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Abstract: The importance of evaluating the stress field of loaded structures lies in the need for
identifying the forces which make them fail, redesigning their geometry to increase the mechanical
resistance, or characterizing unstressed regions to remove material. In such work line, digital
photoelasticity highlights with the possibility of revealing the stress information through isochromatic
color fringes, and quantifying it through inverse problem strategies. However, the absence of public
data with a high variety of spatial fringe distribution has limited developing new proposals which
generalize the stress evaluation in a wider variety of industrial applications. This dataset shares
a variated collection of stress maps and their respective representation in color fringe patterns. In
this case, the data were generated following a computational strategy that emulates the circular
polariscope in dark field, but assuming stress surfaces and patches derived from analytical stress
models, 3D reconstructions, saliency maps, and superpositions of Gaussian surfaces. In total, two
sets of ‘101430’ raw images were separately generated for stress maps and isochromatic color fringes,
respectively. This dataset can be valuable for researchers interested in characterizing the mechanical
response in loaded models, engineers in computer science interested in modeling inverse problems,
and scientists who work in physical phenomena such as 3D reconstruction in visible light, bubble
analysis, oil surfaces, and film thickness.

Dataset: https://dx.doi.org/10.17632/z8yhd3sj23.5

Dataset License: CC BY 4.0

Keywords: digital photoelasticity; isochromatic images; fringe patterns; stress field; birefringence;
phase maps

1. Introduction

In engineering applications, the stress field describes the way in which an applied
force gets distributed into the geometry of a mechanical piece. The importance of its
evaluation lies in the need for identifying the forces which make a piece fail, redesigning
its geometry to increase the mechanical resistance, or characterizing unstressed regions
to remove material. With this objective, digital photoelasticity has been widely used by
many engineering areas due to its capability of being visual, non-contact, and full field,
among other advantages. There, the main feature of the technique could be understood as
the possibility of revealing stress information through color fringe patterns, usually called
isochromatic fringes, and consequently using computational algorithms for recovering the
stress values wrapped by the fringes [1,2].

Even though the digital photoelasticity has been widely applied in different engineer-
ing areas, this method is still struggling with the problem of accomplishing a successful
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stress evaluation by requiring one single image acquisition, under a unique polariscope
configuration [3]. There, although the literature reports different works in such direction,
the absence of public data about representing the stress field through color fringe patterns
has limited developing new proposals which can help to generalize the stress evaluation in
a wider variety of industrial applications, and, overall, for cases with complicated fringe
distributions and critical stress values [4].

Between the recent works reported in literature for digital photoelasticity, deep learn-
ing strategies are being explored, and have opened a new work line [5,6]. For that, this
dataset, besides providing a big collection of photoelasticity cases, it reports essential
information for allowing users to understand the phenomenological relationship between
one specific stress distribution and its respective visualization through color fringe patterns
overall for complicated fringe distributions that have not yet been reported in literature such
as: saliency maps, 3D reconstructions, and Gaussian surfaces. This exercise is developed
under a computational perspective by using analytical stress models [1,7].

Within the image generation process, this dataset considers a circular polariscope con-
figuration guaranteeing experimental data for a PMMA birefringent material, different light
sources, and a variety of camera sensors. These combinations offer to users the possibility of
analyzing specific stress conditions due to a variety of isochromatic fringe representations,
which is complex to obtain when working in real scientific laboratories because of the nor-
mal absence of electronic devices. In addition to the previews’ experimental configurations,
this dataset provides multiple stress scales for allowing users to visualize loaded pieces
through different fringe densities, and the effect of dynamic load applications.

On the other hand, the fact that this dataset presents a correspondence between the
stress maps and isochromatic images, as input and output, makes this work bring the
opportunity of idealizing the stress evaluation process as an inverse problem, as it is
usually presented in computer science applications overall in recent advances of machine
learning algorithms.

The rest of the paper is presented as follows: Section 2 describes the experimental
design, as well as the materials and methods used. Section 3 presents the dataset’s structure
and some data examples. Section 4 shows a usage example of the dataset, which consists of
a convolutional neural network. Finally, Section 5 gives the conclusions.

