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Abstract: Smart cities need (sensor) data for better decision-making. However, while there are
vast amounts of data available about and from cities, an intermediary is needed that connects and
interprets (sensor) data on a Web-scale. Today, governments in Europe are struggling to publish
open data in a sustainable, predictable and cost-effective way. Our research question considers what
methods for publishing Linked Open Data time series, in particular air quality data, are suitable in a
sustainable and cost-effective way. Furthermore, we demonstrate the cross-domain applicability of
our data publishing approach through a different use case on railway infrastructure—Linked Open
Data. Based on scenarios co-created with various governmental stakeholders, we researched methods
to promote data interoperability, scalability and flexibility. The results show that applying a Linked
Data Fragments-based approach on public endpoints for air quality and railway infrastructure data,
lowers the cost of publishing and increases availability due to better Web caching strategies.

Keywords: smart cities; IoT; semantic web; Linked Open Data; air quality; railway infrastructure;
Linked Data Fragments

1. Introduction

Today, most of the global population lives in urban areas, and it is expected that
this will increase to nearly 70% by 2050 [1]. Such high levels of population growth create
problems in waste management, air pollution and traffic mobility [1,2]. To avoid this
accelerated urbanization turning into a crisis, cities must become “smart.” “Smart” refers
to a continuous comprehensive commitment to innovation in technology, management
and policy [3].

To become smart and make smarter decisions, cities need to amalgamate disparate
data sources, including data on urbanization, weather and traffic [4]. The resulting insights
can support better policymaking, such as better urban planning decisions on where to build
new roads, schools or hospitals. For example, providing real-time air quality data to citizens
can help them choose a route that reduces their exposure to pollution [5,6]. However,
governments are struggling to create and maintain accessible public endpoints where
high-value datasets can be published because of barriers such as availability, scalability
and publishing costs [7].

In the State of the Union at the European Parliament Plenary, President von der
Leyen addressed the need for common data spaces to ensure data are widely accessible [8].
Meeting the challenges to ensure that data are accessible and interoperable is at the core of
the European strategy to create a single market for data [9]. According to the European
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data strategy, interoperable data spaces can bring extensive benefits in domains such as the
European Green Deal data space and the Common European Mobility data space [9]. For
smart cities, the need to publish interoperable data is crucial in domains such as sustainable
energy [10], water supply networks management [11], or policymaking [12,13].

Thus, the key question is how public authorities can develop a sustainable method for
publishing open data. A key consideration is how the cost between data publishers and
consumers should be distributed.

In this article, we assess the cost-efficient publishing of sensor data time series on
air quality, which could help reach the ambitious European target to become the first
climate-neutral continent by 2050 [9]. Additionally, to assess the cross-domain applicability
of our data publishing approach, we explore the cost-efficient open data publishing of
European railway infrastructure information, based on the data resources published by the
European Agency for Railways (https://www.era.europa.eu/, accessed on 26 July 2021)
(ERA).

Despite originating from different domains and dealing with different types of data,
both use cases present good examples, within the European context, of the challenges
faced by public authorities acting as open data providers. Our approach builds upon the
same architectural building blocks to provide a cost-efficient and cross-domain open data
publishing alternative.

Our research on the first use case assumes that the application of Linked Data Frag-
ments on public endpoints will result in more efficient caching for air quality sensor data,
lowering the cost of publishing and increasing data availability. Furthermore, this approach
assumes that Linked Data Fragments will support the business needs for an air quality
sensor data endpoint. Our research is somewhat limited as only one dataset of sensor data
is used, relying only on geotemporal query operations, similar to the Next Generation
Service Interfaces (NGSI) specification [14]. In a real-world application, more context, and
thus datasets, will need to be queried.

The second use case concerns a typical scenario for railway infrastructure data, using
the calculation of possible routes across the railway network and, in particular, a route
compatibility check. This use case recognises the need to support potentially complex
geospatial query operations that perform graph shortest-path algorithm calculations. Tradi-
tional solution systems typically rely on dedicated database systems that support geospatial
querying, such as PostGIS3, or graph databases such as Neo4] [15,16]. However, these
systems result in heavy computational costs on open data publishers, which often need to
impose query limitations to guarantee service availability.

This article is made up of six sections. Section 2 discusses related work. First, we
introduce smart cities and the two use cases. Next, we discuss the nature of air quality
sensor data and explain why we need a different layer where sensor data can be con-
nected and interpreted by machines on a Web-scale. We outline the design principles of
Linked Data, apply them to sensor data and elaborate on railway infrastructure data [17].
Finally, we describe caching strategies to publish data and assess how the roles of data
publishers and data consumers can be balanced. Section 3 describes how the use case
scenarios can benefit from a Linked Data Fragments approach. Section 4 benchmarks
the FIWARE (https:/ /www.fiware.org/about-us/, accessed on 26 July 2021) and Linked
Data Fragments architectures for the air quality sensor data use case and assesses the
cost for both the data publisher and the consumer. Section 5 discusses the findings of
the benchmark in detail, which should help government agencies and organizations to
re-use the architectural components when refactoring the endpoints. We also discuss
the cross-domain interoperability and architectural flexibility applied to the use case of a
route compatibility check. We point out methods that lower the cost for publishing and
increase the availability of endpoints and the flexibility of client-side applications. We show
how governments can distribute the cost between the data publisher and the consumer
and point out how these insights can lead to a sustainable sensor network promoting
interoperability, flexibility, availability, scalability and predictability.


https://www.era.europa.eu/
https://www.fiware.org/about-us/

Data 2021, 6, 93

30f32

2. Background and Related Work
2.1. Smart Cities, Air Quality Sensor Data and Railway Infrastructure Data

“Smart” cities are not a new phenomenon. The ancient city of Rome accommodated
between five hundred thousand and one million inhabitants through an advanced bureau-
cratic information system and efficient waste management [18]. Similarly, air pollution was
monitored in ancient times and recorded in poems (e.g., by Horace (65 BC-8 AD)) [19]. The
first regulations on air quality can be observed in Roman Law: “Aerem corrumpere non
licet” (Air pollution is not allowed) [20]. Today, according to the World Health Organization
(https:/ /www.who.int/, accessed on 26 July 2021) (WHO) “air pollution represents the
biggest environmental risk to health” [21]. The WHO estimates that outdoor air pollu-
tion caused three million deaths in 2012. Urbanisation has increased the concentration
of ambient air pollution resulting from traffic, transport, domestic heating and industrial
emissions [22]. Air quality in Europe is regulated by Directive 2008/50/EC, which defines
the threshold for the concentration of several pollutants.

The European Commission [23] is fostering the re-use of high-value datasets, such as
sensor data time series on air quality, by legislating for (real-time) datasets to be published
in a machine-readable format and to be automatically transferable through an Applica-
tion Programming Interface (API). An API allows users to query and combine data from
several endpoints, without maintaining copies of the data. Machine-readable data en-
ables information to become self-describing removing the need for manual analysis and
transformations.

Since public city administrations cannot predict the load caused by users of any given
dataset on their APIs, services often lack elasticity. An example is the launch of the “solar
map” (https:/ /apps.energiesparen.be/zonnekaart, accessed on 26 July 2021) in Flanders
(the northern part of Belgium). The “solar map” is an online application provided by
the Flemish Energy Agency (https://www.energiesparen.be/over_veka, accessed on 26
July 2021) that shows the suitability of solar panels for any given roof and calculates the
payback period for investing in solar panels. The application builds on remote sensing data
from the Digital Flanders Agency. During the public launch, the application went down
because the services were under dimensioned [24]. These problems will be exacerbated as
the Web of Sensors becomes a distributed, high-volume, high-velocity and heterogeneous
mix of sensor and storage platforms [25].

Within the context of mobility, the European Commission states that “real-time notifi-
cation of delayed trains can save 27 million working hours. This amounts to €740 million
in labour costs” [9]. For this reason, and motivated to foster safe and efficient railway
transportation operations, the European Agency for Railways (ERA) manages and pub-
lishes different base registries (some of them as open data) [12,26,27] containing valuable
information related to the European railway infrastructure. These data may be re-used
by the different stakeholders of the railway domain to improve their services through
innovative data powered applications. Similar to public government agencies in Flanders,
the ERA also faces the challenges of making their public data accessible, interoperable and
available for maximum re-use.

