuition of boosting
with the optimization of a differentiable loss function [48], e.g., the loss function can be
squared error for regression. In each step of iterative boosting, a regression tree is fit
on the gradient of the loss function. The goal is to arrive at a model which minimizes
the loss.

XGB Regression: XGB, also known as XGBoost (stands for Extreme Gradient Boost-
ing), is an efficient and optimized implementation of gradient boosting [49]. Following its
inception, it quickly became popular among practitioners due to its speed and accuracy,
e.g., it yielded the most accurate results in many Kaggle competitions. Therefore, we
incorporated it in our framework in addition to the original gradient boosting algorithm.

Ridge Regression: Ridge regression improves linear regression (with ordinary least
squares) in cases with correlated independent variables. It imposes an l2-norm penalty
on the size of the regression coefficients. Ridge regression has been successfully ap-
plied in many diverse fields; our empirical results show that it also performs well in our
COVID-19 forecasting application.

Lasso Regression: Similar to Ridge regression, Lasso is also a linear regression type.
The intuition of Lasso (least absolute shrinkage and selection operator) was discussed
in various domains such as geophysics and signal processing [50], but it became pop-
ular in regression analysis after its introduction by Tibshirani [51]. The idea of Lasso
is to shrink the size of the regression coefficients, which is similar to Ridge regression.
However, as opposed to Ridge regression, instead of imposing an l2-norm penalty, Lasso
imposes an l1-norm penalty on the regression coefficients. As such, Lasso is suitable
for datasets which have high collinearity.

Huber Regression: Huber contains a piecewise loss function which combines squared
loss (l2-norm penalty) for non-outliers and absolute value loss (l1-norm penalty)
for outliers [45,52]. It is motivated by the fact that squared loss has the tendency to be
dominated by outliers, i.e., samples with error higher than a certain threshold. Thus,
l1-norm penalty is applied to outliers to reduce their effect while not completely ignoring
them. In contrast, l2-norm penalty is applied to non-outliers.

RANSAC (Random Sample Consensus) Regression: The RANSAC algorithm was
first published in [53]. It classifies samples in the training dataset into two: inliers which
should be taken into account when building a regression model, and outliers which should
not be considered when determining the regression coefficients. RANSAC iteratively selects
random subsets from the data, fits a model to the random subset, classifies data as inliers
vs. outliers, and deems the fitted model more desirable if the number of inliers is maximal.
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4.5. Cross-Validation and Evaluation Setup

When evaluating the accuracy of our regression models, we use 5-fold cross-validation
with the shuffle split approach. We split the whole available data into training and test sets
according to an 80–20% split. The split is repeated for 5 iterations, with random shuffling
in between each iteration. The error amount obtained in each of the five iterations is
recorded, and the errors are averaged at the end.

To calculate error amounts, we define and use two metrics: Mean Absolute Error
(MAE) and Relative Error (RE). Recall that the goal of our regression models is to forecast
daily COVID-19 case counts for previously unseen days (i.e., days belonging to the test
set). Let Dt denote the test set. Furthermore, for day i, let DC[i] denote the actual daily
COVID-19 case count for that day, and let DC∗[i] denote the daily case count forecasted by
our regression model. Then, Mean Absolute Error (MAE) can be defined as:

MAE =

∑
i∈Dt

| DC[i]− DC∗[i] |

| Dt |
(5)

Relative Error (RE) can be defined as:

RE =
1
| Dt |

·
(

∑
i∈Dt

| DC[i]− DC∗[i] |
DC[i]

)
(6)

The key difference between MAE and RE is that MAE calculates the absolute error
in forecasts, whereas RE considers error relative to the actual case counts. We believe
that both metrics are useful in case of COVID-19 forecasting. For example, if the task
is to forecast how many hospital beds will be necessary, MAE is a more direct indicator
of error for this task; therefore, a method with low MAE may be preferred. On the other
hand, RE is more meaningful when performing comparisons between different countries
since their population sizes can be vastly different. The same MAE may translate to a high
RE in a low-population country while it translates to a low RE in a high-population country.
Therefore, RE should be preferred for this task.

