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Abstract: Nowadays, the importance of educational data mining and learning analytics in higher
education institutions is being recognised. The analysis of university careers and of student dropout
prediction is one of the most studied topics in the area of learning analytics. From the perspective of
estimating the likelihood of a student dropping out, we propose an innovative statistical method that
is a generalisation of mixed-effects trees for a response variable in the exponential family: generalised
mixed-effects trees (GMET). We performed a simulation study in order to validate the performance of
our proposed method and to compare GMET to classical models. In the case study, we applied GMET
to model undergraduate student dropout in different courses at Politecnico di Milano. The model was
able to identify discriminating student characteristics and estimate the effect of each degree-based
course on the probability of student dropout.

Keywords: mixed-effects models; regression and classification trees; student dropout; academic data;
learning analytics

1. Introduction

The present work is part of the international SPEET project (Student Profile for Enhanc-
ing Engineering Tutoring), an ERASMUS+ project aiming to provide a new perspective to
university tutoring systems. It intends to extract useful information from academic data
provided by its partners1 and to identify different engineering student profiles across Eu-
rope [1]. Our goal was to find out which indicators may discriminate between two different
student profiles: dropout students, who permanently abandon their Bachelor of Science
(BSc) programs, and graduate students, who attain the academic qualification. This was
motivated by the fact that, across all SPEET partners, almost one student out of two leaves
his/her engineering studies before obtaining a BSc degree. If it were possible to know
promptly to which profile a student belongs, tutors could improve counselling actions.

Data provided by universities usually include indicators about socio-economic back-
ground, and both the current and previous performance data of the students. However,
academic success depends on different factors, both internal and external [2]. The dataset
we used in our analysis includes information on more than 18,000 BSc students from Politec-
nico di Milano (PoliMi): it essentially consists of student records, so it does not include all
possibly relevant factors. Datasets with similar structures have already been used in recent
developments oriented toward performance prediction and detection of future dropouts or
students at risk of dropping out [3]. The hypothesis is that background and performance
indicators together are enough to identify the students at risk and to draw the attention of
tutors, who should complete each student’s profile with further information.

In our case study, students were naturally nested within degree-based courses. Further
levels of hierarchy are possible, such as programmes within faculties, faculties within
universities and finally universities within countries. While investigating the learning
process, it is necessary to disentangle the effects given by each level of hierarchy [4]. Indeed,
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if the clustered aspect of the data is not inspected, it may result in a loss of likely valuable
information. Multilevel models take into account the hierarchical nature of data and are
able to quantify the portion of variability in the response variable that is attributable to each
level of grouping [5]. Generalised linear mixed models (GLMM) fit a multilevel model on a
binary response variable, but they impose a linear effect of covariates on a transformation
of the response variable [6]. On the contrary, tree-based methods such as the classification
and regression tree (CART) model learn the relationships between the response and the
predictors by identifying dominant patterns in the training data [7]. In addition, these
methods allow a clear graphical representation of the results that is easy to communicate.
The goal of our work was to create a novel method, for a non-Gaussian response variable,
which is able to preserve the flexibility of the CART model and to extend it to a clustered
data structure, where multiple observations can be viewed as being sampled within groups.

This was not the first time that tree-based methods have been adopted to deal with
longitudinal and clustered data. In Sela and Simonoff [8], a regression tree method for
longitudinal or clustered data was proposed. This method is called the random effects
expectation-maximization (RE-EM) tree. Independently, in Hajjem et al. [9] a mixed-effect
regression tree (MERT) model was proposed. If clustered observations are considered, these
are extensions of a standard regression tree to the case of individuals nested within groups.
These methods use observation-level covariates in the splitting process and can deal with
the possible random effects associated with those covariates. However, they both deal only
with Gaussian response variables, and they are not suitable for classification problems.
Our proposed method intends to generalise the RE-EM tree approach, thereby extending
its use to different classes of response variables that belong to the exponential family2:
this should allow one to extend it, for example, to a classification setting. At the same time,
this method can deal with the grouped data structure, similarly to traditional multilevel
models. As in RE-EM tree estimation, we developed an algorithm that disentangles the
estimations of fixed and random effects. That is, an initial tree is built ignoring the grouped
data structure, a mixed-effects model is fitted based on the resultant tree structure and a
final mixed-effects tree is reported.