2.2. Air Quality Sensor Data
2.2.1. (Sensor) Data Streams

Air quality in Europe is regulated by Directive 2008/50/EC, which defines the thresh-
old of the concentration of several pollutants, including fine particles (PM2.5), Sulphur
dioxide (SO7), Nitrogen dioxide (NO;), PM10 and Carbon monoxide (CO) [28]. These
pollutants are measured using Air Quality sensors. Good quality sensors used to be costly
and were based on chemical analyses and, thus, less densely deployed [22]. Recently,
low-cost sensors, including electrochemical sensors (NO,, CO, SO, gas detection) and
optical particle sensors for PM10, entered the mainstream market at affordable prices [22].
A disadvantage of these sensors is that they must be calibrated due to their inferior me-
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chanical and electrical tolerances. Furthermore, their signal often changes independently
of the measurements due to sensor drift [29].

To achieve a denser sensor-grid, low-cost sensors can be deployed at high volumes.
The data can be calibrated using the data of the less-dense high-end air quality sensors and
can be combined with other valuable datasets, including weather and traffic.

To achieve this, we need a “layer” where sensor data can be connected and interpreted
by machines. This layer will enable the blanks to be filled out by interpolating nearby and
historical data. The results can then be “re-gridded” to fit a uniform “time-space” dataset,
which can then be easily analysed.

Nittel [30] defines a sensor data stream as “a time series of sensor measurements
mgj = <tj, lsj, V1; V3,...Vn > generated by a sensor node Sj, based on one or more of its attached
sensors”. Both the timestamp t; and the location of the sensor lj are crucial to interpret the
sensed value v,. The location can be a fixed value, in the case of the high-end stationary air
quality sensors, or a variable value, derived from, e.g., Global Positioning System (GPS),
where the low-cost sensors are mounted on a vehicle. Furthermore, information related to
the type (e.g., PM10, NO2), the calibration parameters (including relative humidity and
temperature) and the quality of the measurement is important [31]. It is expected that
sensor streams will evolve to become spatially densely distributed with a high-frequency
sampling rate [30] generating high volumes of data. Considering that there are four
thousand air quality sensors and a sample each second, this represents over 126 billion
samples collected per year, compared to another high-volume datasets in the financial
sector; this exceeds the number of bank transactions in Europe in 2018 [32].

2.2.2. Interoperability of Air Quality Sensor Data

When considering air quality sensor data, an important challenge is to identify and
process the heterogeneous and mixed quality datasets (Hendler, 2014). Therefore, inter-
operability (IOP) is crucial, both for combining air quality data from different sources as
well as for linking these data to other datasets such as traffic or weather data [33]. The
European Commission defines IOP as the ability of organisations to share information and
knowledge, through the business processes they support, by exchanging data between
their ICT systems [26]. To ensure that sensor data can be re-used, various IOP levels should
be addressed in turn; namely the legal, organisational, technical and semantic level [27],
see Table 1.

Table 1. Northbound Air Quality Sensor Data interoperability levels evaluated using the European
Interoperability Framework [26].

Non-interoperable legislation, data licenses for
maximum re-use.
Aligned and documented business processes, Service
Organisational Interoperability Level Agreements and appropriate archiving
mechanisms for streaming data.
HTTP as the foundation for data communication and
URISs to identify “things”.
Information is aligned on standardised vocabularies.
Semantic Interoperability The method of Linked Data facilitates semantic and
syntactic IOP.

Legal Interoperability

Technical Interoperability

As IOP frameworks—including the European Interoperability Framework—assume
a hierarchy in the IOP levels, legal and organisational IOP can only be implemented
successfully when semantic and technical IOP are in place [34].

First, as smart cities are networked ecosystems, organisations broaden their activities
outside their policy domain, which results in legislative barriers, introduces costs and slows
down innovation [35,36]. These barriers impede legal IOP and originate because of (a)
non-interoperable legislation between different governmental levels such as municipalities
and regional government, (b) non-interoperable laws across different policy domains such



Data 2021, 6, 93

50f 32

as environmental regulations and mobility and lastly, (c) (the lack of) clauses in agreements
between governments and software vendors prohibiting the re-use of data.

Second, to create a sustainable sensor network, business processes among actors in the
ecosystem must be aligned and documented, for instance by requiring service providers
to agree on a Service Level Agreement framework [27,37]. These efforts on coordinated
business processes, responsibilities and expectations are referred to as efforts towards
organisational IOP [26].

Third, technical IOP covers the interconnection of applications and infrastructures,
including interface specifications that interconnect systems and services [26]. In the Internet
of Things (IoT) paradigm, objects that both harvest information from the physical world
(sensors) and interact with their environment (actuators) are interconnected [38]. In these
networks, we distinguish northbound (NBI) and southbound interfaces (SBI).

An SBI provides connectivity to the low-level components in the physical infrastruc-
ture such as sensors and actuators. Alternatively, an NBI provides connectivity with the
other network nodes, regularly exposed as APIs. These APIs can shield the disparateness
of the physical infrastructure and create a heterogeneous NBI, reducing the complexity of
application development [39].

Sensors will not only generate an excessive amount of data but more importantly,
data of a greater variety [38,40]. Hendler [41] defines “broad data” as the phenomenon
of “trying to make sense out of a world that depends increasingly on finding data that
is outside the user’s control, increasingly heterogeneous, and of mixed quality”. To face
the challenges of broad IoT data, the principles of Linked Data enable data to become
self-describing and machine-readable [40,42]. Machine-readable data allow autonomous
agents to reason on the sensor data [43]. Linked Data build upon the Web and use typed
links between data entities from disparate sources [17]. These links are typed statements,
described using the Resource Description Framework [44]. The entities are globally unique
and identified using Uniform Resource Identifiers (URIs). URIs can be consulted using the
HyperText Transfer Protocol (HTTP), which is the foundation for data communication on
the Web [45,46].

Finally, a lack of semantic agreements causes multiple transformations on the dif-
ferent data models and syntaxes, which implies rewiring APIs and induces exorbitant
costs [33]. The European Interoperability Framework (EIF) refers to semantic IOP as the
meaning of information that is preserved and understood during the exchange between
all communicating parties [27] and the purpose of this level is that it “encompasses the
intended meaning of the concepts in the data schema” [47]. In this way, semantic IOP can
tackle heterogeneity across datasets and ensure that no different terms are used for a given
attribute or that a given term is not used to represent different concepts [48]. It includes
both semantic interoperability, which refers to the meaning of the sensor data, and syntactic
interoperability, which specifies the grammar of the information such as XML or JSON [26].
The competing vocabularies that model the domain of air quality from slightly different
viewpoints, including INSPIRE, NGSI-LD and SSN/SOSA, are discussed in Section 2.3 (see
Table 2).

Table 2. Overview of the characteristics of three ubiquitous vocabularies [14,49-51].

Wide Indus- . .
Vocabulary Use for try/Community Ratified Vocabl.llary for Air Linked Data Support
Quality
Support
INSPIRE INSPIRE NO YES NO
YES (https:
NGSI-LD (FIWARE / /github.com/smart-data-mode
Data model "Air ETSI YES Is/dataModel. Environment/ tree / YES
quality observed) master/AirQualityObserved,
accessed on 26 July 2021)
SSN/SOSA W3C/0GC YES YES YES
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2.2.3. Semantic IOP Applied to Air Quality Data

Space, time and theme are key dimensions for registering and analysing sensor data,
as they make it possible to link the sensor data to other datasets [25]. The spatial component
provides information about the location, the temporal attributes observe the time and time-
zone, while the thematic attributes provide information about the sensor type [52]. In the
context of this article, we will focus on the air quality data that monitor several pollutants,
including fine particles and Nitrogen dioxide.

