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Abstract: The Peruvian creole cattle (PCC) is a neglected breed and an essential livestock resource
in the Andean region of Peru. To develop a modern breeding program and conservation strategies
for the PCC, a better understanding of the genetics of this breed is needed. We sequenced the whole
genome of the PCC using a de novo assembly approach with a paired-end 150 strategy on the Illumina
HiSeq 2500 platform, obtaining 320 GB of sequencing data. A reference scaffolding was used to
improve the draft genome. The obtained genome size of the PCC was 2.81 Gb with a contig N50 of
108 Mb and 92.59% complete BUSCOs. This genome size is similar to the genome references of Bos
taurus and B. indicus. In addition, we identified 40.22% of repetitive DNA of the genome assembly, of
which retroelements occupy 32.39% of the total genome. A total of 19,803 protein-coding genes were
annotated in the PCC genome. For SSR data mining, we detected similar statistics in comparison
with other breeds. The PCC genome will contribute to a better understanding of the genetics of this
species and its adaptation to tough conditions in the Andean ecosystem.

Dataset: The genome sequence is openly available in the Genbank of NCBI under the accession
number JANIWY000000000 (https://www.ncbi.nlm.nih.gov/nuccore/JANIWY000000000.1 accessed
on 4 October 2022). The associated Bioproject, Biosample, and Sequence Read Archive (SRA) numbers
are PRJNA849594, SAMN29095626, and SRS13407845, respectively.

Dataset License: CC0

Keywords: NGS; neglected breed; genome; reference scaffolding; microsatellites

1. Summary

According to Scheu et al. [1], cattle domestication started in the ninth millennium
BC in Southwest Asia. Similarly, Upadhyay et al. [2] referred to European cattle’s genetic
origin and domestication to start around 10,000 years ago in the Near East. Over the
years, its use has been extended worldwide, where cattle species have been distributed and
adapted to various climates. The genus Bos is divided into six species: B. gaurus, B. javanicus,
B. mutus, B. bison, B. sauveli, and B. primigenius [3]. Of these, four are domesticated species:
B. mutus, B. javanicus, B. gaurus, and B. primigenius, which are represented by their domestic
forms B. taurus and B. indicus [3]. The taxonomic status of B. taurus and B. indicus are
controversial [4]. Through a mitochondrial analysis, Hiendleder et al. [4] determined that
B. taurus and B. indicus lineages diverged 1.7–2.0 million years ago, suggesting these species
deserved a subspecies status for taurine and zebuine cattle. The genomics of cattle have
been fully studied, with its genome being completely sequenced by 2009; B. taurus is one
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of the most studied species in the livestock area [5]. This project was developed by more
than 300 scientists from different countries. Similar efforts are being performed by other
institutes to broaden the knowledge of the Hereford reference breed.

Genetic characterization studies of the creole cattle from Latin America are still limited.
Delgado et al. [6] characterized Latin-American creole cattle from 10 countries using
19 microsatellite markers, which included 26 creole cattle breeds. Their results indicated
high genetic diversity among creole cattle, suggesting the implementation of conservation
measures. Similarly, Giovambattista et al. [7] reported bovine MHC DRB3 gene diversity
in Bolivian “Yacumeño” cattle and Colombian “Hartón del Valle” cattle. The authors’
results suggested a high level of genetic diversity for these breeds that could be explained
tentatively by multiple origins of creole germplasm (European, African, and Indicus). In
a comprehensive study, Ginja et al. [8] evaluated the genetic ancestry of American creole
cattle utilizing microsatellite markers, mitochondrial DNA, and Y chromosome information.
They sampled 40 creole breeds representing the whole American continent. In addition
to those already considered by Delgado et al. [6], cattle from the Latin American and
Caribbean countries of Bolivia, Chile, Suriname, and Venezuela were sampled. Ginja et al.
concluded that creole cattle have a mixed ancestry where African cattle have played a role
in its development. Unfortunately, none of these studies included samples or information
from Peruvian cattle. Recently, Raschia and Poli [9] employed a medium-density SNP array
to characterize Argentinian creole cattle. They concluded that the genetic relationships
showed a close relationship among four groups of creole animals from Argentina. Liu
et al. [10] studied the mitochondrial genome of Uruguayan native cattle and demonstrated
that it clustered with Korean breeds. In addition, Aguirre Riofrio et al. [11] performed a
microsatellite analysis for the genetic characterization of the creole cattle in the southern
region of Ecuador. They concluded that the bovines studied are genetically distant from
zebuine breeds and their ancestral origin must be related to the Iberic populations. Aracena
and Mujica [12] reported the morphological and reproductive characterization of the
Chilean Patagonian bovine and indicated that brown is the color base for its hair. They
also compared the Chilean Patagonian bovine to Argentinian cattle, finding similarities in
productive and reproductive aspects.