2. Experimental Design, Materials, and Methods

In digital photoelasticity, the stress field refers to maps with the principal stress dif-
ference in loaded bodies, which are revealed through images with color fringe patterns by
using a polariscope. In these experiments, the polariscope action could be seen as a function
in which a user introduces the stressed body ∆σ = σ1 − σ2, the type of light source A(λ),
and the spectral behavior of the color camera SR,G,B(λ) to obtain an image with color fringe
patterns [1], as indicated by Figure 1 for a circular polariscope in a dark field [7].

Into the polariscope, the optic phenomena, besides the stress principal stress difference,
requires the material properties such as the stress optic coefficient C and thickness h. In
those cases, the principal stress difference could be understood as a map with a specific
intensity distribution and scaled by a defined stress magnitude. From this polariscope
configuration, the emergent intensities follow Equation (1) according to the Jones calculus.
This implies that generating synthetic experiments involves knowing the material optical
properties C, body thickness h with its respective map of stress distributions ∆σ, the spectral
content of light source A(λ), and the spectral response of camera sensor SR,G,B(λ) [8]:

IR,G,B =
1

λ1 − λ2

∫ λ2

λ1

Ib(λ)

2
[1 − cos δ(λ)]SRGB(λ)dλ (1)
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Figure 1. Representation of polariscope set up. Light transmission is from left to right. Here, the
customizable parameters for a single image generation are marked as “Input”.

In this dataset, the synthetic experiments consider real data as follows:

• Birefringent ‘pmma’ material of h = 1.0 × 10−3 mm thickness and C = 4.5 × 10−12

stress optic coefficient.
• Light wavelength λ into the visible range from λ1 = 390 nm to λ2 = 760 nm.
• Industrial light sources A(λ), by using discretized signals of spectral components from

five different industrial devices were considered [9]. These sources are some of the
most common in photoelasticity studies, such as: Constant, Incandescent, Fluorescent,
and Willard_LEDGO_CN_600SC_LED; Cold white laser light is shown in Figure 2 for
fluorescent and Cold white laser light.

• The remaining parameters consider stress distributions ∆σ, and commercial camera
sensors SR,G,B(λ), and combine them systematically for generating a wider variety of
isochromatic images.

(a) (b)

Figure 2. Relative spectral content of two light sources used in the whole dataset generation. (a) fluo-
rescent; (b) cold white laser light.

Complementary to the light sources, this paper considers the spectral response of
three types of camera sensors. In this case, the sensor signals correspond to Human vision
simulation, DCC3260C, and Sony-IMX250, as illustrated by Figure 3 for human vision
simulation and Sony-IMX250. For all of these sensors, the CFA effect and a demosaicing
algorithms were included [1].

Finally, the last input accounts for the stress map ∆σ. In this case, analytical surfaces
are scaled to different stress magnitudes for responding to the absence of experimental data
reports. In the process, the maps are resized to 224 × 224 pixels for matching with recent
inverse problem proposals. The map generation process follows the diagram presented
in Figure 4. There, the input surface is initially resized and posteriorly normalized into
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a new map. In a parallel way, patches are extracted from the initial map. Then, they are
resized, rotated, and normalized into new maps. At the end, all the new maps are scaled
to a stress magnitude taking into account three stress values, such as: 12 MPa, 24 MPa,
36 MPa, 48 MPa, 60 MPa, and 72 MPa.

(a) (b)

Figure 3. Spectral response of two camera sensors. (a) simulation of human vision; (b) Sensor
Sony-IMX250. In case of the camera’s sensor, these graphs were obtained from the manufacturer data.

Figure 4. Stress map generation process. As input, a bi-dimensional surface is needed; as output
of this process, a bi-dimensional stress map is generated. The load magnitude varies from 12 MPa
to 72 MPa.

For a wider experimental variety, this dataset considers surfaces, normally visualized
as gray images, according to four experimental cases. The first experimental case is referred
to analytical stress models commonly used in photoelasticity studies [8], as summarized
in Table 1 for ten conventional geometries and its respective experimental considerations.
With this strategy, ‘4026’ stress maps were sequentially obtained.