European Member States are obliged by law to report ambient concentrations; when
thresholds are exceeded, they need to inform the public [53]. The European Commission
established a legal framework, “Infrastructure for Spatial Information in the European
Community” (INSPIRE), that focuses on accessible and interoperable data [54]. INSPIRE
defines data specifications and implementing guidelines for exchanging air quality data,
including a standardised description for sensors, sensor location, orientation, as well as
the sensor’s geometric, dynamic and radiometric characteristics [51]. The conceptual
schemas, which make up the normative part of the standard, are defined in the Unified
Modelling Language (UML) and in XMLschema. XMLschema is a description of a type
of Extensible Markup Language (https://www.w3.org/XML/, accessed on 26 July 2021)
(XML) document that defines a set of rules for encoding documents in a format that is both
human-readable and machine-readable.

In 2016, the European Commission (EC) requested that the European Telecommunica-
tions Standards Institute (ETSI) (https://www.etsi.org/, accessed on 26 July 2021) create
an Industry Specification Group (ISG) to define a standardised API for Context Informa-
tion Management (CIM) with Future Internet Ware (FIWARE) Next Generation Service
Interfaces (NGSI) as a nominee. FIWARE is an open-source platform, supported by the EC.
NGSl is a protocol to manage Context Information. The ISG delivered the Next Generation
Service Interfaces as a Linked Data (NGSI-LD) standard [14], which enables nearly real-time
access to information from different distributed data sources. The NGSI-LD Information
Model Structure (IMS) consists of the following two layers: a core Meta-model and a Cross-
Domain Ontology that can be extended with domain-specific logic. The core Meta-model
defines a minimal set of constructs that are the basic building blocks of the Cross-Domain
Ontology including Entity, Relationship, Property and Value [14,55]. The Cross-Domain
Ontology describes concepts and constraints that provide consistency between the dif-
ferent IoT domains and applications; these concepts include Geographical properties,
Temporal properties and Time values [14,55]. The domain-specific logic can be extended
with ontologies for a specific domain, including air quality, noise level and water quality
(https:/ /github.com /FIWARE/data-models/blob /master/specs/ngsi-ld_howto.md, ac-
cessed on 26 July 2021). NGSI-LD requires a reimplementation of existing Linked Data
domain models to fit the semantics of NGSL

In 2017, the World Wide Web Consortium (https://www.w3.org/, accessed on 26 July
2021) (W3C) and the Open Geospatial Consortium (OGC) Spatial Data on the Web (https://
www.w3.org/2017/sdwig/, accessed on 26 July 2021) (SDW) working group joined forces
and developed a set of ontologies that annotate sensors, actuators, samplers and their time
series [49,50]. The ontologies include a lightweight core Sensor, Observation, Sample and
Actuator (http://www.w3.org/ns/sosa/, accessed on 26 July 2021) (SOSA) ontology and
the more expressive Semantic Sensor Network Ontology (http://www.w3.0org/ns/ssn/,
accessed on 26 July 2021) (SSN) [49]. As such, SOSA provides a minimal core for SSN
and ensures minimal IOP. According to Haller, SSN and SOSA support various use cases
including “satellite imagery, large-scale scientific monitoring, industrial and household
infrastructures, social sensing, citizen science, observation-driven ontology engineering,
and the Web of Things” [56]. The SSN and SOSA ontologies are available in line with the
principles of Linked Data, which allow autonomous agents to reason on the capabilities,
measurements and provenance of an individual sensor or a network of sensors. Finally,
there is the ISO/OGC Observations and Measurements (O&M) standard to model air
quality data. This model is used in the OGC’s SensorThings API, a REST-based API for
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sensing and tasking lIoT devices. SensorThings uses a similar service-oriented approach as
NGSI-LD where, among others, filtering capabilities are offered to a client.

2.3. Interoperability Applied to Railway Infrastructure Data

Since railway infrastructure data are a networked ecosystem where various infrastruc-
ture managers—such as Infrabel in Belgium—interact and need to exchange information,
interoperability is crucial. The different IoP levels are documented in the implementing
regulation 2019/773 [57] of the European Commission. On a legal level IoP, the European
Commission defined regulation relating to the operation and traffic management of the rail
system within the European Union [57].

To create an interoperable rail network, rules and procedures among actors in the
ecosystem are aligned and documented such as the ability to exchange information about a
train arriving, passing or departing from a station [57].

In the railway domain, most efforts have focused on providing concise and reusable
definitions for the different concepts and elements that make up the railway infrastructure.
A common data model would enable an automated exchange of railway infrastructure
data among the different stakeholders (e.g., infrastructure managers and railway vehicle
operators) to support safe service operations. Currently, several semantic and non-sematic
data models exist, all sharing the goal of increasing data interoperability in the railway
domain.

Among the non-semantic models, we can find RailML, which defines an XML Schema
covering multiple aspects of the railway infrastructure [58]. RailML, re-uses the meta
model for topological entities defined by the RailTopoModel, which aims to bridge the
different modelling approaches with a unique graph-based logical model of the railway
network topology [59].

Similarly, Semantic Web-driven approaches exist to provide a framework for data
interoperability in the railway domain. For instance, Tutcher applies a structured method-
ology to create an OWL-based ontology for the railway domain. Verstichel et al. [60] define
a semantic model and discuss how semantic technologies may support data integration in
the railway domain. Bischof et al. take advantage of the domain knowledge embedded in
established models such as RailML to derive a reusable ontology [61]. Most recently, ERA
published an initial sematic vocabulary (http://era.ilabt.imec.be/era-vocabulary/index-e
n.html, accessed on 26 July 2021) to model railway topology networks, together with other
relevant domain concepts.

However, reliable railway infrastructure open data are not particularly easy to find.
Crowd-sourced initiatives such as OpenStreetMap (OSM) provide a rich source of open
data related to the railway domain [62]. For instance, the OpenRailwayMap (https://ww
w.openrailwaymap.org/, accessed on 26 July 2021) is a data visualization service built
on top of OSM data. However, these data are not always directly reusable. An example
of authoritative data can be found in the open data portal of the Belgian infrastructure
manager Infrabel, which includes data dumps of the Belgian railway infrastructure. Yet,
these data dumps lack formal semantic definitions and are not immediately queryable and
reusable by applications (https://opendata.infrabel.be/explore/?sort=explore.popularity_
score&refine.theme=Infrastructure&disjunctive.keyword, accessed on 26 July 2021).

2.4. Data Caching Strategy

As the Sensor Web is distributed, multimodal (e.g., air quality, relative humidity,
temperature, reference data), read-intensive and subject to large-scale load variations, it
becomes very brittle [25]. To lower a server’s central processing unit (CPU) load—and thus
the actual publishing cost—optimisations can be implemented via caching, which reduces
traffic [63,64]. Caching stores data, which lowers the cost of handling future requests. In
this section, we explain how Web caching—or HTTP caching—can reduce the need for
client-server interaction.
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The World Wide Web (WWW) has a software architecture that is designed for internet-
scale across organisational boundaries and builds upon the principles of a distributed
hypermedia application. To raise scalability, Web applications follow the Representational
State Transfer (REST) architectural style—which is demarcated by a set of architectural
constraints that enable caching—and is a blueprint for the behaviour of a well-designed
Web application. The REST architectural style resembles the human Web, which builds
upon hyperlinks, and a set of architectural constraints that facilitate architectural elastic-
ity [65]. The three most essential constraints are (i) uniform interface, (ii) client-server and
(iii) stateless and cache constraints.

First, the uniform interface simplifies the architecture and empowers clients to evolve
separately [66]. This key feature of the REST architecture unfolds in four sub-constraints;
namely (a) Uniform Resource Identifiers (URIs)—a generalisation of an HTTP URL to
identify things on the Web, (b) resource manipulation through representations—which
implies that both the client and server can choose the representation of the resource such
as JSON-LD, (c) all messages are self-descriptive—they contain all the information that
the client needs for interpreting the message such as indicating that the “Content-type” is
“text/html”, and (d) Hypermedia As The Engine Of Application State (HATEOAS)—which
refers to the fact that a response should include links to possible actions. These hypermedia
controls are comparable with links to forms, which makes out-of-band documentation
needless [65,67].

Second, the client-server model implies several clients that communicate with a server.
The client performs an action on a Web resource—using the HTTP protocol—by sending a
request to the server [65].

Finally, Stateless and Cacheable prohibit the server to store the state of the client
application [65]. This implies that every client request contains the context. This has two
advantages; (a) as the server does not need to store the state of the client applications, it
can easily scale up, and (b) the requests can be cached, which lowers the load on the server
(see Figure 1).