It is possible to seamlessly integrate other error metrics into our methodology, includ-
ing squared metrics such as Mean Squared Error (MSE) and Root Mean Squared Error
(RMSE). We choose to use MAE and RE ahead of MSE and RMSE due to their direct ap-
plicability to COVID-19 forecasting, as explained in the previous paragraph. For example,
MAE is directly applicable to the determination of absolute value error in forecasting daily
COVID-19 cases, which can have a direct impact on the number of hospital beds necessary.
RE is directly applicable to performing a comparison of infection rates between countries
with varying population sizes. In contrast, squared errors such as MSE and RMSE are not
that directly applicable or interpretable in the task of COVID-19 forecasting.

5. Results and Discussion
5.1. Comparison of Actual versus Predicted Case Counts

We first provide a visual comparison between the actual COVID-19 case counts (DC)
and the case counts predicted using our forecasting methodology (DC∗). For this set of re-
sults, to minimize data pre-processing, a window size of w = 1 is assumed in the moving
average step, which is equivalent to zero modification of the original DC time series. Re-
sults are given in Figure 4 for various countries with different population sizes, geographic
locations, socio-cultural factors, and COVID-19 cases. Plots show that the predictions made
by our forecasting methodology are highly accurate and closely resemble actual COVID-19
case counts in each country.
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(a) Austria (b) Denmark (c) India

(d) Italy (e) Japan (f) Netherlands

(g) Norway (h) Poland (i) Portugal

(j) Turkey (k) United Kingdom

Figure 4. Comparison of actual vs. predicted case counts. Results show that the predictions made by
our forecasting methodology are highly accurate and closely resemble actual case counts.

As illustrated in Figure 4, the actual case counts behave differently for each country.
For example, consider India, which is the most populous country among those in Figure 4.
At the height of the pandemic (March–April 2021), the number of daily COVID-19 cases
in India reaches around 420,000 cases in a day. In addition, the daily cases in India seem
to have a single, distinctive peak in March–April 2021, whereas the number of cases has
remained relatively steady throughout the rest of the time interval. In contrast, if we
consider a country such as Italy or the Netherlands, we observe multiple peaks on different
dates (e.g., Italy has three peaks, the Netherlands has five peaks). None of these peaks are
as pronounced as India’s peak, considering the maximum number of daily cases in Italy
does not exceed 44,000 and in the Netherlands, it does not exceed 25,000. Another distinct
example is Poland, in which there exist three peaks with similar numbers of daily cases
(all in the 28,000–35,000 range), as opposed to having one more pronounced peak which is
the case in many countries including India, Japan, Netherlands, and Portugal. Turkey and
United Kingdom are two other distinctive examples—while in many countries, the rise
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of COVID-19 cases is soon met with a drop due to government interventions and preventive
measures, the number of cases has remained stable in Turkey and the United Kingdom
between July 2021 and November 2021.

As exemplified in the previous paragraph, different countries have remarkably di-
verse behaviors in terms of how many major and minor peaks are observed, the absolute
number of COVID-19 cases observed, and how that relates to the country’s population.
Furthermore, countries reported in Figure 4 also differ in terms of their geographic locations,
economic factors, and healthcare systems. Despite countries’ diversity, our forecasting
method is capable of predicting COVID-19 case counts in all countries with high accu-
racy. The method is able to forecast major and minor peaks, up-and-down fluctuations,
and long periods of steadily low (or high) numbers. These results not only demonstrate
the generalizability of our method to diverse countries and scenarios but also indicate that
mobility is indeed a common and important factor in determining the spread of COVID-19
in all countries.

5.2. Forecasting Accuracy

In order to measure the absolute error between the predicted daily cases (blue line
in Figure 4) and the actual daily cases (black markers in Figure 4), we use the MAE metric.
Results are reported in Table 2. Considering that countries may have substantially different
population sizes and case counts, to put the MAE values into perspective, we compare
them with the maximum number of daily cases observed in each country, i.e., max(DC).
The ratio of MAE/max(DC) is therefore added as the rightmost column of Table 2.

Table 2. Mean Absolute Error (MAE) and its ratio to the maximum number of daily cases (max(DC))
per country.

