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Abstract: The development and rollout of COVID-19 vaccination around the world offers hope for
controlling the pandemic. People turned to social media such as Twitter seeking information or
to voice their opinion. Therefore, mining such conversation can provide a rich source of data for
different applications related to the COVID-19 vaccine. In this data article, we developed an Arabic
Twitter dataset of 1.1 M Arabic posts regarding the COVID-19 vaccine. The dataset was streamed
over one year, covering the period from January to December 2021. We considered a set of crawling
keywords in the Arabic language related to the conversation about the vaccine. The dataset consists
of seven databases that can be analyzed separately or merged for further analysis. The initial analysis
depicts the embedded features within the posts, including hashtags, media, and the dynamic of
replies and retweets. Further, the textual analysis reveals the most frequent words that can capture
the trends of the discussions. The dataset was designed to facilitate research across different fields,
such as social network analysis, information retrieval, health informatics, and social science.

Dataset: https://data.mendeley.com/datasets/zmwfnsms9n

Dataset License: CC BY 4.0

Keywords: COVID-19; pandemic; vaccine; Twitter; dataset; Arabic

1. Summary

Social media platforms such as Twitter, Facebook, YouTube, and Instagram can be a
powerful source of data [1]. In recent years, Twitter has been considered a popular source
for news broadcasting, marketing, advertising, emerging technologies, global events, and
politics [2]. Millions of users use Twitter to interact and exchange news and information.
Recently, Twitter had 217 million daily active users who post 500 million tweets a day [3].
Twitter is not only a platform for users to socially interact and maintain social ties, but it has
become a communication channel between organizations and society. Leaders, government
organizations, and institutions communicate with society through their posts [4,5]. More-
over, conversations on Twitter regarding an evolving topic can offer a great opportunity for
investigating people’s opinions and understanding their behaviors. Such understanding
can help governments and organizations in decision- and policy-making.

The role of social networks, and in particular Twitter, during crises or pandemics has
provoked interest among researchers and experts. The data content can provide important
insights into the management and analysis of crises, such as Ebola [6] and the seasonal
influenza epidemics [7]. Since the outbreak of COVID-19, there has been a significant
increase in the number of posts on Twitter related to this pandemic. The World Health
Organization (WHO) used Twitter as a communication channel to inform people about
the coronavirus and vaccination, to prevent false or fake information [8]. Further, the
conversation about the COVID-19 pandemic has drawn people’s attention over the world,
and people have turned to Twitter to share their opinion and look for information [9]. The
development and production of vaccines [10] offered a potential solution to controlling the
pandemic. Most vaccine distribution campaigns started on December 2020 [11]. The spread
of vaccine information that can impact vaccine uptake can be significantly increased with
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the wide usage of social media [12]. Therefore, studying and understanding the content of
social media around vaccinations can shape public opinion.

Mining the content of social media to develop datasets, particularly tweeted conversa-
tions, has gained considerable attention from the scientific community in different fields,
such as data mining, machine learning, natural language processing, big data analysis, and
social network analysis. In public health, using Twitter to carry out research has increased
significantly. Hence, developing tweet datasets to be used by researchers will enrich the
research in this field. Recent work developed data on drug safety [13], inflammatory bowel
disease [14], and personal health information [15]. As the surge of COVID-19 started,
considerable efforts have been made to develop a multilingual Twitter dataset related to
coronavirus [16–18]. Arabic posts were also collected to develop Arabic datasets [19,20]
regarding COVID-19. Although there have been several works on Twitter datasets of
COVID-19 vaccination, they are confined to some aspects covering vaccine misinformation
detection [21,22], vaccine stance [23], or sentiment analysis [24,25].

Despite Arabic being one of the most dominant languages on Twitter [26], few studies
have developed a COVID-19 vaccine tweet dataset. Also, to the best of our knowledge
prior works on developing an Arabic dataset related to the COVID-19 vaccine focus on
developing labeled datasets for a specific purpose such as detecting vaccine misinformation
or sentiment analysis. To address this limitation, we developed a Twitter conversation
dataset related to the COVID-19 vaccine with a focus on Arabic tweets only. The aim of this
work is to explore and analyze the dynamics of the conversations on Twitter regarding the
vaccine to develop a dataset that could be used in the investigation of different research
topics. The contribution of this research is threefold:

1. We build an Arabic Twitter dataset of 1.1 M Arabic posts that was streamed over one
year, covering the period from January to December 2021. The data collection started
when most countries around the world started the COVID-19 vaccination campaigns.
Thus, the dataset covers the initial dynamic conversation on vaccine distribution.