Similar methods were proposed in Hajjem et al. [10], Fokkema et al. [11] and
Speiser et al. [12], but following different approaches. In Hajjem et al. [10] the MERT
approach was extended to non-Gaussian data, and a generalised mixed effects regression
tree (GMERT) was proposed. This algorithm is basically the penalised quasi-likelihood
(PQL) algorithm used to fit GLMMs, where the weighted linear mixed-effect pseudo-model
is replaced by a weighted MERT pseudo-model. In particular, the authors used a first-order
Taylor-series expansion to linearise the response variable. In Fokkema et al. [11], the au-
thors proposed the generalised linear mixed-effects model tree (GLMM tree) algorithm,
which alternates the estimates of a GLM tree and a mixed-effects model until convergence.
Its main distinction from the GMET algorithm is that the GLMM tree algorithm builds
on model-based recursive partitioning (MOB, Zeileis et al. [13]), instead of on CART, as
GMET does. Lastly, the most recent work was presented in Speiser et al. [12]. The au-
thors developed a decision tree method for modelling clustered and longitudinal binary
outcomes. Even if the aim of their model is very similar to ours, their model only han-
dles binary outcomes using a Bayesian GLMM, and it allows a random intercept, but
not random slopes. Differently from these cited methods, GMET starts by initialising the
random-effects to zero; it estimates the target variable through a GLM (using suitable link
functions depending on the response family distribution); builds a regression tree using
the estimated target variable as the dependent variable; and then fits a mixed-effects model
to estimate the random-effects part, using the fixed-effects part estimated by the tree as
an offset.

In the last few decades, learning analytics, and specifically, the topic of dropouts at
university, is receiving particular attention. The investigation of the dropout phenomenon
within higher education institutions (HEIs) has always been a concern for educators,
university managers and policy makers. The academic literature distinguishes between
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two approaches to investigating the features of this phenomenon: theory-driven and data-
driven. The first analyses the reasons and the psychological constructs behind withdrawing
decisions, thereby identifying theoretical fundamentals and contributing to a conceptual
model to guide the inquiry. Different authors [14–18] proposed models to show the
processes of interactions among students, their features and their institutions that lead to
dropping out [18]. Basically, their models rely on an interdisciplinary approach to explain
the dropout process. In particular, the model considers the interactions between the student
and the university environment—individuals are exposed to influences, expectations
and demands from a variety of sources (such as courses, faculty members, administrators
and peers). The interactions between these two aspects contribute to a student’s success or
failure in both the academic system and the social system [17]. Hence, these studies focus
on the necessity to contextualise the student’s educational career in a community structure.

The alternative approach is data-driven. In it, students’ characteristics are analysed
longitudinally to find the best statistical models predicting dropout or graduation [2,19–21].
In this case, researchers are less interested in explaining the phenomenon per se; the focus
is on finding the best performing model in terms of forecasting student withdrawal. The
prediction of low performers is increasingly getting the attention of academics, which is
attributable to the applicability of remedial learning, which in turn serves the institutional
goals of providing high-quality education ecosystems [22]. In addition, the data mining
approach to education is quickly becoming an important field of research due to its ability
to extract new knowledge from a large amount of student data [23].

The goal behind the present study was the development of a clear theoretical frame-
work, in the midway point between the two approaches, which considers the educational
process and the need for predicting students’ outcomes as early as possible. We applied the
GMET model to the Politecnico di Milano data, collected within the ERASMUS+ SPEET
project, thereby identifying which fixed-effect covariates discriminate between dropout and
graduate students. Through the GMET model, we relaxed the assumption of linear effects
of student-level covariates on their performances, and we identified which interactions
relevantly influence dropout status. We included the most common student characteristics
in a flexible and interpretable model that takes into account the enrolment in different
degree programs. A multilevel model allows one to estimate the degree programme’s effect
on the predicted probability of obtaining the degree. Machine learning and tree-based
methods have been applied in the literature to model student dropout [24–29], but to the
best of our knowledge, we are presenting the first time that a multilevel tree-based method
has been applied to predict student dropout probability.

The paper is organised as follows. In Section 2 we describe the model and methods—
the generalised mixed tree algorithm (GMET). In Section 3 we show a simulation study.
In Section 4 we describe the PoliMi dataset, we report the application of the proposed
algorithm to the case study and we outline the results. Finally, in Section 5 we draw
our conclusions.