Country MAE (w = 1) max(DC) MAE
max(DC)

Argentina 1401.15 41,080 3.41%

Austria 389.06 15,809 2.46%

Canada 719.59 11,381 6.32%

Denmark 207.02 8773 2.36%

India 3492.39 414,188 0.84%

Italy 1108.03 40,902 2.71%

Japan 270.15 25,992 1.04%

Netherlands 515.97 23,714 2.18%

Norway 193.20 7631 2.53%

Poland 1457.33 35,253 4.13%

Portugal 378.06 16,432 2.30%

Turkey 369.41 63,082 1.99%

United Kingdom 1929.96 68,053 2.84%

According to Table 2, for 10 out of 13 countries, the ratio MAE/max(DC) is lower than
than 3%. This result supports the fact that the predicted daily case counts closely resemble
actual case counts, as indicated also by Figure 4. The country with the highest MAE/max(DC)

is Canada, which is followed by Poland and Argentina. The country with the lowest
MAE/max(DC) is India, which is followed by Japan and Turkey. For all remaining seven
countries, their MAE/max(DC) is 2–3%, which is low. Overall, we can conclude that our
methodology produces accurate forecasts with low MAE.
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5.3. Impact of Window Size w

In order to investigate the impact of the w parameter on forecasting accuracy, we
perform an experiment by varying w and measuring relative error (RE) for each country.
The results are reported in Table 3. It can be observed from Table 3 that as w increases, REs
decrease. This is because higher w implies smoother time series; thus, forecasting is easier
due to fewer fluctuations in the underlying time series. It is worthwhile to note that REs
are already low when w = 3 to begin with, e.g., less than 5% for majority of the countries
when w = 3. As w increases, REs become even lower, e.g., when w = 7, the majority
of the countries have less than 3% RE.

Furthermore, one can observe that our forecasting methodology works particularly
well for some countries such as India and Turkey. For example, the REs for India are
2.15%, 1.43% and 1.00% for w = 3, w = 5 and w = 7, respectively. For Turkey, all REs
are below 2% for w = 3, 5, 7. On the other hand, higher REs are observed for certain
countries such as Denmark and Norway. The reason is because of the relatively low DC
values in these countries, which imply that the denominator in Equation (6) will be small.
Therefore, although the absolute value difference between the actual versus predicted
counts is not high (i.e., the numerator |DC[i] − DC∗[i]| in Equation (6), dividing it by
a small DC[i] yields relatively high RE. For example, in the case of Norway, the MAE values
are 42.81, 34.38 and 25.44 for w = 3, w = 5 and w = 7, respectively. In the case of Denmark,
the MAE values are 59.59, 43.94 and 33.96 for the same w values. Clearly, these are quite
negligible inaccuracies for countries with over 5 million population.

Table 3. Relative error (RE) for each country and window size w.

Country w = 3 w = 5 w = 7

Argentina 4.18 2.99 2.09

Austria 5.09 4.12 2.53

Canada 7.13 4.49 3.51

Denmark 6.24 4.58 3.52

India 2.15 1.43 1.00

Italy 3.85 2.55 2.26

Japan 4.05 2.99 1.78

Netherlands 3.50 2.58 2.26

Norway 8.57 6.99 5.13

Poland 5.61 4.20 2.83

Portugal 6.57 4.93 3.68

Turkey 1.94 1.44 1.39

United Kingdom 3.72 2.58 2.21

5.4. Comparison of Regression Types

Recall from Section 4.4 and Algorithm 1 that a total of 12 regression types are imple-
mented and tested within our methodology for finding the best model Ropt. In this section,
we investigate: (i) the accuracy benefit of our approach, (ii) which regression types usually
perform better than others, and (iii) provide a comparison among different regression types.
To that end, we first perform a side-by-side comparison between different regression mod-
els for different countries. Results for two of the countries (Netherlands and India) are
reported in Figure 5—the rest are omitted for brevity but show similar trends.

We observed that in general, Ridge Regression, RANSAC Regression and Linear
Regression perform better than other model types, as indicated by Figure 5. Ridge Re-
gression is best in Figure 5a, whereas RANSAC Regression is best in Figure 5b. Errors are
quite similar among the top-3 regression types; e.g., in Figure 5a, they are all close to 5%
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and in Figure 5b, they are all close to 2.5%. However, the errors become progressively
worse afterwards. Usually, KNN, AdaBoost, Decision Tree, Huber and Random Forest
Regression perform the worst. Interestingly, this sequence of worst-performing regres-
sion types is observed unexceptionally across all countries, including those that are not
reported in the paper for brevity. Upon analyzing the results, we observed that the high
errors of these regression types is because of the negative bias in their forecasts. In other
words, these regression types consistently underpredict the actual COVID-19 case counts.
Among them, AdaBoost, KNN and Decision Tree are the regression types which suffer
most from unprediction, which is consistent with the results in Figure 5, considering that
these regression types are also the worst three performers in terms of RE.