2. We performed a preliminary analysis on the raw data which revealed topical insights
and resulting in seven database tables. Further analysis can be done among multiple
database tables.

3. We release the dataset to be freely available to the research community in the Mende-
ley data repository https://data.mendeley.com/datasets/zmwfnsms9n (accessed on
31 October 2022). The dataset can be useful for researchers in different fields to an-
alyze people’s activity following the first announcement of the vaccine distribution
or to perform comparative analysis. Moreover, scientific communities, public health
agencies, and analysts might be interested in this dataset to obtain insights, make
decisions, or design strategies that might help in some potential situations

The rest of this article is organized as follows. Section 2 presents an overview of recent
works. Section 3 provides the description of the dataset. A detailed description of the
developing method of the dataset is presented in Section 4. Section 5 contains the results
and analysis. A brief description of the potential research application of the dataset is
presented in Section 6. The conclusion is presented in Section 7.

2. Literature Review

During the pandemic, social media platforms played an important role in informing
the public and spreading information. These channels provide timely and reliable data that
can be valuable for mining and investigating the public’s stance. Consequently, several
studies have developed Twitter post datasets related to the coronavirus or vaccination in
different languages. Singh et al. [16] collected 2.79 M tweets from 16 January to 15 March
2020. The tweets include multilingual conversations related to COVID-19. They used two
datasets, the first one made up of tweets with location mentions and the second comprising
geotagged tweets. They performed a cross-correlation analysis between the two datasets
and data from the WHO. They found that the conversations were highly correlated with
the confirmed cases of COVID-19. They suggested that the tweeted conversations may be a
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leading guide to the cases. Then, they analyzed the content of the English tweets to identify
themes and the predominant myths.

Another study by Chen et al. [17] collected and analyzed over 72 M tweets from
21 January to 21 March 2020. The dataset includes multilingual COVID-19 Twitter posts.
They performed an initial analysis including hashtags, languages, and verified users. They
found that hashtag usage increased when COVID-19 was declared a global public health
emergency. Their analysis showed that the most active accounts are news and political
accounts. Recently, Aguilar et al. [18] gathered 8.98 M Twitter posts over 23 days that
reflect the early discussion about coronavirus. The dataset is multilingual with a focus on
English, Portuguese, and Spanish languages. They developed different databases including,
hashtags, links and media, and retweets. Also, they classified tweets into different types
based on whether they were original tweets, retweets, with mention, or without. Their
analysis showed that the most retweeted tweets belong to accounts such as news media,
politicians, actors, official institutes, and activists.

A multilingual COVID-19 Twitter dataset covering 268 countries was presented by
Abdul-Mageed et al. [27]. The billion-scale dataset was classified as pandemic-relevant
tweets or misinformation. For classification, they used two predictive models. They trained
a COVID-relevant classifier using a sample of multilingual tweets developed by [14] and
considered them as the positive class. To train the misinformation detection model, they
used two publicly available datasets as a positive class.

This pandemic has drawn the interest of users who are writing in the Arabic language
to become involved in discussions that cover a range of topics related to the coronavirus.
Haouari et al. [19] collected about 2.7 M Arabic posts regarding COVID-19 for a year.
The data covers the topic in Arab countries, and it includes the tweets and propagation
networks of the most 1000 popular tweets. They performed a preliminary analysis of the
tweets and user distribution that revealed temporal information and geographical aspects.
Further analysis of trending topics discovered a considerable relationship between the
frequency peak and the first reported case of the disease. An annotated tweet dataset
was developed by Elhadad et al. [20] and contains Arabic and English tweets to detect
misleading tweets related to COVID-19. The tweets were annotated using automatically
different machine learning techniques and several feature extraction techniques.