Client 1 : : :

GET

K p— GET _
cachoaompny cacheempty| : | processor
2000K _2000K il load __
Client 1
© GET
cache hit
200 OK _
Client 2
L GET
| RIRLY cache hit T
' 1200 0K

Figure 1. Different stages of caching: no caching, client caching and server caching [65,67].



Data 2021, 6, 93

9 of 32

2.5. Balancing Efforts between Publisher and Consumers

When servers encounter more complicated queries, they often respond with an error
stating “query too complex”, or “time out”. Within the context of air quality data or railway
infrastructure, this typically occurs in route planning use cases where end-users want to
be routed only through areas where a specific property of air pollution is lower than a
certain threshold or finding railway routes with specific parameter values (e.g., type of
energy supply). Route planners should be able to perform such querying, without the
data publisher ever having to think about this specific use case. A similar case, illustrating
a route planner that can evaluate any given query on the client side, without having to
rely on server-side functionality other than when downloading the right Linked Data
Fragments, was implemented by Colpaert [68]. The application builds upon the principles
of the REST architectural style and is an implementation of Linked Data Fragments (LDF).

LDF is a conceptual framework that provides a uniform view over Linked Data
interfaces [69], including SPARQL endpoints, Linked Data documents and data dumps.
All Linked Data interfaces publish specific fragments of a dataset that follow a certain
selector pattern. This selector may be very specific, such as with a complex SPARQL query
(materialized via a SPARQL endpoint), or very generic, such as in a single file data dump
containing all the available triples/quads. Furthermore, in-between solutions exist, where
such a data dump is fragmented, for example, based on geospatial characteristics [63]. A
client can still answer individual queries by downloading the right subset of the knowledge
graph. For a client to understand which fragments would be useful for answering a
specific query, a server must document its fragmentation structure through hypermedia
controls [69]. However, shifting query processing responsibility towards the client increases
its complexity and may impact the query solving performance of certain types of queries
due to additional data fetching tasks. This constitutes a trade-off that is also captured
by the Linked Data Fragments axis (data dumps to SPARQL endpoints), which was first
introduced for Triple Pattern Fragments, providing a low processing cost interface for
answering Basic Graph Patterns at the expense of longer query response times.

To balance the effort between the data publisher and consumer of Air Quality Data,
we limit the interface by applying a temporal and spatial fragmentation. This concept
allows data to be published and consumed by moving intelligence from the server to
the client, trying to create a better balance between the costs on the server and the client
side [70]. When querying a dataset, an iterator allows the data container to be traversed,
which is typically arranged as a tree or pipeline that divides the data stream into smaller
parts that can be processed in parallel [71]. As we focus on self-describing and machine-
readable data, we build upon the principles of Linked Data. Querying Linked Data is
mostly associated with SPARQL Protocol and RDF Query Language, a semantic query
language able to retrieve and manipulate the datasets. The approach of a dynamic iterator-
based pipeline applied to process SPARQL queries has been researched [72]. SPARQL
endpoints implement a protocol on top of HTTP—contrary to regular HTTP servers, there
are many ways to express the same request that cache hits are likely to be very low—and,
therefore, common HTTP caching cannot be used, which has a negative impact on the
scalability [73,74].

The Linked Data Fragments approach leverages on HTTP caching and is, therefore,
scalable. As time and space play a central role in air quality data, these are essential
linking dimensions for LDF [25]. Examples of iterators are hydra:previous and hydra:next,
which allow the client to iterate over the air quality time series, retrieving the different
LDF samples at a particular timestamp or the average during a specified time interval.
These hypermedia controls are defined in the Hydra Core Vocabulary [75]. These iterators
were applied to time and space dimensions by Colpaert, who extended (https://open
planner.team/specs/2018-11-routable-tiles.html, accessed on 26 July 2021) the Hydra
ontology to describe a tile server that supports osm:Way, osm:Relation and osm:Node [68].
If an osm:Way has an overlap with a tile, links to bordering tiles will be added to the
hydra:Collection (https://treecg.github.io/specification/, accessed on 26 July 2021).
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3. Use Case Scenario

In this chapter, we will delineate and describe two use cases of publishing Linked
Open Data time series. The first use case covers air quality data series captured by the
delivery vans of a postal operator. The second use case explores an LDF-based architecture
design for railway infrastructure data.

3.1. Air Quality Sensor Data Time Series
3.1.1. Overview

In order to delineate a clear use case, we conducted various semi-structured inter-
views with decision makers and experts. Interviews, as a methodological approach, can
be structured, semi-structured or open ended, with the first usually employed within
survey research and the latter in more explorative stages of research. Semi-structured
interviews allow for more flexibility in which topic lists do not need to be followed
rigorously and can be modified depending on the expertise or the issues raised dur-
ing the conversation. According to Pfadenhauer, a semi-structured expert interview
“lends itself as a data generating instrument in those cases in which the research focuses
on the exclusive knowledge assets of experts in the context of their (ultimate) respon-
sibility for problem solutions.” [76]. We talked with experts at (a) the Flanders Envi-
ronment Agency (https://www.vmm.be/, accessed on 26 July 2021) (VMM), an agency
of the Flemish government working towards a better environment in Flanders, (b) the
Agency for Facility Operations (https:/ /overheid.vlaanderen.be/facilitairbedrijf, accessed
on 26 July 2021) that is responsible for the Digital Archive Flanders, (c) Digital Flanders
Agency (https://www.vlaanderen.be/digitaal-vlaander, accessed on 26 July 2021) that is
responsible for digitisation and (d) the international innovation hub imec City of Things
(https:/ /www.imeccityofthings.be/en, accessed on 26 July 2021) that advances the state-
of-the-art of smart city technology.

A use case was developed in which eighteen delivery vans of Belgium’s leading postal
operator were equipped with sensors to measure air quality on behalf of the University of
Antwerp and imec (see Figure 2) [77].

Figure 2. bpost van equipped with an air quality sensor (by imec City of Things).


https://www.vmm.be/
https://overheid.vlaanderen.be/facilitairbedrijf
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Based on the gathered data, it is possible to suggest a healthier route with lower
exposure to air pollutants to citizens. To realise this use case, multiple sensor data sources
need to be queried. Therefore, we will also research a caching strategy that applies to
Linked Data. The focus points are the northbound interfaces (NBI) for air quality analysis,
which do not require real-time data streams [78-80].

The purpose of this use case was to evaluate the caching strategy. Evaluating tech-
niques to calibrate the data based on information such as the sensor noise level or location
is not in the scope of this use case.

As SOSA and SSN are, respectively, W3C recommendation and OGC implementation
standards, and available as Linked Data, they are excellent candidates to facilitate IOP for
air quality sensor data. Therefore, we have implemented SSN/SOSA for the use case sce-
nario. However, we expect that, with the support of the European Commissions and com-
munities including the International Data Spaces Association (https://www.internationald
ataspaces.org/, accessed on 26 July 2021) and TM Forum (https:/ /www.tmforum.org/pres
s-and-news/fiware-foundation-tm-forum-launch-front-runner-smart-cities-program/, ac-
cessed on 26 July 2021), that NGSI-LD, and their “smart data models”, could become a
sustainable and interoperable standard for a wide variety of thematic domains.

3.1.2. Realising the Air Quality Use Case via a Linked Data Fragments Approach

In this section, we elaborate on how the use case scenario can be realised using an
LDF approach. We developed three tracks (see Figure 3) that implement this use case, titled
“the absolute sensor values in a time interval” (scenario 1), “the average sensor values per
sensor” (scenario 2) and “the average sensor values within a bounding box” (scenario 3),
which consume measurements v; at a certain timestamp t; from sensor nodes at a specific
location ;.

ul N
(ISL t'l: v'l).- (IS]_J tzr V2 }: (Esll t3- 1‘.’3) (IS]_J t3: 1’3);

n

n _ n -
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n - .
Z (st ti vy + sz, iy vy + sz, tiy vy
e n

=1

Figure 3. The scenarios (ul) “the absolute sensor values in a time interval”, (u2) “the average sensor values per sensor” and

(u3) “the average sensor values within a bounding box”, which consume measurements v; at a certain timestamp t; from

sensor nodes at a specific location l.