Overall, we observe that our proposed search for Ropt is beneficial compared to using
a random regression type, since a random regression type may yield substantially higher
error (2–3 fold or more) than choosing the best type. Thus, Algorithm 1 is empirically
shown to be beneficial for improving accuracy.

There are also technical explanations as to why Ridge, RANSAC, Lasso and Linear
Regression perform similarly. RANSAC improves Linear Regression by excluding out-
liers in the dataset which should not have any influence on the values of the estimated
coefficients. Therefore, obtaining similar accuracy can be expected for RANSAC and Lin-
ear Regression. Likewise, Ridge and Lasso Regression share commonalities in placing
constraints on regression coefficients by introducing penalty factors; however, they differ
in the fact that Lasso uses the l1-norm of the coefficients, whereas Ridge uses l2-norm.
Accordingly, Ridge and Lasso Regression have similar accuracy.

In Table 4, we summarize which regression type performed best for which country.
We observe that across all countries, only RANSAC and Ridge Regression could be the best.
RANSAC performed best for nine of the countries, while Ridge Regression performed best
for the remaining four countries.

(a) Netherlands

Figure 5. Cont.
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(b) India

Figure 5. Relative errors for each regression type (w = 1).

Table 4. Best regression type for each country.

Regression Type Countries

RANSAC Argentina, Austria, Canada, Denmark, India,
Italy, Japan, Norway, Poland

Ridge Netherlands, Portugal, Turkey, United
Kingdom

5.5. Analysis of Feature Sets

Recall from Algorithm 1 that the best-performing feature set is searched dynamically
when constructing Ropt. In this section, we analyze two aspects of this search: (i) finding
which time series are included in the best F , and (ii) finding the optimal time period t.
The results of these analyses are noteworthy since they indicate which mobility type has a
significant impact on the daily cases of each country; e.g., if Algorithm 1 found a certain
mobility time series to be part of the best feature set, then a substantial correlation must
exist between that mobility type and the COVID-19 case counts in that country.

Analysis with respect to F : First, we analyze which mobility time series are selected
by Algorithm 1 for inclusion in the best F . The results of our analysis are provided
in Table 5. Each mobility time series is given one column. (We do not include non-mobility
time series DC and DT in this table, since they are always part of F .) A checkmark in a cell
indicates that the corresponding mobility time series was selected as part of the best
F for the corresponding country. As observed from Table 5, Transit Stations (TS) and
Residential (RS) are selected by almost all countries in their best F , which is intuitive. Since
TS consists of places such as subway stations, seaports, taxi stands, highway rest stops,
etc., the mobility of individuals in such places is indeed a strong indicator of the spread
of COVID-19. For example, if many people are spending their time in subway stations
or taxi stands, then this indicates a large amount of mobility in public or private transport,
which can cause the COVID-19 virus to spread faster. In contrast, RS is for residential
locations, e.g., if many people are staying at home, then this will slow down the spread
of COVID-19. It is therefore intuitive that both TS and RS are typically included in the best
F of various countries. On the other hand, Workplaces (WP) and Retail and Recreation
(RR) are less commonly included in the best F . One reason could be that individuals spend
their time in recreational locations or by shopping for necessities regardless of the status
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of the pandemic, which weakens the predictive power of the corresponding mobility
time series.

Table 5. Results of searching for the best feature set using Algorithm 1—which mobility time series
were included in the best F for each country?