The second case starts by assuming the fixation maps in a saliency experiment reported
by the IMT in the CAT2000 dataset [10], as bidimensional surfaces. In this strategy, only the
fixation maps of the ‘Action’ clase into the trainSet are considered. With these images, ‘2424’
stress maps were generated. With respect to the third case, this dataset generates synthetic
maps taking into account random superpositions of Gaussian surfaces, as proposed for
generating the benchmark in an unwrapping inverse problem [11]. With this exercise,
‘144’ stress maps were generated having ‘6’ surfaces as input. For the last case, the stress
on the surfaces come from bidimensional representations of 3D reconstructions shared in
the Stanford 3D reconstruction benchmark [12]. There, ‘168’ stress maps were generated
having ‘7’ bidimensional representations of scanned objects as input. Chosen models
are the Stanford Bunny, Armadillo, Happy Buddha, Happy Buddha Face, Lucy, and two
positions of Dragon.

Posterior to the process for generating the stress maps, 15 isochromatic images were
generated per every stress map according to the combinations between light sources and
camera sensors. This leads to ‘101430’ images of stress maps and the same quantity for
isochromatic images.
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Table 1. Set of geometries modeled analytically.

1. Disk 2. Ring_1 3. Ring_2 4. Ring_3 5. Plate with
a hole

Load F: 3.5 KN Load F: 3.5 KN Load F: 3.5 Load F: 3.5 KN Load F: 3.5 KN
Ratio: ł25 mm Ratio 1: 50ł mm Ratio 1: 50 mm Ratio 1: 50 mm High: 50 mm

Ratio 2: 15 mm Ratio 2: 25 mm Ratio 2: 30 mm Width: 50 mm
Ratio: 10 mm

6. Punctual 7. Distributed 8. Rotating 9. Rotating 10. Rotating
bending_1 bending Ring_1 Ring_2 Ring_3

Load F: 3.5 KN Load F: 3.5 KN peed: 7 Krpm peed: 7 Krpm Load F: 3.5 KN
High: 50 mm High: 50 mm Ratio 1: 50 mm Ratio 1: 50 mm Ratio 1: 50 mm
Width: 10 mm Width: 10 mm Ratio 2: 15 mm Ratio 2: 25 mm Ratio 2: 30 mm

3. Data Example and Dataset Structure

An isochromatic-art dataset is composed of two folders of raw digital images obtained
computationally from synthetic photoelasticity experiments. The first folder, called Stress
maps, contains 101,430 gray images about stress maps with dimensions of 224 × 224 pixels.
Names of the images in the Stress maps folder follow the next structure:
‘Target’ + underline + a sequential number + ‘.bmp’.

The second folder, called Color fringes, is composed of the images with color fringe
patterns produced from the previous stress maps. Images in both folders match in
quantity and dimensions. Names in the Color fringes folder follow the next structure:
‘Img’ + underline + a sequential number + ‘.bmp’.

As an example, Table 2 illustrates four experimental photoelasticity cases in the dataset.
In the first case, the gray image represents the stress map about an analytical model of a
ring under diametral compression whose maximum stress value is 60 MPa. The color image
is the isochromatic pattern generated when observing such stress map through a circular
polariscope with a fluorescent light source and a digital camera with the DCC3260c sensor.

The second case in the previous table considers a normalized fixation map of a saliency
evaluation as a stress map, where maximum stress magnitude is 36 MPa. This saliency map
is the ‘013.jpg’ in the ‘Train images’ section of ‘FIXATIONMAPS’, subsection of ‘Actions’
into the CAT2000 dataset [10]. On the right side is the isochromatic color image generated
from the left saliency map considering a circular polariscope with constant light in the
visible spectral range, and a camera sensor that simulates the spectral response of the
human vision.

As a third case, a normalized Gaussian surface is scaled to 24 MPa to simulate a
stress map. The surface was generated by superposition of random Gaussian functions
as proposed in [8]. In this case, the color image is the isochromatic representation of the
Gaussian surface when considering a circular polariscope with incandescent light source,
and a digital camera with the sensor Sony IMX250.
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Table 2. Three stress maps and their respective color fringes in the Isochromatic-art dataset.

Stress Maps Folder Color Fringes Folder

Case Description Image Description Image

1 Ring under compression
Isochromatic image for ring

under compression

2 Saliency map
Isochromatic image for

Saliency map

3 Gaussian map Isochromatic image
for Gaussian map

4 Stanford bunny Isochromatic image
for Stanford bunny

Finally, the fourth case is a bidimensional representation in a lateral view of the Bonny
Stanford 3D reconstruction [12]. This representation assumes 60 MPa as maximum stress
value. In this case, the isochromatic image was generated by using a light source of laser
integrations and the sensor DCC3260C in the polariscope assembly.