All the analysis was performed using R software [30]. The R code for the GMET
algorithm and for all the simulations is available in Supplementary Materials Data S1.

2. Model and Methods

In this section, we present the proposed generalised mixed-effects tree model (Section 2.1)
and the algorithm for the estimation of its parameters (Section 2.2).

2.1. The Generalised Mixed-Effects Tree Model

We start by considering a generic GLMM. This model is an extension of a generalised
linear model that includes both fixed and random effects in the linear predictor [6]. There-
fore, GLMMs handle a wide range of response distributions and a wide range of scenarios
where observations are clustered into groups rather than being completely independent.
For a GLMM with a two-level hierarchy, each observation j, for j = 1, . . . , ni, is nested
within a group i, for i = 1, . . . , I. Let yi = (y1i, . . . , yni i) be the ni-dimensional response
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vector for observations in the i-th group. Conditionally on random effects denoted by bi, a
GLMM assumes that the elements of yi are independent, with density function from the
exponential family, of the form

fi(yij|bi) = exp
[yijηij − a(ηij)

φ
+ c(yij, φ)

]
where a(·) and c(·) are specified functions, ηij is the natural parameter and φ is the disper-
sion parameter. In addition, we have

E[yij|bi] = a′(ηij) = µij

Var[yij|bi] = φ a′′(ηij)

A monotonic, differentiable link function g(·) specifies the function of the mean that
the model equates with the systematic component. Usually, the canonical link function is
used, i.e., g = a′ −1. From now on, without loss of generality, the canonical link function is
used. In this case, the model is the following [31]:

µi = E[Yi|bi] i = 1, . . . , I

g(µi) = ηi

ηi = Xiβ + Zibi

bi ∼ Nq(0, Ψ) ind.

(1)

where i is the group index, I is the total number of groups, ni is the number of observations
within the i-th group and ∑I

i=1 ni = J. ηi is the ni-dimensional linear predictor vector.
In addition, Xi is the ni × (p + 1) matrix of fixed-effects regressors of observations in
group i, β is the (p + 1)-dimensional vector of their coefficients, Zi is the ni × q matrix of
regressors for the random effects, bi is the (q + 1)-dimensional vector of their coefficients
and Ψ is the q× q within-group covariance matrix of the random effects. Fixed effects are
identified by parameters associated with the entire population, whereas random ones are
identified by group-specific parameters.

Our proposed generalised mixed-effects tree (GMET) method expands the use of
tree-based mixed models to different classes of response variables from the exponential
family. At the same time, the method can deal with the grouped data structure as GLMMs
do. We now specify the GMET model. The random component of this model consists of
a response variable Y from a distribution in the exponential family. The fixed part in the
GMET is not linear as in (1), but is replaced by the function f (Xi) that is estimated through
a tree-based algorithm. Thus, the matrix formulation of the model is the following:

µi = E[Yi|bi] i = 1, . . . , I

g(µi) = ηi

ηi = f (Xi) + Zibi

bi ∼ Nq(0, Ψ) ind.

(2)

where i is the group index, I is the total number of groups, ni is the number of observations
within the i-th group and ∑I

i=1 ni = J. In addition, ηi is the ni-dimensional linear predictor
vector and g(·) is the link function. Finally, Xi is the ni × (p + 1) matrix of fixed-effects
regressors of observations in group i, Zi is the ni × q matrix of regressors for the random
effects, bi is the (q + 1)-dimensional vector of their coefficients and Ψ is the q× q within-
group covariance matrix of the random effects. As in a GLMM, bi and bi′ are independent
for i 6= i′. Fixed effects are identified by a non-parametric CART tree model associated with
the entire population, whereas random ones are identified by group-specific parameters.
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Without loss of generality, let us now specify model (2) for the case of a binary random
variable and univariate random effect. The logit function is the canonical link function:

g(µij) = g(pij) = log
( pij

1− pij

)
= logit(pij).

Here, the random-effects structure simplifies to a random intercept. The model
formulation for observation yij may therefore be written as:

Yij ∼ Bernoulli(pij) i = 1, . . ., I j = 1, . . ., ni

pij = E[Yij|bi]

logit(pij) = f (xij) + bi

bi ∼ N(0, ψ) ind.