Country Workplaces
(WP)

Transit Stations
(TS)

Residential
(RS)

Retail and
Recreation (RR)

Argentina X X

Austria X X

Canada X X

Denmark X X

India X X

Italy X X

Japan X X

Netherlands X X

Norway X X

Poland X X

Portugal X X

Turkey X X

United Kingdom X X

Analysis with respect to t:Recall that Algorithm 1 searches for the optimal time period
t, between t ∈ [1, tmax]. Here, we analyze which value of t was selected by Algorithm 1
as the optimal one for each country. The results of our analysis are provided in Figure 6. We
had previously found in Section 3.2 that according to TLCC, the highest correlations are reached
when the time lag is around 12–15 days. The results in Figure 6 and therefore Algorithm 1
agree with our findings from Section 3.2. For nine out of 13 countries, the optimal t was found
to be between 12 and 15 days. In addition, considering that t > 18 was never found to be
optimal for any of the countries, we can conclude that including unnecessarily old readings
hurt the accuracy of the regression model rather than improving it.

Figure 6. Results of searching for the best time period t using Algorithm 1—what was the best value
of t for each country?

5.6. Analysis of Forecasting Bias

One important aspect in forecasting is bias; e.g., the forecasting method may consis-
tently overpredict (DC∗ > DC) or underpredict (DC∗ < DC) the number of daily cases,
which should be avoided. To measure whether bias exists in our models, we perform the fol-
lowing experiment and report its results in Figure 7. Plots for only two countries (India and
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United Kingdom) are included in the figure, since the results for the rest of the countries
show similar trends. India and the United Kingdom were chosen because their distribu-
tion of the number of daily cases is substantially different (see the distribution of black
circle-shaped markers in Figure 7); hence, they represent two diverse scenarios.

(a) India

(b) United Kingdom

Figure 7. Measurement of bias for our forecasting methodology.

Consider different days with different numbers of daily cases DC[i]. For each day with
a certain number of daily cases (x axis), we use a marker in Figure 7 to denote the Relative
Error (RE) measured for that day only. Then, we use least squares optimization to fit
a best-fit line on the markers. In Figure 7, the best-fit line is shown in blue. To be able
to compare the blue line with a hypothetical perfect estimator, we draw the red line which
corresponds to RE = 0 for all DC[i] values. When we compare the red and blue lines
in Figure 7, we observe that the blue line very closely resembles the red line. There is
a minor underprediction for the small number of daily cases and minor overprediction
for the large number of daily cases; however, black markers are almost equally divided into
below and above the red RE = 0 line. Thus, we can conclude that the forecasts produced by
our methodology are close to being unbiased.
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5.7. Runtime Performance and Overhead

In Table 6, we report the execution times of different regression types for three rep-
resentative countries: Turkey, the Netherlands and Italy. These countries are chosen so
that execution times in diverse scenarios can be studied—as noted in Table 1, Turkey has
the smallest interval, Italy has the largest interval, and Netherlands has the median interval
among all countries. Values in Table 6 are measured with window size w = 1. All values
are reported in seconds.

Table 6. Execution times of each regression type (individually) and Algorithm 1 in total, for three
different countries (Turkey, Netherlands, Italy). All values are reported in seconds.

Regression Type
or Method Turkey Netherlands Italy

Linear 0.15 0.20 0.25

XGB 1.72 3.16 3.59

AdaBoost 1.74 2.42 3.05

Decision Tree 0.19 0.20 0.29

Gradient Boosting 1.63 1.69 2.18

Random Forest 4.97 7.03 9.02

Extra Trees 4.01 5.64 7.47

KNN 0.26 0.38 0.45

Ridge 0.15 0.19 0.23

Lasso 0.24 0.26 0.31

Huber 0.34 0.36 0.39

RANSAC 0.51 0.63 0.71

Algorithm 1 (total) 2252.95 6293.88 7949.11

We observe that most of the regression types have low overhead (less than 1–2 s);
therefore, they are efficient in practice. In particular, it is worthwhile to underline that
regression types which had yielded high accuracy (such as Linear, Ridge, RANSAC, Lasso)
are all highly efficient as well. In contrast, regression types which use ensemble models
or boosting (such as Gradient Boosting, Random Forest, Extra Trees) have relatively higher
execution times, as expected. Finally, we also measure and report the total execution
time of Algorithm 1 in Table 6. Note that Algorithm 1 is tasked with testing different time
periods t and feature sets F in addition to testing regression types. Thus, the total execution
time of Algorithm 1 is not a simple summation of all regression types. It can be noted
from Table 6 that the execution time of Algorithm 1 is higher than individual regression
models because of this custom search. Nevertheless, it is possible for Algorithm 1 to finish
in a couple of hours on a commodity laptop. Considering that the execution of Algorithm 1
is a one-time cost and it can be performed on computers with strong computation power,
we believe that the total execution times remain feasible in practice.