Another study by Haouari et al. [28] covered 9.4 K labeled tweets and their propagation
networks related to the detection of misinformation and rumors about COVID-19. They
used an Arabic BERT-based model to classify tweets based on two levels of misinformation
detection. Alam et al. in [29] released a 16-K tweet dataset in multiple languages that
focused on COVID-19. The dataset was manually annotated for disinformation analysis.
Through annotation, the authors determined if the tweets contained accurate claims and
their potential for causing harm. They used a training model for each language, and then
multilingual training was performed for the data in all languages. An annotated dataset of
10 K Arabic and English tweets was developed by Yang et al. [30] for sentiment analysis.
They categorized the tweets into 10 classes using multi-label classifiers based on deep
neural network models. The analysis showed that the positive sentiment increased over
time. Alsudias et al. [31] collected a dataset of 1 M Arabic tweets about COVID-19. Then,
they performed an annotation process for rumor detection on a random sample of the
tweets. They applied three machine learning techniques with two sets of features to classify
the tweets into false, correct, or unrelated tweets. Further, they performed an analysis to
predict the source of the tweets regarding COVID-19.

More recently, several studies analyzed and provided tweet datasets about the COVID-19
vaccine. A dataset developed by Zhou et al. [32] called ReCOVery includes about 2000 news
articles with 140 K tweets related to this news to predict reliable and unreliable news. For the
prediction task, they used a neural network model. They found that 60 percent of the news
was identified as extremely high or low in credibility. Then they tracked the news on Twitter
through their URLs. Their dataset includes multimodal information from news articles.
Malagoli et al. [25] collected about 12 M tweets over two months during the early stage of
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vaccination. They performed sentiment and psycholinguistic analysis to investigate user
engagement. For sentiment analysis, they identified the strength of positive and negative
opinions. Further, they studied the psycholinguistic property of the tweets to identify users’
communication using the Word Count lexicon technique.

Research by Muric et. al. [33] presented a Twitter dataset in English on anti-vaccine
sentiments. They collected the historical tweets of accounts that engaged in antivaccination
conversations. They performed an initial descriptive analysis, such as hashtag frequency
and detecting the source of the news. In addition, they produced a geographical analysis
of the tweets. Similarly, a Twitter dataset in English was presented by DeVerna et al. [34].
They performed descriptive analysis for one week of extracted Twitter posts about the
COVID-19 vaccine. The analysis includes hashtag clusters and geographical distribution of
the tweets. Moreover, the authors present a visualization of the statistical data through a
data dashboard. Hu et al. [24] collected over 300 K tweets in the US related to COVID-19
vaccines. Using spatiotemporal patterns, they investigated the sentiments and emotions of
the public over time. For sentiment analysis, they used a rule-based model, whereas for
emotion analysis the lexicon base was used. Further analysis was performed using topic
modeling and word cloud mapping.

Another work by Memon et al. [22] proposed a misinformation tweets dataset related
to the COVID-19 vaccine. The dataset distinguishes the users who post truthful information
and the others who spread misinformation. They used several machine learning and deep
learning algorithms. They performed two labeling steps, manual annotation and then
validation by a medical expert. The ArCovidVac dataset introduced by Mubarak et al. [23]
annotated a 10-K Arabic tweet dataset. Informativeness analysis and stance towards
vaccination across an Arab country were presented. The tweets are annotated based on
their stance on the vaccination process into a pro-, against vaccination, or neutral stance.
Then, they explore the content of the annotated tweets for topics, hashtags, and source
of the tweet. Further analysis was performed to investigate the public stance over time.
Table 1 summarizes the recent works on COVID-19 and vaccine datasets.

Table 1. Recent research works regarding COVID-19 and vaccine datasets.

Study Available
Online Period Dataset Language Application

[16] No January 2020–March 2020 COVID-19 tweet conversation Multilingual
Content analysis and topic

and prevalent
myths detection

[17] Yes January 2020–March 2020 COVID-19 Twitter posts Multilingual Initial content analysis

[16]
[18] Yes January 2020–February 2020 COVID-19 Twitter posts Multilingual Statical and

content analysis

[19] Yes January 2020–January 2021 COVID-19 Twitter posts Arabic Statical and
content analysis

[20] Yes February 2020–March 2020 COVID-19 Tweets English and Arabic Misinformation detection

[22] Yes December 2020–July 2021 COVID-19 vaccine
annotated tweets English Misinformation detection

[23] Yes January 2021–February 2021 COVID-19 vaccine annotated
tweet dataset Arabic

Vaccination stance
detection and

content analysis

[24] No March 2020–February 2021 COVID-19 vaccines
tweets in US. English

Sentiment analysis and
emotion analysis

Topic modeling and word
cloud mapping.