There is a significant source of genetic variation in cattle breeds. There are more
than 700 breeds of cattle worldwide [3]. Generating assemblies from short reads in large
genomes such as bovine is challenging. This is largely due to the repetitive sequences that
these genomes contain. However, possession of more complete sequences of draft genomes
is very important for future biological applications. One approach by which contigs can be
scaffolded is to use references of the same or related species. This strategy yielded much
larger contigs and improved assembly parameters [13]. In this type of strategy, an order
of genetic markers very similar to the reference genome has been found, given that the
components of genomic rearrangements between them are very rare [14]. However, many
structural errors are introduced into the final assembly when compared to direct assembly
approaches that do not use a reference genome [15].

There are important initiatives to study genetic variation through the study of bovine
pangenomes [16,17]. The first reference to the B. taurus genome was obtained in 2004 based
on a Hereford individual. The latest update of this genome was done in the same cow using
continuous long-reading sequencing from Pacific Biosciences (ARS-UCD1.2 ) [18]. On the
other hand, it has been possible to carry out efforts such as that of the Bovine Pangenome
Consortium (https://njdbickhart.github.io/ accessed on 25 July 2022), where information
on alleles and haplotypes of more than 600 different known breeds of cattle is being
obtained worldwide. With the decrease in sequencing costs, genomic studies can be carried
out in other regions that have not had precedents, such as the South American region.

In Peru, bovine creole cattle have received a limited amount of research attention.
Through the use of six microsatellite markers, Yalta-Macedo et al. [19] inferred the PCC
ancestry and proposed that it descended from cattle from the Iberian peninsula. This
study also suggested that male-mediated African cattle influenced the PCC. More recently,

https://njdbickhart.github.io/
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Arbizu et al. [20] confirmed these findings, by constructing a phylogenetic tree and reveal-
ing the phylogenetic relationships with the African cattle breeds Boran and Arsi. According
to M. Rosemberg (UC del Sur, pers. comm.), PCC can be found as a crossbreed with Brown
Swiss breeds around 3500 meters above sea level (MASL). PCC is mainly distributed in
the Peruvian highlands [21]. In Peru, there is no strong national registration program
to record pedigree and productivity for PCC as in other countries [22]. PCC are phe-
notypically distinguishable by their smaller size when compared to other exotic breeds.
Comprehensive efforts to determine the full potential of muscle growth of the PCC have
been conducted [23–25].

Therefore, further studies about PCC genomics will be beneficial for conservation
programs and future selection activities. For this, additional sampling of bovine creole
individuals is being performed by the National Institute of Agrarian Innovation (Spanish
acronym INIA), a Peruvian government research institution. The goal of this study is
to contribute to the understanding of the PCC molecular characterization, as well as its
comparative genomics among the Bovinae subfamily.

2. Data Description

The whole genome sequencing data was deposited in the SRA database under code
number SRS13407845, Biosample SAMN29095626, and Bioproject PRJNA849594. The total
number of raw pair reads was 854,737,766 sequences, with an average length of 150 bp, a
GC content of 44%, and a total sequencing data output of 320 GB. After the trimming, we
retained 88.2% of sequencing data, and more than 790 million high-quality sequence reads
with approximately 281.6 GB of total sequencing data were generated. No over-represented
sequences and adapters were found. In addition, the average quality per read was 40.