In addition to the image folders, this repository includes two supplemental files for a
wider data understanding and reproduction.

The first file, called ‘Isochromatic_art_description.xls’, indicates all the experimental
configurations per every generated image. There, every row is one synthetic experiment of
digital photoelasticity, where the first and second columns are the names for the stress map
and its isochromatic image, respectively. The third to ninth columns are the experimental
case, reference model, type of abstraction, angle rotation, maximum stress magnitude, light
source, and camera sensor, respectively.

The second file, called the ‘stress2fringes.mat’, corresponds to a Matlab® function used
for generating the isochromatic images. In the function, the inputs are:

• Stress_Map: Continuous surface or gray map;
• Stress_Max: Maximum stress value that could exist within the experiments (in Pa);
• Stress_Magnitude: Stress magnitude to scale the continuous surface (in Pa);
• Optic_Coefficient: Stress optic coefficient (in m2/N);
• Thickness: Body thickness (in m);
• Source: Data vector with the relative spectral content sampled into 371 data through

the visible spectral range (371 × 1);
• Sensor: Data array with the relative spectral response of camera sensor sampled into

371 data through the visible spectral range per color component (371 × 3).

The outputs are:



Data 2022, 7, 151 7 of 11

• Isochromatic: 8-bit color image about isochromatic fringes with spatial dimensions
according to the entered stress map;

• Stress_img: 8-bit gray image about the entered stress map.

4. Usage Examples: Automatic Quantification of Stress Maps from Color Fringe
Patterns by Using Convolutional Neural Networks

As mentioned previously, the main intention of our dataset is to provide different
study cases that can support the designing and testing of computational algorithms for
demodulating the stress field wrapped by the fringe patterns in digital photoelasticity
studies. To show the data validity, we propose a simple model of a convolutional neural
network to predict the stress maps by using as input the isochromatic images. The model
was built by stacking convolutional layers as proposed in the VGG16 model [13]. In this
case, Figure 5 shows the configuration for all the layers of the proposed net. In summary,
it could be said that our model can be divided into two stages: the first one to encode
the fringe information, which is similar to the VGG16 architecture, and the second one to
decode it into a continuous stress surface.

Figure 5. Illustration of the convolutional neural network architecture. The architecture is similar to
VGG16 as encoder and decoder.

4.1. Training and Testing

Once the convolutional model was generated, the whole dataset was divided by
taking into account a proportion of 80% of the cases for training, and 20% for testing. This
procedure was applied to both isochromatic images, and stress maps. In the proposed
model, the net takes an isochromatic image as input, and produces a stress map as output;
then, the difference between the produced and the real stress map is used to improve the
model leaning process. In this case, the training process was expected for 100 epochs by
using the Keras toolbox in a desktop with processor Intel Xeon Silver 4208 with 16 cores to
2.10 GHz, 16 Gb RAM, and a graphic card NVIDIA QUADRO P2200.

4.2. Validation

Evaluating the accuracy of deep learning models used to solve an inverse problem
requires the comparisons between the model output and the target expected. In our case,
the recovered phase map through the net must be compared with the reference phase map.
To this, there exist different similarity metrics to carry out such comparisons. However,
some of the most reported are the mean squared error (MSE) [14], peak signal-to-noise ratio
(PSNR) [15], and the structural similarity index (SSIM) [16]. In the MSE case, the metric
is based on the squared differences between the spatial magnitudes of the reference map
δre f , and the magnitude of in the map generated with a convolutional model δpred, as it is
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indicated in Equation (2). There, values close to zero indicate high similarity between tithe
maps, and, therefore, high performance of the model.

MSE =
1

M × N

M

∑
x=1

N

∑
y=1

[δre f (x, y)− δpred(x, y)]2 (2)

Complementary to the MSE, the PSNR error evaluates the similitude between the
phase maps but introduces a relation with the maximum phase value into the reference
case, as it is indicated in Equation (3). This operation allows the metric to be more specific
to measure the quality of reconstruction tasks. In this metric, high values indicate better
performance; on the contrary, low values indicate low performance:

PSNR = 10 log10

(max(δre f )

MSE

)
(3)

In the case of the SSIM, the metric was designed exclusively for comparison of images.
The SSIM measures the quality in a predicted image, phase map in our case, from the
reference information by analyzing contrast, luminance, and structure, as it is indicated
in Equation (4). There, ‘C1’ and ‘C2’ are compensation coefficients that depend on the
dynamic range. In that case, δ accounts for the co-variance. SSIM results close to ‘1’ indicate
high performance, results close to ‘0’ indicate low performance:

SSIM =
(2 ∗ δre f ∗ δpred + C1) ∗ (2 ∗ σ + C2)

(δ2
re f + δ2

pred + C1) ∗ (σ2
re f + σ2

pred + C2)
(4)

Among the variety of results that were obtained within this validation process, Table 3
shows some highlighted cases. There, the values of the metrics between the target and
prediction data confirm the advantages of using the proposed dataset when developing
machine learning algorithms for quantifying the stress field from a single isochromatic
image. In the table, although some cases indicate low prediction performance, these explo-
rations open a new horizon of works due to the need to achieve successful demodulation
of the fringe patterns when having photoelasticity cases that produce fringe patterns with
variations of illumination, distribution, and density.

Table 3. Predicted stress maps from isochromatic images.

Fringes Target Predicted Metrics

Disk patch
MSE: 25.73

PSNR: 35.54
SSIM: 0.9750

Ring patch 1
MSE: 127.02
PSNR: 29.12
SSIM: 0.9454

Ring patch 2
MSE: 28.16

PSNR: 34.38
SSIM: 0.6338
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Table 3. Cont.

Fringes Target Predicted Metrics

Complete Ring
MSE: 75.86

PSNR: 34.27
SSIM: 0.8476

Bunny
MSE: 150.47
PSNR: 31.85
SSIM: 0.9042

Ring
MSE: 129.76
PSNR: 33.33
SSIM: 0.8912

5. Conclusions

A computational dataset for isochromatic images, and stress maps in digital photoe-
lasticity studies, were reported in this paper. With this work, we have provided a big
collection of photoelasticity cases from different experimental configurations, which are
difficult to obtain when working with real experimental scenarios. With these images,
researchers in digital photoelasticity will be capable of making fast validations of existing
techniques requiring one single-acquisition. Likewise, this dataset will open up the oppor-
tunity to explore new strategies for fringe pattern demodulation by implementing machine
learning algorithms due to the view of computational strategies for inverse problems that
take as input images with isochromatic fringe patterns. In addition, expect as output the
demodulated stress map.

Different to the conventional images reported in photoelasticity studies, this dataset
provides variability in fringe distributions and density. In our case, we have reported
synthetic isochromatic images generated computationally by considering different experi-
mental conditions such as: complicated stress distribution, load increments, light sources,
camera sensors, noise effects, rotations, and patch extractions.

Although the proposed dataset was based on computational procedures, we believe
that some of the most valuable features include the possibility of providing examples for
a better understanding of the photoelasticity method and the birefringent phenomenon.
Another important feature is the possibility of carrying out fast explorations of the fringe
demodulation process by using modern models of machine learning techniques, and, after
that, the possibility of making an appropriate tuning process with different types of images
to be used in any engineering application.

Between the contributions generated by this dataset, some are listed as follows:

• For researchers in different engineering areas, the possibility of having a big collection
of isochromatic images, and its respective stress maps, open up the opportunity to
explore new strategies for bi-dimensional inverse problems. This implies that the set
of images becomes a chance for amplifying the range of applications based on deep
learning methods overall for such optical areas where obtaining data comes from
complicated experiments.

• In areas related to holography, a giant set of phase information, visualized through
color fringe patterns, allows researchers in different engineering areas to explore un-
wrapping processes where the fringes adopted complicated distributions, appearance,
and concentrations, which is difficult to obtain experimentally.
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• In photoelasticity studies, besides providing a big variety of experimental effects,
which are not possible physically due to the absence of geometries, type of loads, light
sources, camera sensors, resolution, etc.; our dataset allows for defining benchmarks
that afford the comparisons between the conventional and non-conventional methods,
such as those new reports supported by deep learning algorithms.

• Finally, with this dataset, our future work is focused on developing and tuning
different architectures in deep learning models for demodulating the stress field of
loaded pieces while acquiring a single isochromatic image.The idea in this proposal lies
in the opportunity of using our dataset for testing new models reported in computer
science for deep learning, and achieving a successful unwrapping process of the
stress map.

Supplementary Materials: The following supporting information can be downloaded at: https:
//data.mendeley.com/datasets/z8yhd3sj23/5.
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