6. Conclusions and Future Work

In this paper, we proposed a method for forecasting COVID-19 case counts using ag-
gregate mobility statistics from Google Community Mobility Reports (CMRs), along with
historical COVID-19 case counts and test counts. All data sources used in our method are free
and publicly available, which is beneficial for the adoption and reproducibility of our work.
Our method relies on training a regression model using features extracted from the afore-
mentioned data sources. Furthermore, our method utilizes a custom algorithm for selecting
the best feature set, time period t, and regression type dynamically from the underlying data.
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The accuracy of our forecasting method is evaluated on 13 different countries, and the results
show that our method can forecast daily COVID-19 case counts with high accuracy.

Overall, there are several take-away messages and avenues for future work.
First, the TLCC analysis we performed as well as the high accuracy of our forecasting
method demonstrate that aggregate mobility statistics and the spread of COVID-19 are
indeed correlated. Yet, COVID-19 is only one example of communicable diseases. We
expect that our general approach of using mobility statistics to forecast pandemic case
counts would be applicable and relevant to other communicable diseases as well. However,
testing this hypothesis is beyond the scope of this paper. It is also difficult to test this
hypothesis on other communicable diseases with currently available data, considering:
(i) the rareness of global pandemics with high case counts, (ii) lack of mobility statistics (in
the form of CMRs, for example) for many previous pandemics or outbreaks of communica-
ble diseases, and (iii) lack of historical government interventions for mobility reduction,
such as venue closures or stay-at-home orders. Nevertheless, we believe that our approach
can be used as a guideline in future pandemics, and a method similar to ours can be tested
on different communicable diseases, outbreaks of contagious viruses, and/or used to model
the behavior of a future pandemic.

Second, our models perform forecasting at the country level; however, for large
countries (such as the United States), one can study forecasting at lower levels (such
as state, county, or city-level). We expect that this would enable finer-granularity forecasting,
considering that population density in some states/cities can be significantly different than
other states/cities.

Third, the integration of deep learning models into our framework and comparison
of their performance against our current models can be performed. This is a non-trivial
task, considering that the structure and parameters of deep models need to be tuned
carefully. Furthermore, it is not guaranteed that deep models will perform better than our
current models. For example, in the literature, Ref. [23] used Long Short-Term Memory
(LSTM) networks for COVID-19 prediction. Percentage errors reported in this study are
around 1.4% for Russia, 5.8% for Peru, and 3.5% for Iran. In [24], Luo et al. also used
LSTM networks for COVID-19 prediction, and they obtained an MAE of 771 for America.
In [28], Schwabe et al. compared a neural network model against a non-deep model
that was developed by the authors (based on Hawkes processes), and they showed that
their model performs better than the neural network in terms of MAE and RMSE. In [22],
Athanasios et al. compared an Artificial Neural Network (ANN) with a SVM and Random
Forest (RF) model in the task of forecasting COVID-19 in Greece, and their results indicate
that the RF model has lower MAE and MSE than the ANN. While these results are not
directly comparable to ours (considering that countries, data sources and error metrics are
oftentimes different), they indicate that deep models can perform similar, worse or better
than our current models. A detailed comparison study and analysis need to be conducted
in future work in order to arrive at a conclusive answer.

Finally, our models are currently built using mobility statistics extracted from Google
CMRs; however, they are not necessarily tied to CMRs. Our models can be built as long
as we have access to individuals’ aggregate amount of presence or mobility in different lo-
cation categories such as transit stations, retail and recreation, workplaces, etc. It is possible
for such information to come from Google CMRs or other resources. For example, certain
companies such as Apple and Uber have also been releasing mobility-related statistics
during and/or after the pandemic (e.g., Uber Movement 1 and Apple Mobility Trends
Reports 2). Information in these resources can be used as a direct or indirect substitute
for Google CMRs, e.g., if travel time is high or average speed is low in a neighborhood,
then aggregate presence and mobility are high. It is also possible to find statistics regarding
the usage of public transportation or recreational areas for some cities. Thus, it is possible
to explore the applicability of our approach with other data sources in future work.
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