(3)

where we observe xij = (x1ij, . . ., xijp)
T , a (p + 1)-dimensional vector of fixed-effects

covariates for each observation j in group i.

2.2. Generalised Mixed-Effects Tree Estimation

In this subsection we show the algorithm for the estimation of the parameters of the
GMET model (2). Following the approach of the RE-EM tree, the basic idea behind the
algorithm is to disentangle the estimation of fixed and random effects, with the difference
that the GMET algorithm is not iterative. The structure of the algorithm is the following:

1. Initialise the estimated random effects bi to zero.
2. Estimate the target variable µij through a generalised linear model (GLM), given

fixed-effects covariates xij = (xij1, . . ., xijp)
T for i = 1, . . ., I and j = 1, . . ., ni. Get

estimate µ̂ij of target variable µij.
3. Build a regression tree approximating f using µ̂ij as dependent variable and

xij = (xij1, . . ., xijp)
T as vector of covariates. This regression tree identifies a number

L of terminal nodes R`, for ` = 1, . . . , L, and each observation ij, described by its set
of covariates xij, belongs to one of the terminal nodes. Through this regression tree,
we define a set of indicator variables I(xij ∈ R`), for ` = 1, . . . , L, where I(xij ∈ R`)
takes value 1 if observation ij belongs to the `-th terminal node and 0 otherwise.

4. Fit the mixed effects model (2), using yij as a response variable and the set of indicator
variables I(xij ∈ R`) as fixed-effects covariates (dummy variables). Specifically,
for i = 1, . . ., I and j = 1, . . ., ni, we have g(µij) = I(xij ∈ R`)γ` + zT

ijbi. Extract b̂i
from the estimated model.

5. Replace the predicted response at each terminal node R` of the tree with the estimated
predicted response g(γ̂`) from the mixed-effects model fitted in step 4.

The GLM in step 2 is fitted through maximum likelihood. The maximum likelihood
estimates can be found using an iteratively reweighted least squares algorithm or a Newton–
Raphson method [32].

The fitting of the tree in step 3 can be achieved using any tree algorithm, based on
any tree-growing rules that are desired. Here, tree building is based on the CART tree
algorithm [7]. After building a large tree T0, pruning is advised to avoid overfitting on
training data. In principle, any tree-pruning rule could be used; here, we propose cost-
complexity pruning [33]. It considers a sequence of nested trees indexed by a nonnegative
tuning parameter α which controls the trade-off between the subtree’s complexity and its
fit to the training data. For each value of α exists a subtree T ⊂ T0 to minimise

|T|

∑
`=1

∑
xi∈R`

(yi − ŷR`
)2 + α|T|. (4)



Data 2021, 6, 74 6 of 31

Here, |T| indicates the number of terminal nodes of tree T. When α = 0, then the
subtree T will simply be equal to T0. However, as α increases, the quantity (4) will tend
to be minimised for a smaller subtree. We can select a value of α using a validation set
or using k-fold cross-validation: for example, we can pick α̃ to minimise the average CV
error. Tree building and pruning is implemented in R library rpart [34], according to the
CART tree-building algorithm and cost-complexity pruning. In order to ensure that initial
trees are sufficiently large, we set the complexity parameter to zero. Thus, the largest tree
is grown then pruned based on ten-fold cross-validation error. Instead of choosing the tree
that achieves the lowest CV error, we use the so-called 1-SE rule: any CV error within one
standard error of the achieved minimum is marked as being equivalent to the minimum.
Among all these equivalent models in terms of CV error, the simplest one is chosen as the
final tree model.

The generalised linear mixed model in step 4 can be estimated using fitting techniques
that were previously described. Different statistical packages can estimate those types of
models: the glmer function of the R library lme4 [35] is used here. It fits a generalised linear
mixed model via maximum likelihood. For a GLMM the integral must be approximated:
the most reliable approximation is the adaptive Gauss–Hermite quadrature, at present
implemented only for models with a single scalar random effect; otherwise, Gaussian
quadrature is used [36,37].

For what concerns the time efficiency, the GMET algorithm is very fast. Indeed, being
a non-iterative algorithm, its running time is approximately equal to the sum of three steps’
running times, i.e., the ones to fit a GLM (step 2), a regression tree (step 3) and a GLMM
(step 4).