2.1. Genomic Survey

We obtained low heterozygosity, moderate repetition (33.3%), and the genome size
estimate (2.58 Gb) was close to the reported references of the genome of B. taurus (ARS-
UCD1.3: 2.71 Gb, ARS-LIC_NZ_Jersey: 2.64 Gb, ARS-LIC_NZ_Holstein-Friesian_1: 2.66 Gb,
Brown Swiss: 2.66 Gb, and Btau_5.0.1: 2.72 Gb). Based on the estimated draft genome size,
subsequent de novo assembly and genome annotation were performed with a sequencing
depth of approximately 47.44 X coverage (Figure 1).

2.2. Assembly De Novo, Reference-Assisted Scaffolding, and Validation

Different assemblies from the SOAPdenovo2 [26] and MaSuRCA [27] programs were
obtained. We continued our analysis with MaSuRCA due to a better N50 and longer contigs
(Table S1). MaSuRCA assembly was scaffolded with reference-guided scaffolding, and we
obtained a total length of 2.77 Gb, which had 10,953 contigs (≥1000 bp) with a GC content
of 41.87 %. The longest contig was 164,677,778 bp. In addition, we found that 99.21% of
the raw paired-end reads generated from the small insertion libraries were aligned to our
final assembled genome. With the scaffolding approach, we improved the N50 from 12.84
kb to 108.72 Mb (Table 1). In addition, the number of complete mammalian single-copy
BUSCOs (Benchmarking Universal Single-Copy) increased from 1620 to 3800 complete
BUSCOs (Table 2). We obtained 3744 complete and single-copy BUSCOs (S), 56 complete
and duplicated BUSCOs (D), 165 fragmented BUSCOs, and 139 missing BUSCOs.
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Figure 1. Distribution of k-mers in the draft genome of Peruvian creole cattle.

Table 1. Statistics of the completeness of the de novo assembly of the Peruvian creole cattle genome.

Statistic Contigs Scaffolds

N50 12,843 108,727,214
N75 7242 74,944,637
L50 63,921 11
L75 133,082 19

Largest contig 109,017 164,677,788
Total length 2,679,899,159 2,814,362,078

GC (%) 41.92 41.87
# contigs (≥1000 bp) 307,114 10,953
# contigs (≥5000 bp) 179,627 1848

# contigs (≥10,000 bp) 92,431 777
# contigs (≥25,000 bp) 14,279 210
# contigs (≥50,000 bp) 726 75

# N’s per 100 kbp 0.0 5710.08
# These correspond to “number of”.
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Table 2. Summary of the BUSCO approach in in the Peruvian creole cattle assembly (contigs
and scaffolds).

Terms Contigs Scaffold

Complete BUSCOs 1620 3800
Complete and single-copy BUSCOs 1580 3744
Complete and duplicated BUSCOs 40 56

Fragmented BUSCOs 1573 165
Missing BUSCOs 911 139

Compared to other cattle breeds’ scaffold level assembly (Brown Swiss 26.03 Mb
N50) and chromosome level assembly (Hereford: 103.31 Mb, Jersey: 104.07 Mb, Holstein:
100.96 Mb, N’Dama: 104.85 Mb, Nelore: 106.31 Mb, Gyr: 104.3 Mb, and Ankole: 84.48 Mb)
our assembly has 108.72 MB N50, showing a high level of scaffolding (Table 3). Addi-
tionally, our assembly has 92.59% complete BUSCOs (C) (S: 91.2% + D:1.4%), similar to
the Nelore breed with 92.9% C (S: 91.9% + D:1%) and the Hereford breed with 91.7% C
(S: 90.6% + D:1.1%) (Figure 2).

Table 3. Comparison of Peruvian creole cattle (PCC) assembly with other B. taurus and
B. indicus species.

B. taurus B. indicus

Breed PCC Hereford Jersey Holstein Brown
Swiss N’Dama Nelore Gyr Ankole

Level
Assembly Scaffold Chromosome Chromosome Chromosome Scaffold Chromosome Chromosome Chromosome Chromosome

Total
sequence

length
2,814,362,078 2,711,209,831 2,641,777,256 2,665,549,695 2,658,221,619 2,766,829,411 2,673,965,444 2,740,330,345 2,921,040,163

Total
ungapped

length
2,653,670,481 2,711,181,669 2,641,709,256 2,665,138,195 2,635,427,799 2,708,415,641 2,475,828,999 2,695,917,733 2,834,561,153