[25] Yes December 2020–January 2021 COVID-19 vaccines tweets English Sentiment and
psycholinguistic analysis

[27] Yes January 2020–July 2020 COVID-19 tweets Multilingual Analysis and classification
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Table 1. Cont.

Study Available
Online Period Dataset Language Application

[28] Yes January 2020–January 2021 COVID-19 tweets Arabic Misinformation detection

[29] Yes January 2020–March 2021 COVID-19 tweets Multilingual Disinformation analysis

[30] Yes March 2020–May 2020 COVID-19 tweets English and Arabic Sentiment analysis

[31] No December 2020–April 2020 COVID-19 tweets Arabic Rumor detection

[32] Yes January 2020–May 2020 COVID-19 vaccine news
articles and related tweets English Reliable and unreliable

news prediction

[33] Yes October 2020–December 2020 Twitter dataset in anti-vaccine. English Antivaccination descriptive
analysis

[34] Yes December 2020–January 2021 COVID-19 vaccines
Twitter posts. English Descriptive analysis and

statistics visualization

All the mentioned developed datasets related to COVID-19 vaccination mainly focused
on rumor detection, misinformation detection, vaccine hesitancy, or sentiment analysis.
Moreover, there is a limitation on publicly available Arabic datasets regarding COVID-19
vaccine. Therefore, we develop an Arabic twitter posts dataset targeting the vaccination
discussion regarding the COVID-19 vaccine. We presented a basic analysis that shows the
dynamic of vaccination-related conversation.

3. Data Description

This paper presents a collection of 1,101,349 Arabic posts from Twitter. These Arabic
tweets reflect the discussion about the COVID-19 vaccine. The tweets were streamed
for about twelve months from January 2021 to December 2021. This period was selected
because most countries around the world started the COVID-19 vaccination campaigns
in December 2020. Figure 1 illustrates the monthly distribution of the collected tweets.
We noticed that the volume of tweets increased considerably in February and continued
rising until May. Then, the tweets’ number started to drop as the topic becomes out of date.
However, it started to increase again in July 2021 as many people expressed their opinion
after receiving the first dose of the vaccine.
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The raw data was filtered and analyzed to create different databases which are avail-
able in a Mendeley dataset. The dataset is published in compliance with Twitter’s terms
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and conditions, which do not allow the publication of the text of a tweet [35]. Therefore,
we released Tweet IDs in all the database files which is a unique identifier that can be
used to retrieve tweet’s object using Twitter’s API. Table 2 shows a brief description of the
databases and their fields. Furthermore, all the database files contain the filed tweet-id
which can be used to join them for further analysis.

Table 2. Databases in Mendeley dataset.

Database Description Fields

D1.General Collection of tweets regarding the COVID-19 vaccine.
Estimated size: 58.64 MB.

tweet_id: unique id for each post.
datetime: the date and time of creation of the tweet.

keyword: term used to extract the tweets.

D2.Media Collection of tweets with at least one media.
Estimated size: 24.25 MB.

tweet_id: unique id for each post.
media_type: type of the media (photo, gif, or video)

media_url: complete URL of the media

D3.Hashtag Collection of hashtags in each tweet.
Estimated size: 27.51 MB.

tweet_id: unique id for each post.
datetime: the date and time of creation of the tweet.

hashtag: terms used as hashtag within the tweet.