Predictions for New Observations

After estimating a GMET, it is possible to make out-of-sample predictions for new
observations. Suppose the tree is estimated on data from groups i = 1, . . ., I for observations
yij, j = 1, . . ., ni. Given a new observation xij′ , we are able to output its corresponding
response, since we know the estimation of the fixed-effects function f (·), of the random
effects bi and of the associated covariance matrix Ψ. The algorithm is able to provide two
types of prediction, depending on whether the group i to which the new observation xij′

belongs is a new group (i.e., not observed in the data used to train the model) or not:

• Predict response yij′ given a new observation xij′ for a group in the sample i ∈
{1, . . . , I}. We define it a group-level prediction.

• Predict response yi′ j′ given an observation xi′ j′ for a group i′ for which there were no
observations in our sample, or for which we do not know the relevant group. We
define it a population-level prediction.

Following the classical approaches for prediction in mixed-effects models [8,38], for the
first type of prediction, we estimate f (xij′) using the estimated tree and attributes xij′ and
then add zT

ij′bi on the linear predictor scale, and get back to the response scale through

the inverse link function g−1(·). As we underlined before, random-effects coefficients bi
are known from the estimation process. For the second type of prediction, since we have
no information with which to evaluate bi, we set it to its expected value of 0, yielding the
value f̂ (xi′ j′), and transform it back to the response scale through the inverse link function.
As noted in Sela and Simonoff [8], in this case we might expect that methods that do not
incorporate random effects would have comparable performances to those that do, as long
as the sample is large enough so that the fixed-effects function f (xij′) is well-estimated by
both types of methods.

3. Simulation Study

In this section we compare the performance of the proposed GMET method to the
performances of standard classification trees and different types of mixed-effects models
on simulated binary outcome datasets.



Data 2021, 6, 74 7 of 31

We used a variation of a simulation design proposed in Hajjem et al. [10] and followed
the data generating process presented in their paper. We simulated a two-level data
structure of I = 50 groups with ni = 60 observations each: 10 observations in each
group were included in the training sample, and the other 50 observations constituted
the test sample. Therefore, Ntrain = 500 and Ntest = 2500. By setting i = 1, . . . , I and
j = 1, . . . , ni, the response values yij were simulated according to a Bernoulli distribution
with conditional probability of success µij. Both fixed and random effects were used to
generate µij. Overall, we considered 10 different data generating processes (DGPs) outlined
in Table 1 by combining different fixed and random-effect specifications3.

Let us define the fixed-effect structure. Eight random variables X1, . . ., X8, independent
and uniformly distributed in the interval [0, 10], were generated. While all of them were
being used as predictors, only five of them were actually used to generate µij, based on
the tree rule summarised in Figure 1. Each observation was classified into one of the six
terminal nodes according to the values xij1, . . ., xij5. Within each leaf, values ϕ1, . . ., ϕ6

denote the probabilities of success when the random effects bi are equal to zero:

Leaf 1: if x1ij ≤ 5∧ x2ij ≤ 5 then µij = g−1(g(ϕ1) + zT
ijbi

)
;

Leaf 2: if x1ij ≤ 5∧ x2ij > 5∧ x4ij ≤ 5 then µij = g−1(g(ϕ2) + zT
ijbi

)
;

Leaf 3: if x1ij ≤ 5∧ x2ij > 5∧ x4ij > 5 then µij = g−1(g(ϕ3) + zT
ijbi

)
;

Leaf 4: if x1ij > 5∧ x3ij ≤ 5∧ x5ij ≤ 5 then µij = g−1(g(ϕ4) + zT
ijbi

)
;

Leaf 5: if x1ij > 5∧ x3ij > 5∧ x5ij > 5 then µij = g−1(g(ϕ5) + zT
ijbi

)
;

Leaf 6: if x1ij > 5∧ x3ij > 5 then µij = g−1(g(ϕ6) + zT
ijbi

)
;

where g(·) is the logit link function. Two different possibilities were specified for the
fixed effects: in the large fixed-effects specification, the standard deviation of the typical
probabilities across the leaves was higher than in the small one (0.37 versus 0.24).