Gaps
between
scaffolds

0 0 0 0 0 0 0 0 0

Number of
scaffolds 12,639 1957 229 2306 14,725 1210 32 216,409 7581

Scaffold
N50 110,880,623 103,308,737 104,068,235 100,964,413 26,027,505 104,847,410 106,310,653 104,295,553 84,476,814

Scaffold
L50 11 12 11 12 29 12 11 12 13

Number of
contigs 761,086 2343 365 3129 34,351 3601 253,770 337,292 8473

Contig N50 6381 25,896,116 50,551,513 8,737,306 268,406 11,058,985 28,375 64,498 18,716,610
Contig L50 126,374 32 17 90 2856 71 25,227 11,998 49

Total
number of

chromo-
somes and
plasmids

0 31 32 32 0 32 32 31 30

Number of
component
sequences
(WGS or

clone)

12,639 1957 229 2306 14,725 1210 253,770 216,409 7581
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Figure 2. Comparison of BUSCO analysis of the Peruvian creole cattle with the references of B. taurus
and B. indicus.

2.3. Genomic Annotation

We used gene prediction methods (ab initio prediction and homology-based search) to
annotate the protein-coding genes in the draft genome, resulting in 19,803 annotated protein-
coding genes. We found that our assembly and annotation (19,803 protein-coding genes) is
not as complete as that of the B. taurus reference genome (ARS-UCD1-HerefordGenbank,
GCF_002263795.1), which had 21,039 protein-coding genes. On the other hand, we iden-
tified 897,585,367 bp retroelements, corresponding to 32.29% of the assembled PCC draft
genome. The most abundant repetition was the LINES type, which represented 28.55% of
the total assembly. In addition, we identified other types of repetitive DNAs: the RTE/Bov-
B type (16.32%) and L1/CIN4 (10.51%). Notably, 3.48% of repetitive unclassified DNA was
found, and 37.38% of the total assembled genome has been classified as a total interspersed
repeat (Table 4).

Table 4. Summary of the repetitive DNA of Peruvian creole cattle.

Repetitive DNA Number of Elements Length Occupied Percentage of Sequence

Retroelements 3,484,900 897,585,367 bp 32.39%
SINEs 256.918 28,733,533 bp 104%
LINEs 2,890,366 791,282,631 bp 28.55%

L2/CR1/REX 173.451 19,529,331 bp 0.70%
RTE/Bov-B 1,426,552 452,420,074 bp 16.32%

L1/CIN4 1,111,156 291,303,229 bp 10.51%
LTR elements 33.7616 77,569,203 bp 2.80%

Retroviral 337.127 77,499,189 bp 2.80%
DNA transposons 245.87 41,992,077 bp 1.52%

hobo-Activator 84.758 27,282,703 bp 0.98%
Tc1-IS630-Pogo 60.623 14,480,775 bp 0.52%
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Table 4. Cont.

Repetitive DNA Number of Elements Length Occupied Percentage of Sequence

Unclassified 665.577 96,490,946 bp 3.48%
Total interspersed repeats 1,036,068,390 bp 37.38%

Small RNA 161.025 17,146,359 bp 0.62%
Satellites 700 416,318 bp 0.02%

Simple repeats 499.594 20,282,441 bp 0.73 %

2.4. SSR Data Mining

The most abundant microsatellite motif type of the PCC were mononucleotide repeats,
accounting for 59% (593,627) of the total SSRs, followed by dinucleotide repeats (26.3% or
264,341), trinucleotide repeats (12.1% or 121,761), tetranucleotide repeats (1.2% or 11,665),
pentanucleotide repeats (1.4% or 13,824), and, finally, hexanucleotide repeats (0.034% or
346). This is similar to the microsatellite motif distribution of other breeds such as Hereford,
Jersey, Holstein, Brown Swiss, N’Dama, Nelore, Gyr, and Ankole (Figure 3A, Table S2).