The first track in the use case (scenario 1) is titled “the absolute sensor values in a
time interval” and gives “the client” the option to request absolute sensor values in a
time interval. The primary actor is the client of the Linked Time Series Server. The main
success scenario consists of four steps. First, the client determines the time interval in
which it wants to receive sensor values (1.1). This time interval can, for example, be an
hour, day, month or year. Second, the client sends its request (1.2) with the following
template: “http://example.org/data/\{z\}/\{x\}/\{y\}?page=\{timestamp\}” and the
query parameter “page” containing the highest timestamp of sensor observations the client
wants to retrieve. Third, the server responds with a fragment of the sensor observations


https://www.internationaldataspaces.org/
https://www.internationaldataspaces.org/
https://www.tmforum.org/press-and-news/fiware-foundation-tm-forum-launch-front-runner-smart-cities-program/
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dataset based on the server’s configured time fragmentation, for example, the observations
must be fragmented per day, and the geographical tiling approach with zoom level “z”,
longitude tile “x” and latitude tile “y” (1.3). A fourth, optional step is needed when
the client requires more data (1.4). In that case, the client needs to follow hypermedia
links towards previous fragments. As the fragment from step 1.3 is provided with a
hydra:previous attribute with a link to the previous fragment, the client can request this by
simply following the link, which brings us to step 1.2. We identified two extension scenarios.
Firstly, the client requests the most recent update. The client will receive the most recent
fragment (1.1.a). Secondly, the server responds with an error message because no sensor
values were found in the requested time interval; the system returns to step 1.1 (1.3.a).

The second track in the use case (scenario 2) has the title, “the average sensor values
per sensor” and retrieves the average values of the air quality in a time interval. The primary
actor is the client of the Linked Time Series Server. The main success scenario consists of three
steps. First, the client determines the time interval from which he wants to receive average
sensor values (2.1). This time interval can be an hour, day, month or year. Second, the
client sends their request by using query parameters with the page timestamp, aggregation
method and aggregation period. (2.2). Third, the server responds with the fragment
corresponding with these parameters (2.3). We identified one extension scenario. 2.3.a The
server responds with an error message because no fragment was found for the requested
time interval, the system returns to step 2.1 (2.3.a). The third track in the use case (scenario
3) has the title, “the average sensor values within a bounding box”. The client has the
option to request a time series based on the average sensor values within an area defined
by two longitudes and two latitudes. The primary actor is the client of the Linked Time
Series Server. The main success scenario consists of four steps. First, the client determines
from which bounding box he wants to request a time series (3.1). Second, the client sends
their request (3.2). Third, the server responds with the desired fragment (3.3). Fourth,
an optional step, the fragment from step three contains a hydra:previous attribute with a
link to the previous fragment, the system returns to step 3.3. (3.4). Fifth, an optional step,
the fragment from step three contains a hydra collection with a link to the neighbouring
fragments, the system returns to step 3.3. (3.5). We identified no extension scenario for this
scenario.

3.2. Railway Infrastructure Data through a Linked Data Fragments Approach

In order to assess the cross-domain applicability of our open data publishing approach,
we explore the use of an LDF-based architecture design over railway infrastructure data.
We focus on a common use case for this type of data, as is the calculation of routes over the
railway network. We use the data managed by the ERA, which is given as a Knowledge
Graph modelled on the ERA vocabulary (http://era.ilabt.imec.be/era-vocabulary/index-e
n.html, accessed on 26 July 2021).

The LDF approach is materialized on these data by creating highly cacheable geospa-
tial data fragments of the railway infrastructure, in a similar fashion [58] to the road
networks. However, in this case the geospatial tiles are produced on the fly via prede-
fined SPARQL queries (see Figure 4), in contrast to the pre-processing tile generation
carried out for the road networks. The geospatial tiling approach follows the Sippy
Map (https:/ /wiki.openstreetmap.org/wiki/Slippy_map_tilenames, accessed on 26 July
2021) specification, commonly used by vector tile-based map applications such as OSM.
These tiles may be downloaded by client applications implementing a graph shortest-path
algorithm (e.g., Dijkstra, A*), which will request the tiles starting from the input parameters
of the route planning query, namely the origin and destination locations, and will perform a
follow-your-nose approach to download more relevant tiles to answer a given query [81,82].


http://era.ilabt.imec.be/era-vocabulary/index-en.html
http://era.ilabt.imec.be/era-vocabulary/index-en.html
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Figure 4. LDF-based architecture for railway infrastructure data.

Following the REST constraints, the data tiles are made available to client applications
by means of an HTTP APIL The API data responses contain self-descriptive metadata
(hypermedia controls) that instructs clients on how they may find and request more relevant
tiles to process their queries. Figure 4 shows a schematic diagram of this architecture. In
Figure 5, we show an example of the hypermedia controls included in the API responses.

<http://era.ilabt.imec.be/sparqgl-tiles/abstraction/10/524/343>
tree:zoom “10”""xsd:integer;

tree:longitudeTile “524”*~xsd:integer;

tree:latitudeTile “343”~~xsd:integer.

dct:isPartOf <http://era.ilabt.imec.be/sparql-tiles/abstraction>.

<http://era.ilabt.imec.be/sparql-tiles/abstraction>

a hydra:Collection.

dct:license <http://opendatacommons.org/licenses/odbl/1-0/>.
10 hydra:search [

11 a hydra:IriTemplate;

12 hydra:template “http://era.ilabt.imec.be/sparql-tiles/abstraction/{z}/{x}/{y}”;
13 hydra:mapping
[

LoNOTUVAWNER

15 a hydra:IriTemplateMapping;

16 hydra:variable “x”;

17 hydra:property tree:longitudeTile;
18 hydra:required “true””~~xsd:boolean
19 1],

20 [

21 a hydra:IriTemplateMapping;

22 hydra:variable “y”;

23 hydra:property tree:latitudeTile;
24 hydra:required “true”~~xsd:boolean
25 ],

26 [

27 a hydra:IriTemplateMapping;

28 hydra:variable “z”’;

29 hydra:property tree:zoom;

30 hydra:required “true”~"xsd:boolean

32 ]

Figure 5. Hypermedia controls and metadata for a railway infrastructure geospatial tile.
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Similar to the air quality use case, caching plays a fundamental role in this architecture.
Caching may be performed on the server side by means of the NGINX reverse proxy and
on the client side, such as on the browser for Web applications. Due to client-side caching,
one client will not need to request the same geospatial tile more than once, which can be
re-used for processing independent queries. Server caching, on the other hand, allows a
geospatial tile that has been already requested by one client to be served directly form the
cache to other clients, freeing the RDF triple store of processing the same SPARQL query
for every individual incoming request.

In Figure 5, we can see the metadata about the geospatial tile located at coordinates
x:524, y:343, z:10, as specified by the Slippy Maps specification. We can see the description
of these coordinates with the tree:longitudeTile, tree:latitudeTile and tree:zoom predicates
(lines 2—4), which belong to the TREE hypermedia specification (https:/ /treecg.github.io
/specification/, accessed on 26 July 2021). The geospatial fragmentation is described by
the template defining the X (longitude), Y (latitude) and Z (zoom) variables (lines 13-31).
By fulfilling this template, a client application can request the railway topology data of
specific regions, which can be used to perform route calculations.

To prove the feasibility of this approach, we implemented a client-side application
that performs route calculations over the railway network, by traversing the different
geospatially fragmented LDFs produced by the proposed architecture. Figure 6 depicts
a screen capture of a route calculated using our client. The demo application is available
online (http://era.ilabt.imec.be/compatibility-check-demo/, accessed on 26 July 2021).
Evaluating the performance of this approach, considering, for example, the different
shortest path algorithms and the different zoom levels, are among our next steps regarding
this work.

@
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Figure 6. demo showing a route from Brussels airport to Amsterdam airport. © OpenStreetMap contributors (https:

/ /www.openstreetmap.org/copyright, accessed on 26 July 2021).