X1

X3

µij = g−1(g(ϕ6) + zT
ijbi

)

X5

µij = g−1(g(ϕ5) + zT
ijbi

)
µij = g−1(g(ϕ4) + zT

ijbi
)

X2

X4

µij = g−1(g(ϕ3) + zT
ijbi

)
µij = g−1(g(ϕ2) + zT

ijbi
)

µij = g−1(g(ϕ1) + zT
ijbi

)

> 5

> 5

≤ 5
> 5

≤ 5

≤ 5 > 5

> 5

≤ 5

≤ 5

Figure 1. Mixed-effects tree structure used to generate the conditional probability of success µij in
the simulation study.

The random component bi ∼ N(0, Ψ) was generated according to three different possibilities:

• No random effects: Ψ = 0;
• Random intercept: zij = 1 ∀i, ∀j and Ψ = ψ11;
• Random intercept and slope, which add a linear random effect for the fixed-effect

covariate X1, uncorrelated from the random effect on the intercept. That is, zij =

[1 x1ij]
T ∀i, ∀j and Ψ =

[
ψ11 0
0 ψ22

]
.
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Within each fixed-effects scenario with random effects, we considered two specifica-
tions (low and high) for the covariance matrix Ψ to account for different levels of magnitude
of the between-group variability.

Table 1. Data generating processes (DGP) for the simulation study.

DGP RANDOM COMPONENT FIXED COMPONENT

Structure Effect ψ11 ψ22 Effect ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

1 No random
effect

– – – Large 0.10 0.20 0.80 0.20 0.80 0.90
2 – Small 0.20 0.40 0.70 0.30 0.60 0.80

3
Random
Intercept

Low 4.00 – Large 0.10 0.20 0.80 0.20 0.80 0.904 High 10.00 –

5 Low 0.50 – Small 0.20 0.40 0.70 0.30 0.60 0.806 High 4.00 –

7 Random
Intercept

and
Slope

Low 2.00 0.05 Large 0.10 0.20 0.80 0.20 0.80 0.908 High 5.00 0.25

9 Low 0.25 0.01 Small 0.20 0.40 0.70 0.30 0.60 0.8010 High 2.00 0.05

Simulation Results

We ran eight different models for each one of the 10 DGPs:

• A standard binary classification tree model (Std);
• A random intercept GMET model (RI);
• A random intercept and slope GMET model (RIS);
• A parametric mixed-effects logistic regression model (MElog) that used the true model

leaves’ indicators as fixed covariates and the true random effect structure;
• A parametric mixed-effects logistic regression model (GLMM) that used (x1, . . . , x8)

as fixed covariates and the true random effect structure;
• The GLMERT algorithm proposed in [11] considering (x1, . . . , x8) as fixed covariates

and the true random effect structure;
• The GMERT algorithm proposed in [10] considering (x1, . . . , x8) as fixed covariates

and the true random effect structure;
• The BiMM algorithm proposed in [12] considering (x1, . . . , x8) as fixed covariates and

a random intercept4.

As noted in Hajjem et al. [9], the MElog model could not be a real competitor of any
other model. Indeed, it is not possible in practice to specify this parametric structure
without knowing the underlying data generating process. This model only serves as a
reference for the performances of the other models. In tree-based models, we fixed to 10
the maximum depth parameter and to 20 the minimum number of observations necessary
to attempt a split5. After fitting each model on the training set, we could compute the
corresponding predicted probability µ̂ij and the predicted class ŷij of observation j in
group i in the test dataset. While the former was directly estimated by the algorithm,
the latter depended on the threshold value µ∗k used to classify subjects in the test set:
µ̂ij ≥ µ∗k ⇒ ŷij = 1 where (i, j) ∈ test. There were at most K distinct fitted values µk, with
K ≤ I|T|. We used each of them to classify observations in the training set and we fixed the
threshold µ∗k as the one that yields the closest proportion of class 1 to the actual proportion
of class 1 in the training set.

We measured the predictive performance by:
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• The predictive mean absolute deviation

PMAD =
1

Ntest

I

∑
i=1

ntest
i

∑
j=1
|µij − µ̂ij|

• The predictive misclassification rate (PMCR)

PMCR =
1

Ntest

I

∑
i=1

ntest
i

∑
j=1
|yij − ŷij|.