A total of 1,005,564 microsatellite loci were identified based on the assembled PCC
draft genome sequence, with a frequency of 376.62 SSR/Mb, which is almost the same as
N’Dama (376.89 SSR/Mb), lower than Jersey (379.76 SSR/Mb), but higher than Holstein
(376.01 SSR/Mb), Brown Swiss (375.63 SSR/Mb), Ankole (374.38 SSR/Mb), Hereford
(372.55 SSR/Mb), Gyr (360.12 SSR/Mb), and Nelore (336.2 SSR/Mb) (Table 5). In addition,
the number of SSRs present in the compound formation of PCC (92,354) was very similar
to the other breeds. In addition, it is highlighted that the size of the genomes of the other
B. taurus breeds is very similar to the Peruvian creole cattle assembly (Figure 3B).
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Figure 3. Distribution of SSRs in breeds. (A) Percentage of SSR per motif in the Peruvian creole (PCC)
in comparison with other breeds. (B) Bubbles that represents the total number of identified SSRs, the
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Table 5. Summary of SSR distribution in Peruvian creole cattle (PCC) and other B. taurus and B.
indicus species.

B. taurus B. indicus

Breed PCC Hereford Jersey Holstein Brown
Swiss N’Dama Nelore Gyr Ankole

Total size of examined
sequences (Gbp, with gaps) 2.8144 2.7112 2.6418 2.666 2.6582 2.7668 2.67380 2.7403 2.9210

Total number of identified SSRs 1,005,564 1,009,980 1,003,327 1,002,450 998,430 1,042,868 899,003 986,718 1,093,552
Frequency (SSR/Mb) 357.30 372.52 379.79 376.08 375.60 376.92 336.21 360.07 374.37
Number of SSRs present in
compound formation 92,354 104,313 104,005 104,288 98,838 116,622 82,308 93,628 132,842

2.5. Concluding Comments

In summary, we reported the first draft genome of the Peruvian creole cattle. Our
draft genome is very similar to other reported draft genomes of B. taurus. In addition, we
generated information about SSR which will be employed in the near future for population
genetics and diversity studies. Since there are limited genomic sequence resources for the
PCC, our study hopes to provide a reference for animal improvement programs for this
important livestock resource.

3. Methods
3.1. Sample Collection and DNA Extraction

We collected hair samples from the tail of a single male specimen from Andagua,
Arequipa (3574 MASL; −15.499548◦, −72.359927◦). Since this individual possessed most of
the classical characteristics of Peruvian creole cattle, we decided to select it for this study.
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We extracted genomic DNA with the Wizard Genomic DNA Purification Kit (Fitchburg, WI,
USA) following the manufacturer’s instructions. The quality and quantity of genomic DNA
were assessed using agarose gel electrophoresis and a Qubit 2.0 Fluorometer (ThermoFisher
Scientific, Waltham, MA, USA), respectively. The mitochondrial genome of this individual
was recently sequenced [20].

3.2. Genome Sequencing and Genomic Survey

We used a library with 300 bp insert size and paired-end-tag DNA sequencing us-
ing the Illumina HiSeq 2500 platform, generating around 2x151 bp reads. A reference-
scaffolding approach was used to improve the draft genome, and the raw reads were
checked by FastQC v.0.11.9 [28]. In addition, trimming quality (Phred Q > 25) and remotion
of adapters were conducted with Trimmomatic v0.36 [29] and TrimGalore software [30], re-
spectively. For the genomic survey, we used Jellyfish v.2.0 [31]. Genome Scope v1.0.0 (Cold
Spring Harbor Laboratory, Laurel Hollow, NY, USA) [32] was employed to estimate the fea-
tures of the genome, including genome size, repeat content, and heterozygosity rate, using
the output of Jellyfish and the number of 17-mer for k-mer analysis. K-depth was estimated
to identify a common single-peak pattern in the k-mer frequency distribution analysis.