4. Benchmark-Air Quality Data
4.1. Benchmark Characteristics and Approach

The goal of the benchmark is to test if the method of Linked Data Fragments on
public endpoints for air quality sensor data will lower the cost for publishing and raise
their availability due to a better caching strategy. We will compare the Linked Time Series
(LTS) client/server setup to the FIWARE QuantumLeap (QL) API [83]. Therefore, we will
monitor the parameters that characterise a Web APIL. According to Vander Sande [67], Web
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APIs are characterised by (a) the query response time, which refers to the rate at which tasks
can be completed, such as the maximum number of requests a server can handle in a time
interval, (b) the cost, which indicates the amount of resources a single request consumes,
such as the load on the CPU and memory of both the client and server, (c) the cache re-use,
which is the ratio of items that are requested more than once from the cache and (d) the
bandwidth, which is the required size of the HTTP communication.

In Section 3.1.2, we outlined three tracks to implement the use case that can be applied
objectively to both architectural approaches. We will evaluate closed- and open-ended time
intervals, as this has a significant impact on the caching strategy. To create an unbiased
benchmark, we use the same database for both architectures. We add an extra scenario
where we request the most recent observation, which provides a baseline without caching.
The third scenario (scenario, the average sensor values within a bounding box) can be
reduced to scenario two (the average sensor values per sensor) for this benchmark.

Hence, this leads to the following four benchmark scenarios:

the most recent observation (b1);

the absolute sensor values in a time interval that has not yet ended (b2);
the absolute sensor values in a time interval that has ended (b3);

the average sensor values in a time interval that has ended (b4).

To compare the LTS client/server setup with the FIWARE QL API, we performed load
testing on both Web APIs by using the emulab (https:/ /www.emulab.net/, accessed on 26
July 2021), which is a testbed that can be used for large networking and cloud experiments.
The testbed consists of 160 pc3000 (https:/ /gitlab.flux.utah.edu/emulab/emulab-devel/-
/wikis/Utah%20Cluster#pc3000s, accessed on 26 July 2021) PC nodes with the following
specifications: Dell PowerEdge 2850s with a single 3GHz processor and 2GB of RAM.

A synthetic dataset of observations is generated for one sensor. Observations are
generated over a time span of five months, with one observation every ten minutes. As
a result of using one sensor, only one location is considered for all the observations. The
LTS server publishes one fragment per day and uses only one tile (/14/8392/5467) to
geographically fragment the observations.

4.2. Testbed

As FIWARE is the preferred open-source platform by the European Commission, we
will benchmark the Linked Time Series approach with the FIWARE QL API. First, we
discuss the end-to-end architecture including the IWARE QL API and the Linked Time
Series, as illustrated in Figure 7 [84,85]. Next, we discuss the specific experimental setup,
that uses the same back end for both architectures, to create an unbiased benchmark.

On the southbound, the IoT Agents (IoTa) facilitate the data stream from a sensor
or a group of sensors to the context broker. These SBI interfaces typically use a native
protocol. The Orion context broker is a building block of the FIWARE platform that
decouples context producers and consumers. The broker facilitates updates, queries or
subscription to changes on context information. The clients that subscribe are notified
when specific conditions arise, such as a change in the air quality or location [86]. The
context elements—in this experiment, air quality data—are stored in a document-based
MongoDB database.

First, we evaluate the FIWARE QL API, which stores the data into a CrateDB time-
series database. The data can be queried via a REST API that serves the space-temporal
FIWARE-NGSI v2 (https:/ /fiware.github.io/specifications /ngsiv2/stable/, accessed on
26 July 2021) data [83]. The second component in our experimental setup evaluates the
Linked Time Series (LTS) Server, which is an implementation of LDF and is illustrated in
Figure 7 (right).


https://www.emulab.net/
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Figure 7. Overview of the end-to-end testbed with the FIWARE QuantumLeap API (left) and the Linked Time Series Server

(right) [84,85].

We distinguish the following three main building blocks: (a) the Data Event manager
that facilitates the stream updates, (b) the Multidimensional Interfaces that subscribe to
specific events of the Data Event manager and calculate a predefined index and (3) the
communications manager that facilitates the communication between the Multidimensional
Interfaces and the clients [85]. In this experimental setup, both the QL API and LTS server
use the CrateDB database, to create an unbiased benchmark. The LTS server provides
an LDF interface for publishing time series and uses the method of Multidimensional
Interfaces (MI) to fragment and index the data [87,88]. MI ensures the discoverability of
the fragments by annotating them with hypermedia controls, which are formalised in an
RDF vocabulary. The vocabulary (http://semweb.datasciencelab.be/ns/multidimensi
onal-interface/, accessed on 26 July 2021) introduces the concepts Range Fragments and
Range Gates. Taelman [87] defines a Range fragment as “an LDF that has an interval as a
selector”—which is part of a predefined fragmentation strategy—and a Range Gate as “a
Linked Data interface through which Range Fragments can be selected by interval” and,
thus, exposes a collection of Range Fragments [87]. These Ranges were applied to the time
and space dimensions of the air quality data and both fragment and index the absolute
and average sensor values in a time interval.

Nginx (https:/ /www.nginx.com, accessed on 26 July 2021) was added to serve as a
Web cache (or HTTP cache), which stores copies of requests, for both the FIWARE QL API
and LTS server.

We used Kubernetes—an open-source container-orchestration system—to package
our testbed. One CPU, in Kubernetes (https:/ /kubernetes.io/, accessed on 26 July 2021),
is equivalent to one AWS vCPU, one GCP Core, one Azure vCore, one IBM vCPU or
one Hyperthread on a bare-metal Intel processor with Hyperthreading. The results are
expressed in mebibyte and millicpu. A mebibyte (MiB) is equivalent to 1048 576 bytes.
Kubernetes defines a metric called Millicores that is used to measure CPU usage. It is a CPU
core split into 1000 units. To ensure that the benchmark is reproducible, we have published
the repository (https:/ /github.com /brechtvdv/benchmark-quantumleap, accessed on 26
July 2021) with source code and configuration scripts. The repository provides the necessary
scripts and background information to deploy and benchmark the FIWARE QL API with
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the LTS Server API for timeseries on a Kubernetes cluster. We outline the main steps
that are executed during the benchmark. First, we setup the Kubernetes cluster, a set of
machines that run the containerised applications. Second, the scripts that deploy CrateDB,
MongoDB, the Orion context Broker, QuantumLeap TSDB and the Nginx Web cache are
executed. Third, the metrics server that harvests the CPU and memory consumption of the
server and clients is deployed. Fourth, we setup the data streams by creating a subscription
between the Orion context Broker and the QuantumLeap TSDB, which ensures automatic
updates. Furthermore, a table is created in CrateDB, that stores the time series data. Fifth,
data are ingested every second to Orion. Sixth, an HTTP client is provided and configured
to use the QL and LDF API. Finally, the four scenarios are executed on both the QL and
LDF API and monitored using the metrics server

4.3. Results
4.3.1. The Most Recent Observations (b1)

This scenario benchmarks the request of the most recent observations (n = 100). The
memory usage of the FIWARE QL API remains stable (Figure 8). Figure 9 shows that the
CPU use of the FIWARE QL API and underlying database, with a load of ten clients, is
a factor of four higher than the LTS Server API. At a load of four hundred clients that
send a HTTP request every two seconds, we notice that the query response time of the
FIWARE QL API increases to five seconds; at a higher load we obtain a timeout (Figure 10).
Figure 10 shows an overview of the query response time (latency) clients perceive when
using the FIWARE QL APL This contrasts with the LTS Server API that—despite a rising
query response time—still stands with a load of 1300 clients (Figure 11). In both cases,
caching cannot be applied, thus every request is passed on to the back end and results in
one database request. In the case of the LTS Server AP]I, a client is configured to retrieve all
observations from the current day. The data are fragmented per day, meaning only one
request will be sent. Based on the number of observations N that is returned, the client of
the FIWARE QL API is configured to retrieve the equivalent last N observations by sending
an HTTP GET request with path “/v2/entities/urn:ngsi-ld:Sensor:123?lastN=N". The
bandwidth per request of the FIWARE QL API is 4.5KB, compared to 17.5KB for the LTS
Server APL The load on the LTS Server API clients is 10 millicpu, compared to 2 millicpu
in the case of the clients of the FIWARE QL APL
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Figure 8. Overview of the benchmark with memory cost needed to publish the most recent observations.
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Figure 9. Overview of the benchmark with CPU cost needed to publish the most recent observations.
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Figure 10. Overview of the benchmark with the query response time (latency) of FIWARE Quantum-