The mean, median, standard deviation, minimum and maximum of the PMAD and
the PMCR over 100 runs were calculated and are reported in Table 2.

We observed that when there was no random effect (DGPs 1 and 2), the standard
classification tree algorithm performed better than the mixed-effects models, especially
when the fixed effect was large. Nonetheless, in the latter scenario, the performances of
GLMERT and GMERT were very close to Std ones, proving to be robust even in absence
of a true random effect. However, when random effects were present (DGPs 3 to 10),
mixed-effects classification trees performed better than the standard classification tree in
terms of average PMAD and PMCR. BiMM is the only mixed-effects tree algorithm whose
performance was very close to Std ones, for all DGPs6. When the DGP included only a
random intercept, GLMERT had the best predictive performance, and was directly followed
by RI. When the true random effect structure included both random intercept and random
slope, GMERT, GLMERT and RIS performances were very close. There was a slightly better
performance by GLMERT when the fixed effect was large and of RIS when the fixed effect
was small. The highest improvement in PMAD using a mixed tree model was observed
when both the fixed and the random effects were large. The lowest improvement was
observed when both the fixed and the random effects were small. Analogous statements
can be made about PMCR. In addition, GMET performed better than standard trees even
when we fit a mixed tree whose random component was over-specified (as in DGPs 3–6,
Std vs RIS) or under-specified (as in DGPs 7–10, Std vs RI) in relation to the true data
generating process.

Table 2. Results of the 100 simulation runs in terms of predictive probability mean absolute deviation (PMAD) and
predictive misclassification rate (PMCR) for the eight models for the 10 DGPs. DGPs for which the performance gap between
MElog and GMET was the largest or the smallest are marked in bold.

DGP
Random

Effect
Fixed
Effect

Fitted
Model

PMAD (%) PMCR (%)

Mean Median SD Min Max Mean Median SD Min Max

1

NO
RANDOM

EFFECT

Large

Std 5.01 4.59 1.93 2.10 9.83 16.76 16.46 1.55 14.64 21.68
RI 20.89 20.98 2.34 13.43 24.92 31.52 31.50 2.54 24.16 36.68
RIS 20.91 21.02 2.22 13.18 25.21 31.12 31.30 2.14 23.20 35.96
MElog 3.36 3.28 1.15 1.30 5.84 17.55 16.08 3.30 13.76 24.64
GLMM 21.61 21.58 0.78 19.88 23.14 30.10 30.20 0.92 27.52 31.56
GLMERT 5.73 5.43 2.17 2.37 11.02 19.38 18.50 3.01 14.76 25.04
GMERT 4.85 4.33 1.84 1.96 9.45 17.80 17.70 1.73 15.12 21.64
BiMM 21.54 23.09 3.23 16.63 26.21 30.49 30.52 1.33 25.16 33.44

2 Small

Std 9.97 10.22 3.29 4.49 17.62 32.24 32.72 2.39 28.00 38.64
RI 13.66 13.58 1.82 10.48 18.13 37.24 37.42 2.11 32.68 41.48
RIS 13.89 13.68 1.83 10.98 18.31 37.36 37.40 1.92 33.52 41.96
MElog 4.07 4.02 1.35 1.42 7.74 28.84 28.80 1.79 25.96 34.48
GLMM 15.43 15.35 0.54 14.09 16.67 37.44 37.48 1.20 34.72 40.08
GLMERT 10.10 10.01 3.01 6.59 15.40 34.14 34.08 2.72 29.00 38.80
GMERT 10.03 10.08 2.87 6.42 14.54 33.31 32.86 4.23 28.80 42.64
BiMM 12.60 13.50 1.77 9.65 15.10 34.60 34.52 1.79 31.12 38.56
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Table 2. Cont.