3.3. De Novo Assembly and Validation

De novo assembly was performed with two assembly algorithms: SOAPdenovo2
v.2.04 [26] and MaSuRCA v.4.0.6 [27]. Next, we used QUAST v.5.2.0 [33] for statistics
of assemblies. MaSuRCA resulted in improved assembly statistics and was subjected
to Samba scaffolder v.1.0 [34] for scaffolding and gap-filling. For the reference-based
scaffolding, we used a reference genome of B.taurus (Genbank: GCA_002263795.3) since
this is the last updated genomic tool for this species. Next, we used QUAST with the
output of the scaffolding. Validation of assembly was assessed using three different ap-
proaches: (i) filtered PE Illumina reads were remapped to detect errors in the assem-
bly using Bowtie2 v.2.4.2 [35] and SamTools v.1.7 [36] software, (ii) the BUSCO [37]
strategy was used to test the completeness of the genome assembly and gene space,
using the mammalian-specific profile—this approach makes use of single-copy genes
expected to be present in mammals (4104 genes)—and (iii) available B. taurus genomic
resources such as CDS (coding DNA sequences) and PacBio transcriptomes data were
used to map back to the draft genome using GMAP v.2021.08.25 [38]. We used JCVI
VecScreen (https://github.com/tanghaibao/jcvi accessed on 5 July 2022), which uses
Univecdatabase (https://ftp.ncbi.nlm.nih.gov/pub/UniVec/ accessed on 20 July 2022)
to detect vectors, and mapped the scaffolds against the nt/nr NCBI database (https:
//www.ncbi.nlm.nih.gov/ accessed on 10 July 2022) using BLAST v.2.2.26 [39] for identi-
fying contamination. The mitochondrial sequences were separated after BLAST searches
against databases of mitochondrial sequences. Finally, we removed contaminated scaf-
folds and vectors to submit to the NCBI database. This assembly has been deposited at
DDBJ/ENA/GenBank under the accession number JANIWY000000000.

3.4. Genome Annotation

To identify repetitive elements, we used de novo and homolog-based methods. For
the de novo approach, we used Repeatmodeler [40] to generate a de novo PCC repeat
library, which is subsequently used in RepeatMasker v4.0.7 [41] to annotate repeats. For
the homology-based approaches, we used Repbase v4.0.7 [42], RepeatMasker, and RM-
Blastv2.2.27 [43]. All repeat results were merged. Final genome assembly was repeat-
masked using the library repeats using RepeatMasker. MAKER [44] was run on the
repeat-masked genome with SNAP [45] and AUGUSTUS [46]. For evidence to guide the an-
notation process, we retrieved ESTs of B. taurus from the NCBI database (ftp://ftp.ncbi.nih.
gov/repository/dbEST/ accessed on 13 July 2022) and proteomes of the Bovidae species
B.taurus (Refseq: GCF_002263795.2), B. indicus (Refseq: GCF_000247795.1), and B. mutus
(GCF_000298355.1). MAKER software was run iteratively two times; the predictions were

https://github.com/tanghaibao/jcvi
https://ftp.ncbi.nlm.nih.gov/pub/UniVec/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
ftp://ftp.ncbi.nih.gov/repository/dbEST/
ftp://ftp.ncbi.nih.gov/repository/dbEST/
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curated against a high-quality protein database of UNIPROT (https://www.uniprot.org/
accessed on 15 July 2022) using BLAST with an E-value of 1 × 10-5.

3.5. Identification of Simple Sequence Repeats

The SSRs were identified in the PCC genome using MISA Perl script (http://pgrc.ipk-
gatersleben.de/misa/ accessed on 30 July 2022) [47] with the specific settings: monomer
(one nucleotide, n > 12), dimer (two nucleotides, n > 6), trimer (three nucleotides, n > 4),
tetramer (four nucleotides, n > 3), pentamer (five nucleotides, n > 3), hexamer (six nucleotides,
n > 3). In addition, for SSR analysis, we added the genomes of B. taurus breeds: Here-
ford (GenBank: GCA_002263795.3), Jersey (GenBank: GCA_021234555.1), Holstein (Gen-
Bank: GCA_021347905.1), Brown Swiss (GenBank: GCA_914753205.1), N’Dama (GenBank:
GCA_905123515.1), Nelore (GenBank: GCA_000247795.2), Gyr (GenBank: GCA_002933975.1),
Ankole (GenBank: GCA_905123885.1). We used BUSCO to examine the quality of assem-
blies. Subsequently, we used the MISA script with the same parameters for PCC.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/data7110155/s1, Table S1: Statistics of the completeness of the
assemblies from SOAPdenovo2 and MaSuRCA of the Peruvian creole cattle genome. Table S2: Motif
percentage of SSR in cattle breeds.
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