D4.Reply
Collection of tweets that had at least one reply and

the count of all the replies to the tweet.
Estimated size: 20.12 MB.

tweet_id: unique id for each post.
datetime: the date and time of creation of the tweet.

twreply_count: number of replies to each tweet

D5.Retweet
Collection of tweets that had at least one retweet and

the count of all the retweets for the tweet.
Estimated size: 6.012 MB.

tweet_id: unique id for each post.
datetime: the date and time of creation of the tweet.
retweet_count: number of retweets for each tweet

D6.Vaccine_type Collection of tweets about different types of vaccine
Estimated size: 26.64 MB.

tweet_id: unique id for each post.
datetime: the date and time of creation of the tweet.

vac_type: type of the vaccine

D7.Users Collection of nodes of unique users.
Estimated size: 5.684 MB. user_id: user’s id account

In the database “D1.General”, each tweet is associated with the keyword that was
used to retrieve it. The database “D6.Vaccine_type” includes a variable that represents
the type of vaccine and the collection of posts related to each type. Figure 2 illustrates the
proportion of the vaccine type; we noticed that most of the conversation was related to the
vaccine type “Pfizer”. Unique users were collected in the database “D7.Users” which can
be used to construct social interaction networks.

Data 2022, 7, x FOR PEER REVIEW 7 of 17 
 

retweet_count: number of retweets for 
each tweet 

D6.Vaccine_type 
Collection of tweets about different 

types of vaccine 
Estimated size: 26.64 MB. 

tweet_id: unique id for each post. 
datetime: the date and time of creation of 
the tweet. vac_type: type of the vaccine 

D7.Users Collection of nodes of unique users. 
Estimated size: 5.684 MB. 

user_id: user’s id account 

In the database “D1.General”, each tweet is associated with the keyword that was 
used to retrieve it. The database “D6.Vaccine_type” includes a variable that represents the 
type of vaccine and the collection of posts related to each type. Figure 2 illustrates the 
proportion of the vaccine type; we noticed that most of the conversation was related to 
the vaccine type “Pfizer”. Unique users were collected in the database “D7.Users” which 
can be used to construct social interaction networks. 

 
Figure 2. The percentage of Twitter posts by the type of vaccine per month. 

4. Results and Analysis 
We present an in-depth analysis of the dataset, underlining the most trending 

hashtags, the tweets containing media, and the unique users. Moreover, we analyzed the 
retweet and replay interactions that reflect the dynamic of the conversations in the dataset. 
Further, we investigated the text of the tweets to explore the predominant terms related 
to the COVID-19 vaccination conversation. 

4.1. Hashtag 
Figure 3 shows a word cloud of the most frequent hashtags in the dataset. This visu-

alization shows they are highly related to COVID-19 vaccination. Table 3 illustrates the 
top 50 hashtags used in the dataset because they were the most frequently occurring. We 
can observe that these hashtags include names of different Arabic countries, which sug-
gests these countries might be the source of the hashtags. Interestingly, some hashtags 
show a positive attitude toward the vaccination, such as (يدا_بيد_نتعافى), and some against, 
such as ( طعيم_الاجباريلا_للت ). Moreover, they can give us an indication of the most popular 
hashtags in the Arab region. Exploring the hashtag data can provide researchers with 
some insights into the topics or trends analysis. 

Figure 2. The percentage of Twitter posts by the type of vaccine per month.



Data 2022, 7, 152 7 of 17

4. Results and Analysis

We present an in-depth analysis of the dataset, underlining the most trending hashtags,
the tweets containing media, and the unique users. Moreover, we analyzed the retweet
and replay interactions that reflect the dynamic of the conversations in the dataset. Further,
we investigated the text of the tweets to explore the predominant terms related to the
COVID-19 vaccination conversation.

4.1. Hashtag

Figure 3 shows a word cloud of the most frequent hashtags in the dataset. This
visualization shows they are highly related to COVID-19 vaccination. Table 3 illustrates
the top 50 hashtags used in the dataset because they were the most frequently occurring.
We can observe that these hashtags include names of different Arabic countries, which
suggests these countries might be the source of the hashtags. Interestingly, some hashtags
show a positive attitude toward the vaccination, such as (ú

	
¯Aª

�
J
	
K_YJ
K._ @YK
), and some against,

such as (ø



PAJ.k. B@_Õæ


ª¢

�
JÊË_B). Moreover, they can give us an indication of the most popular

hashtags in the Arab region. Exploring the hashtag data can provide researchers with some
insights into the topics or trends analysis.
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Table 3. The top 50 hashtags related to the COVID-19 vaccine conversation on Twitter.