Leap API, when publishing the most recent observations.
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Figure 11. Overview of the benchmark with the query response time (latency) of Linked Time Series

Server, when publishing the most recent observations.
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4.3.2. The Absolute Sensor Values in a Time Interval That Has Not Yet Ended (b2)

This scenario benchmarks the absolute sensor values in a time interval (month) that
has not yet ended. The memory usage of the FIWARE QL API remained stable (Figure 12).
The CPU cost of the FIWARE QL API increased by a factor of twenty when scaling up to
ten clients and double when scaling up from ten to one hundred clients (Figure 13). Ata
load of ten clients, the query response time of the FIWARE QL API remained below two
seconds. From a hundred clients, the query response time rose above ten seconds. The
query response time at a load of four hundred clients reached up to twenty seconds before
a timeout from the FIWARE QL API was received (Figure 14). Figure 14 shows an overview
of the benchmark with the query response time (latency) of FIWARE QL API and Figure 15
of the Linked Time Series Server. The CPU cost of the FIWARE QL API database increased
by a factor of fifteen when scaling up to ten clients and doubled when scaling up from ten
to one hundred clients (Figure 13). The CPU cost of the FIWARE QL API client was almost
neglectable. Since there is no client-side cache re-use, the bandwidth of the IWARE QL
API was 189.6KB, for an interval of one month.
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0 200 400 600 800 1000

number of clients

—s—Fiware QL AP| --¢--Fiware QL DB
—— LTS5 Server APl --e--LT5 Server DB

Figure 12. Overview of the benchmark with the memory cost to publish the absolute sensor values
in a time interval that has not yet ended (b2).
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Figure 13. Overview of the benchmark with the CPU cost to publish the absolute sensor values in a
time interval that has not yet ended (b2).
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Figure 14. Overview of the benchmark with the query response time (latency) of IWARE Quantum-
Leap API, publishing the absolute sensor values in a time interval that has not yet ended (b2).
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Figure 15. Overview of the benchmark with the query response time (latency) of Linked Time Series
Server, publishing the absolute sensor values in a time interval that has not yet ended (b2).

The CPU cost of the LTS Server API, increased linearly with the number of clients
(Figure 13). From the second request, there was cache re-use of 30/31, as the first request
could not be cached. The CPU load on a thousand clients was lower than a load on ten
clients in the case of the FIWARE QL API. The latter needed to run for every client’s request
for a database query ranging all 31 days, while the former had the benefit of 30 HTTP
cache hits with NGINX. The load on the clients was 387 millicpu, compared to 2 millicpu
in the case of the clients of the FIWARE QL API. The bandwidth at the LTS Server level
was 542.2 KB per client, with a cold client-side cache. From the second query onwards, the
bandwidth dropped to 17.5KB due to client caching.

4.3.3. The Absolute Sensor Values in a Time Interval That Has Ended (b3)

This scenario benchmarks absolute sensor values in a time interval (month) that has
ended. The results of the FIWARE QL API are comparable with those of the absolute
sensor values in a time interval that has not ended yet (Figures 16 and 17). From a hundred
clients, the query response time of the FIWARE QL API rose above ten seconds. The query
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response time at a load of four hundred clients rose to twenty seconds before receiving
a timeout (Figure 18). Figure 18 shows an overview of the benchmark with the query
response time (latency) of the FIWARE QL API and Figure 19 of the Linked Time Series
Server. As the time interval had ended, all 31 responses of the LTS Server API were fully
cacheable. This allows up to 1000 clients without an additional CPU cost or increases in
memory (Figure 17). The load on the clients was 401 millicpu, compared to 5 millicpu in
the case of the clients of the FIWARE QL API. The bandwidth at the LTS Server level was
524.9 KB per client. From the second request, this dropped to 17.5 KB.

1000
@ 800 e
2 600 O i N SRS SR NSRS -
iy
[=]
: 400
S 200 T —

oy T ¥
0 200 400 600 800 1000

number of clients

—e— Fiware QL APl - =« =Fiware QL DB
—— | TS Server APl---LTS Server DB

Figure 16. Overview of the benchmark with the memory cost to publish the absolute sensor values

in a time interval that has ended (b3).
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Figure 17. Overview of the benchmark with the CPU cost to publish the absolute sensor values in a

time interval that has ended (b3).
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Figure 18. Overview of the benchmark with the query response time (latency) of FIWARE Quantum-
Leap API, publishing the absolute sensor values in a time interval that has ended (b3).
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Figure 19. Overview of the benchmark with the query response time (latency) of Linked Time Series
Server, publishing the absolute sensor values in a time interval that has ended (b3).

4.3.4. The Average Sensor Values in a Time Interval (Hour) That has Ended (b4)

This scenario benchmarks the average sensor values in a time interval (hour) that has
ended. As the time interval had ended, the responses of the LTS Server API were fully
cacheable. This allowed up to ten thousand clients with only a slight increase in the CPU
cost and without any increase in memory (Figures 20 and 21).
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Figure 20. Overview of the benchmark with the memory cost to publish the average sensor values—
stretched to 10,000 clients—in a time interval (hour) that has ended (b4).
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Figure 21. Overview of the benchmark with CPU cost to publish the average sensor values—stretched
to 10,000 clients—in a time interval (hour) that has ended (b4).

The results of the FIWARE QL API are comparable with those of the absolute sensor
values in a time interval that has not ended yet (Figures 22 and 23). From four hundred
clients, the query response time of the FIWARE QL API increased to above ten seconds.
The query response time at a load of four hundred clients increased to twenty seconds
before receiving a timeout (Figure 24). Figure 24 shows an overview of the benchmark with
the query response time (latency) of FIWARE QL API and Figure 25 of the Linked Time

Series Server.
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Figure 22. Overview of the benchmark with the CPU cost to publish the average sensor values in a
time interval (hour) that has ended (b4).
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Figure 23. Overview of the benchmark with the memory cost to publish the average sensor values in
a time interval (hour) that has ended (b4).
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Figure 24. Overview of the benchmark with the query response time (latency) of FIWARE Quantum-
Leap API, publishing the average sensor values in a time interval (hour) that has ended (b4).
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The load on the clients of the LTS Server API is 367 millicpu, compared to 2 millicpu
in the case of the clients of the FIWARE QL API. As the clients of the LTS Server API need
to calculate the average, their load is significantly higher. The bandwidth at the server
level is 524.9 KB per LTS Server API client—as the server responds with all the data from
the last month—compared to 38.5 KB for the FIWARE QL API that only responds the
pre-processed average sensor value to the client. From the second request, the bandwidth
of the LTS Server drops to 17.5 KB.

5. Discussion
5.1. Air Quality Sensor Data Time Series

Government administrations as data providers make significant investments in col-
lecting data, making it interoperable and publishing it for maximum re-use. Hence, our
research question addressed how data providers can develop a sustainable method for
publishing open sensor data, in specific sensor data time series on air quality. In order to
do this, we set-up a benchmarking experiment. We benchmarked the QL API and a Linked
Time Series API, which are running on the same database.

The first scenario, retrieving the most recent observations, shows that the CPU usage
of both APIs increases linearly with the number of clients (Figure 9). However, the QL
API increases more steeply. Furthermore, the LTS API can serve more than three times
the number of clients before timing out (Figures 10 and 11). A possible explanation for
this might be that QL API’s code base uses more abstraction layers and, thus, can be less
performant than the LTS API code base.

In the second scenario, where the absolute sensor values over one month, inclusive
of the most recent observations, are fetched, the difference in CPU usage is even clearer
(Figure 13). This result may be explained by the fact that the QL API retrieves one request
with a time interval of one month, while the LTS API retrieves one request per day. This
finding suggests that limiting querying capabilities to retrieving fragments is important for
the sustainability of a sensor data API. This fragmentation approach also allows fragments
with historic data to be cached on the client side lowering the number of requests and load
on the server. As a result, the query response time of the LTS APl is slightly higher for a
few clients but remains acceptable for a higher number of clients (Figures 14 and 15).