Hashtag English
Translation Counts Hashtag English

Translation Counts
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KðPñ»_hA

�
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®�»



@ Oxford 2630

P 	QK
A
	
¯ Pfizer 32,770 XPñ

	
®�» @ Oxford 2585

Ég. A« Urgent 13,683 ú



�
æm�� Sehaty (App used

in SA) 2542

P 	QK
A
	
¯_hA

�
®Ë Pfizer vaccine 11,907 COVID19 COVID19 2540

�
éj�Ë@ Health 9433 Qå�Ó Egypt 2481

19_YJ

	
¯ñ» COVID-19 9157 �

èPñ
	
JÖÏ @_ �
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�
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�
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�
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�
'
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Did you take the
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Table 3. Cont.

Hashtag English
Translation Counts Hashtag English

Translation Counts

�
éK
Xñª�Ë@ Saudi 7399 A¾

	
JK


	P@Q
�
��



@ Astrazeneca 2137

�
èñ¢

	
mÌ'@_

	
Y

	
g Take the step 6470 	á�


	
®K
Qå

�
�Ë @_ 	á�
ÓQmÌ'@_ÐXA

	
g

Custodian of the
two holy mosques 2131

A
	
KðPñ»_�ðQ�


	
¯ Corona virus 5347 	

�AK
QË @ Riyadh 2095

19YJ

	
¯ñ» COVID-19 5290 ú

	
¯Aª

�
J
	
K_YJ
K._ @YK


Hand by hand
recovering 2035

�
H@PAÓB



@ Emirates 5263 AJ


	
K A¢�
QK. United Kingdom 1895

A
	
KQK
XñÓ Moderna 5217 H. Q

	
ªÖÏ @ Morocco 1870

A¾J

	
�K


	P@Q
�
��



@ Astrazeneca 4221 A
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4.2. Media

We found that 83.51% of the tweets contained photos and 16.49% contained videos.
Interestingly, we found that almost 80% of the tweets did not include any media. Figure 4
shows the proportion of tweets that contained media over time. Notably, photos are the
most shared media, rather than videos and gifs. Together with the fact that 20% of our
dataset includes media links, we think the dataset can be useful for retrieval or classification.
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4.3. Users

We observed that a significant percentage of users (about 60%) posted just one tweet
and 30.37% tweeted less than five tweets. Further, we analyzed the unique users to extract
the most 20 active users and the number of tweets they had posted. We noted that news
organizations dominate the tweet posting among top users. Figure 5 shows the top 20 users
with their tweet counts. The highest number of the top users was located in Saudi Arabia
with 25%, followed by Egypt with 20%, and Kuwait, as shown in Figure 6.
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4.4. Retweet and Reply Analysis

We noted that 3.66% of the tweets had been retweeted more than 100 times, and some
tweets had more than 1 K or more retweets. Figure 7 shows the counts of tweets that
had been retweeted per month as well the counts of tweets that have been replied to per
month. We noted the same pattern of retweet and reply through the time. The timeline
of retweeting and replying demonstrates the capability of the dataset in capturing the
dynamic of conversations regarding the vaccine.
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4.5. Textual Analysis

Table 4 presents the top 20 most frequent words from January to December 2021. We
can observe that the terms ( A

	
KðPñ», é«Qk. ) and their corresponding English terms (corona,

dose) were the most dominant terms in the conversation. Further, we identify the most
frequent words over time. We further look at the prevalence of the words over time as
shown in Figure 8. We noted that most of the terms are related to the vaccine, which is not
surprising since the conversation is about the coronavirus vaccination.

Table 4. The top 20 most frequent words.
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In terms of validity, the data passed through a pipeline of processing and analysis. The
initial exploratory analysis, including filtering and cleaning, is considered as a verifying
step to fine-tune and filter out irrelevant tweets and keep the tweets that are related to the
study. In addition, to avoid a bias in the collected data, we constructed a set of keywords
by selecting a seed word and identifying the terms associated with this word, and then
the selected keywords were varied by author. On top of that, the drawn result can give
an indication of the validity of the analysis. The results and findings as graphs and tables
verified that the tweets were a good representative sample of Arabic tweets related to the
COVID-19 vaccination.

To demonstrate the importance of our dataset, we compared it with the ArCovidVac
dataset [10] which is the only publicly available Arabic tweet dataset related to the COVID-19
vaccine. ArCovidVac used Twitter posts as the source of the data and focused on Arabic
tweets as our dataset. However, they offer annotated datasets within different layers of
annotation information, fine-grained content, and vaccination stance. That limited the use
of the dataset in specific applications such as opinion analysis or misinformation detection.
We offer a dataset that includes a collection of data that can be used in different applications.
The dataset can be analyzed to explore the sentiments of people or to assess feelings, such
as fear and panic. In addition, it can be analyzed in the long term to discover patterns or
trends, as well as track vaccine misinformation and rumors. Moreover, it can be used to
develop experiments that study changes in people’s behaviors regarding the pandemic
vaccination. The dataset can be used in different machine learning techniques for clustering
and classification analysis.

5. Methods

This section describes the method that was used to develop the dataset. The framework
for developing the dataset is shown in Figure 9. The tweets related to the COVID-19 vaccine
were first collected and filtered to clean unnecessary tweets. After preprocessing and
filtering, a preliminary analysis was performed. The dataset contains a collection of 1.1 M
Arabic Twitter posts related to the COVID-19 vaccine.
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5.1. Data Collection

The data regarding the COVID-19 vaccine was collected in the Arabic language over a
year. The tweets were streamed for about twelve months from January 2021 to December
2021 using a list of Arabic crawling keywords. To select this list of keywords, we started
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cines that have been used in Arabic-speaking countries, resulting with these keywords
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these keywords are (Vaccine, Pfizer, Oxford, Astrazeneca, Sputink v, Moderna, Sinopharm,
Coronavac). We collected the tweets using the “snscrape” Python package [36] that inter-
acts with Twitter API. We searched for a set of Arabic keywords that collected a total of
1,125,446 tweets. We further filtered the tweets, resulting in 1,101,349. All the collected data
is in the Arabic language since we restricted the search with the lang option “ar” to return
only Arabic tweets. Figure 10 shows the distribution of the collected tweets associated with
the keywords.

Table 5 presents the summary of the dataset. It shows that the total number of collected
tweets is about 1.13 M posts and the volume of the data after filtering is about 1.10 M posted
by 322,328 unique users. The table indicates that 26.22% of the tweets include hashtags,
and 20.04% include media, with 3.35% videos and 16.94% photos. We found that 62.78% of
the metadata have value in the location attribute; however, we noticed that some values in
this field were non-standard locations.
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Table 5. Summary of the dataset.

Tweets Counts Percentage

Collected tweets 1,125,446 Collected tweets
Filtered tweets 1,101,349

Tweets with location 691,461 62.78%
Include hashtag 288,803 26.22%
Include media 220,797 20.045%
Include videos 36,863 3.347%
Include photos 186,571 16.94%

Unique hashtags 94,407
Unique locations 58,785

Unique users 344,328

5.2. Data Preprocessing

Preprocessing the content of the tweets is an essential step in content and textual
analysis. We conduct two phases of preprocessing, including the exclusion of irrelevant
tweets and cleaning the text of the tweets. We excluded repeated posts and tweets that
contain less the three words, due to insufficient content. Then, we carried out tweet text
preprocessing. We first extracted the tweets’ text for each month, then we performed
cleaning steps on the tweets’ text that are important for eliminating noisy, incomplete, and
uninformative data. Therefore, we applied the following steps using the NLTK Python
library [37]:

Remove the URL from the text
Remove the mentions (@user)
Remove the hashtags
Replace the repeated letters with one letter.
Remove stop words in the Arabic language such as pronouns, articles, prepositions, etc.
Remove punctuation such as commas, brackets, and full stops.
Replace emojis with special tokens.

5.3. Implementation

To develop the dataset, we conducted a series of computations and statistical analyses
using Python language version 3.8. We started by partitioning the remainder of the collected
data after the preprocessing by date. Then, we performed different types of analysis on the
data. Firstly, we computed some characteristics of the data as shown in Table 3. Secondly,
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we carried out a content analysis, including trending hashtags, sharing media, the time
series of retweets and replies, and the most active users. In the following, we will describe
the implementation and the analysis in detail.