The third scenario refines the second scenario by only retrieving historic data. The
results on the CPU, memory usage and query response time of the QL API (Figures 16-18)
indicate similar results as the previous scenario. The LTS API, conversely, benefits from the
cacheability of all the fragments: its CPU cost becomes negligible (Figure 17) and the query
response time on the client remains below 150ms, except for the first run with a cold cache
(Figure 19).

Finally, the last scenario refines the third scenario by calculating average values per
hour instead of returning the raw sensor values. We see an increase from 800 to 850 millicpu
usage in the database with the QL API (Figure 22 versus Figure 17). This result may be
explained by the fact that aggregation queries are more complex than select queries. One
unanticipated finding was that the query response time of the QL API has improved
significantly in this scenario: at a load of 100 clients, the query response time is still below
2.5 s (Figure 24). The results on the LTS API are similar to the previous scenario due to the
ended interval allowing the fragments, which contain the aggregated values, to be fully
cacheable (Figure 25).
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Figure 25. Overview of the benchmark with the query response time (latency) of Linked Time Series
Server, publishing the average sensor values in a time interval (hour) that has ended (b4).

The benchmark showed that the Linked Time Series approach lowers the cost for
publishing air quality data and raises the availability because of a better caching strategy.
The results of the benchmark ascertain that—with an increasing number of clients—the
LTS API has a lower CPU load than the FIWARE QL API. Additionally, as the load of the
LTS is constant for historic data, the cost becomes predictable, which is crucial for public
bodies that need to determine their expenses beforehand. Building on the strength of the
World Wide Web—by using HTTP caching on the level of clients and servers—created not
only a cost-benefit but also contributed to the stability of the air quality endpoints. The
FIWARE QL API starts “sputtering” at a load of 400 clients (Figure 24), in contrast with the
LDF interface that still obtains good results at 10,000 requests (Figure 25).

The bandwidth of the LDF endpoint is slightly higher, but the number of resources
a single request consumes—such as the load on the CPU and memory—is significantly
lower, due to the cache re-use. The cache re-use is the ratio of items that are requested
more than once from the cache instead of consuming server resources. The literature is
consistent with our findings from limiting the server interface that becomes more scalable
due to Web caching [65,69]. The scenario that calculates the average sensor values in a time
interval that has ended demonstrates that a part of the workload is shifted to the client but
is still acceptable for the client. A non-measurable benefit is that the client can evaluate
any given query on the client side, without having to rely on server-side functionality
other than downloading the right fragments. Next, the Open World Assumption (OWA)
becomes applicable: more data can always be downloaded in order to obtain a more precise
answer [89,90].

We discussed that the challenges related to linked open sensor data time series are not
limited to the volume and velocity of the time series but also to their variety interoperability
(IOP) challenges, which are crucial when combining air quality data from different sources
as well as linking them to other datasets such as traffic or weather data. We addressed the
different IOP levels, namely the legal, organisational, technical and semantic level. Linked
Data facilitates IOP on both a technical and a semantic level. Context information, such
as temperature, humidity and spatial information, enriches air quality data by re-using
existing machine-readable RDF vocabularies. The principles of Linked Data make the data
self-describing and machine-readable, which allows autonomous agents to reason on the
sensor data. Linked Data builds upon the architecture of the World Wide Web and uses
typed links between data entities from disparate sources, described using the Resource
Description Framework.

Based on the above, we have three recommendations about archivability, indexing
and interoperability for future research. First, it is crucial to ensure that time series are
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still accessible and usable for future generations, as they are valuable for research (e.g.,
on environmental changes). Therefore, a strategy that outlines which subsets of the data
should be preserved in order to reduce the storage cost of the data in a digital archive
needs to be defined. Second, research should consider a more dynamic method to fragment
and index different types of time series, considering the available budget of the publisher.
Finally, on the level of interoperability, future research should explore how to bridge
between the NGSI—that redefines a knowledge representation in its own—and the existing
semantic assets.

Although our results are promising, there are limitations to our research. First, as
the scenarios are limited, further validation of this method in a large variety of use cases
and different types of sensor data time series is necessary to extrapolate our conclusions.
Second, we should evaluate this method for real-time data streams.

During this research, we determined extra challenges related to cross-domain interop-
erability and architectural flexibility, which we discuss in the next paragraph.

5.2. Railway Infrastructure Data

Similar to public authorities publishing sensor-based data, ERA seeks to publish
the European railway infrastructure data in an interoperable way to maximize re-use by
different applications serving diverse use cases. To increase interoperability, the ERA
follows the Linked Data principles and publishes a knowledge graph containing the
different elements that conform to the railway infrastructure, while including semantic
annotations.

We showed that publishing railway infrastructure data is feasible with an LDF-based
approach, bringing the same cost-efficiency and scalability benefits as the ones measured
by our benchmark on air quality sensor data. In this case, we applied the same principles
of well-known vector tiling strategies for geospatial data, but we further enriched the
tiles with semantic annotations based on hypermedia description vocabularies (hydra and
TREE). Such annotations enable client applications to interpret the data interfaces and to
traverse the underlying knowledge graph.

Moreover, our proposed data publishing approach enables route calculations to be
performed on the client side, while aiming to increase the cacheability of the server re-
quests and including semantic annotations describing the data interfaces via hypermedia
controls [91]. This architectural design allows for greater flexibility in client application
design at the cost of increased complexity for application implementation. Developers are
able to implement and customize any kind of algorithm and business logic, tailored to their
use cases. This is in contrast to the dedicated server-side solution systems that limit the
application to the supported capabilities and features.

6. Conclusions

In this article, we presented insights on the implementation of a sustainable method
for publishing open data, in a specific sensor data time series on air quality and railway
infrastructure data.

Our study demonstrates how Linked Data can support interoperability at the technical
and semantical level for an air quality time series. Linked Data principles not only provide
interoperability towards external stakeholders but also foster a more sustainable and
cost-effective architecture. We have shown that exposing Linked Data Fragments for a
sensor data time series lowers the publishers’ server cost compared with the FIWARE
QuantumLeap API. By monitoring the query response time of the client, we showed that
the Linked Time Series (LTS) interface can support more clients (10,000 versus 400 clients
with historic data), while having a lower latency. Especially for the time series queries
where the time interval has ended, HTTP caching lowers the server CPU cost significantly.
As such, the LTS interface can serve as a valuable extension of the FIWARE stack to provide
scalability when publishing data on the Web.
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The pilot on railway infrastructure data shows that this architectural approach—which
shifts the data integration to the client—facilitates flexibility. Clients are able to perform
any further processing on the data to support specific use cases. In our case, the client
implements a shortest path finding algorithm, which can be tailored and adjusted for more
specific needs unlike traditional server-side APIs, which limit clients to their supported
features and algorithms. Moreover, context can be added at the client level without the
need for rewiring the server, which often affects the entire ecosystem. However, such
architectural design imposes a heavier burden on the clients, which may be reflected as
poorer performance on query solving tasks. Optimized caching strategies are required to
improve the overall performance of the addressed use cases.

The main difference between the two different explored use cases, lies in the nature
of the data fragmentations that were applied to each case. On the one hand, for the air
quality data, a time-based fragmentation was applied, which was aligned with the nature
of the data and with the query requirements that needed to be supported. On the other
hand, for the railway infrastructure data, we applied a geospatial fragmentation that
again suited the query requirements brought forth by the use case we wanted to support.
Besides the difference in fragmentation criteria, both approaches are built following the
same architectural principles, where caching plays a fundamental role in reducing the
operational costs of data interfaces. We, thus, showed how this approach can be applied
to independent domains and over different types of data and demonstrated how data
providers can develop a sustainable method for publishing open data.

According to President von der Leyen, common data spaces are an enabler for in-
novation and new jobs [8]. Interoperability within and between European common data
spaces will be crucial to avoid data silos and increase the re-use of data [92,93]. We hope
that insights from this article can speed-up the process of opening datasets by public and
private organisations on a Web-scale and can catalyse the European Data Strategy. As such,
our contributions, which build upon the principles of Linked Open Data, can be valuable
for governments, organisations and researchers wanting to publish interoperable data on a
Web-scale in a cost-efficient and flexible way.
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