A hashtag is a phrase starting with a hash symbol (#); using hashtags on Twitter
allows users to engage in conversations about specific topics or trends. Hence, we created a
hashtag database called “D3.Hashtag” as described in Table 2. In this dataset, 26.22% of
the tweets (about 288,803) include one or more hashtags. However, we filtered the unique
hashtags, and 94,407 were used more than one time. To extract the most frequent hashtags,
we counted the occurrence of each unique hashtag in the whole corpus, then we selected
the top 50 hashtags.

Twitter allows users to embed media such as photos and videos in their posts, features
that can increase the chance of the post being retweeted [38]. To identify the tweets that
embed photos or videos, we created a database called “D2.Media”, as shown in Table 2.
We extracted the tweets that include media such as images or videos, then we filtered
223,434 tweets that contain at least one media. Next, we grouped each type of media in one
cluster to find which is the most shared. To inspect the time series of sharing media, we
counted their numbers each month.

The discussion on Twitter around different topics is enriched by a lot of interactions
through retweets and replies to tweets. To create the retweet dataset, we extracted the
tweets that had been retweeted, and then we counted the number of retweets for each
tweet to construct the database called “D5.Retweet”, as shown in Table 2. The same process
was applied to create the database “D4.Reply”. Both databases contain the date and time
that the tweet was either retweeted or replied to.

The dataset includes 344,328 unique users who posted 1.10 M tweets. To investigate
the more active users in terms of the number of tweets, we first extracted the unique users
and created the database “D7.Users”, as shown in Table 2. Then, we counted their posts
through the entire period of our dataset. Subsequently, the 20 most active users were
extracted and their countries located.

To look at the conversation taking place on Twitter regarding vaccination, we explored
the content of the tweets by identifying the most frequent words. We excluded the set of
the keywords that were used for extracting the corpus since it was expected to be highly
frequent. To achieve this, we first counted the words in each month, then we extracted the
words that occur more than 5000 times. Next, the top 20 terms were filtered for each month.
Further, we selected the 10 most frequent terms over the whole period.

6. Potential Research Applications

Following the announcement of the distribution of the COVID-19 vaccine, people
turned to social media to express their opinion, look for information, and report personal
incidents. Therefore, this dataset offers a view of the dynamic of the vaccine conversation
on Twitter. The dataset of 1.1 M Arabic posts is expected to help research in different fields
such as data mining, natural language processing, social analysis, and healthcare. We expected
that the data may be useful for several potential applications including but not limited to,
social analytics, misinformation detection, and crisis management, as presented below:

Social analytics: social investigation analysis includes sentiment analysis, developing
topic modeling, stance detection, monitoring retweet patterns, detecting sarcasm, hate
speech, and many other applications.

Misinformation detection: with the fast development of the vaccine, many rumors
are spread and have people’s attention across the globe, which causes the spread of false
information about vaccination. The dataset can support research on rumor detection,
claims credibility, and community detection in retweets networks to identify fake news and
vaccine stances.

Crisis Management: since the outbreak of the COVID-19 pandemic, health orga-
nizations around the world need to analyze information on the pandemic and gather
information related to the disease and vaccination for analysis and thus obtain important
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insight. We believe our dataset can be useful in different tasks such as trend or event
detection, content summarization, and information propagation. Insights and information
detected in this situation can help in managing some potential crisis situation.

7. Conclusions

In this paper, we presented an Arabic Twitter dataset about the COVID-19 vaccine that
offers the first look at the dynamics of vaccine conversation on Twitter. We performed a pre-
liminary analysis that characterized the data in several ways, including trending hashtags,
prominent terms, and time series of embedded media. Our results provide implications
and insights into the dynamic of vaccine conversation on Twitter. First, the results show
that hashtags are associated with a positive or negative stance on the vaccine, suggesting
that we can understand people’s opinions regarding vaccination distribution. Second,
the timeline of retweeting and replying indicates how people are communicating about
vaccination. Third, we can discover from the most dominant terms that the conversation
continues to grow as the debate continues about vaccination. The dataset can be a source of
data that facilitates research in different areas, including health informatics, topic modeling,
natural language processing, social network analysis, information retrieval, and social
science. In the future, we intend to update the data with newly collected tweets and to
perform more in-depth analysis. We are currently working on investigating the content of
the conversation to detect the side effects of different types of vaccines reported by people.
We also plan to explore the relationship between the Twitter conversation and its effects on
public health. Finally, we plan to model vaccination community detection.
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