DGP
Random

Effect
Fixed
Effect

Fitted
Model

PMAD (%) PMCR (%)

mean median sd min max mean median sd min max

3

INTERCEPT

Large

Std 23.39 22.95 2.93 18.01 29.90 29.26 28.62 3.31 23.40 36.36

Low

RI 18.28 18.12 1.57 13.81 22.98 26.98 26.96 2.05 21.92 32.20
RIS 18.46 18.39 1.59 14.01 22.79 27.09 26.96 2.03 22.08 32.24
MElog 8.69 8.61 0.75 7.60 10.85 19.65 19.46 1.12 17.72 23.24
GLMM 18.62 18.67 1.05 16.74 20.96 26.69 26.70 1.56 23.80 30.40
GLMERT 11.95 11.94 2.54 7.83 17.59 21.93 21.40 3.18 18.00 30.76
GMERT 23.70 22.87 3.02 19.43 28.76 29.05 28.52 3.99 23.72 38.00
BiMM 27.68 27.93 2.03 22.61 31.17 35.52 35.28 2.14 30.72 40.24

4

Std 31.70 31.94 2.58 26.22 36.78 36.23 36.20 3.12 30.32 44.16

High

RI 15.38 15.46 1.51 11.96 18.57 20.68 20.68 1.97 16.64 25.76
RIS 15.44 15.67 1.44 12.03 18.53 20.78 20.80 1.97 16.68 25.92
MElog 8.21 8.06 0.95 6.21 11.01 15.78 15.70 1.50 12.56 20.12
GLMM 15.40 15.36 1.29 12.01 17.76 20.66 20.60 1.93 16.40 24.88
GLMERT 10.65 10.50 1.32 8.40 12.76 18.08 17.92 1.14 16.48 19.96
GMERT 29.67 29.39 2.80 25.92 35.46 32.68 31.36 4.25 27.84 42.76
BiMM 32.69 32.48 2.00 28.93 35.80 38.39 38.52 2.60 31.12 43.84

5

Small

Std 15.79 15.87 2.39 10.13 22.90 34.30 34.92 2.35 29.00 38.56

Low

RI 15.68 15.77 1.68 13.11 19.26 35.74 35.74 2.30 31.24 43.12
RIS 15.87 15.89 1.61 13.14 19.18 35.74 35.64 2.06 31.72 42.72
MElog 8.55 8.61 0.92 6.45 10.73 28.80 28.66 0.99 25.84 30.96
GLMM 16.48 16.35 0.59 15.13 18.23 36.47 36.60 1.21 33.52 39.32
GLMERT 13.28 13.37 1.12 11.62 15.21 33.35 32.86 2.35 30.64 39.84
GMERT 14.63 15.14 1.38 11.91 16.65 33.90 32.74 3.16 31.12 42.20
BiMM 16.48 16.38 2.01 12.89 20.41 36.21 35.56 1.87 33.40 41.40

6

Std 27.98 28.16 2.33 23.28 32.46 41.23 40.88 3.09 35.92 50.44

High

RI 14.02 13.99 1.62 10.01 17.45 25.87 26.14 2.41 20.64 30.56
RIS 14.13 14.17 1.66 10.08 17.29 25.89 26.00 2.37 20.68 30.52
MElog 9.41 9.43 1.10 7.24 11.79 22.85 23.22 1.66 20.00 26.36
GLMM 14.24 14.13 1.05 11.95 16.82 25.98 25.88 2.02 22.32 30.96
GLMERT 13.05 12.49 2.85 9.54 19.24 25.98 25.48 2.71 22.40 31.28
GMERT 26.61 27.13 2.44 21.32 30.06 32.79 32.90 2.65 27.76 37.96
BiMM 27.27 27.60 2.15 23.61 30.45 40.83 40.72 2.80 33.32 46.76

7

INTERCEPT
& SLOPE

Large

Std 22.16 22.47 2.28 17.32 27.38 28.08 28.60 2.69 22.32 34.20

Low

RI 20.08 20.05 1.38 15.17 22.67 28.52 28.44 1.51 23.48 30.80
RIS 19.64 19.67 1.29 16.00 22.64 28.34 28.14 1.44 24.20 30.68
MElog 9.95 10.00 0.95 8.12 12.78 20.09 20.00 0.90 18.44 22.20
GLMM 19.93 19.93 1.10 17.59 21.92 27.93 27.88 1.42 25.04 31.00
GLMERT 12.10 11.80 1.57 10.30 15.72 21.76 21.92 1.04 20.24 24.32
GMERT 14.71 14.89 1.34 12.55 16.85 23.05 22.62 1.35 21.68 25.76
BiMM 26.39 26.53 1.50 22.72 28.52 35.04 35.40 1.80 31.00 38.52

8

Std 32.57 32.42 2.85 26.92 38.29 37.46 36.82 4.12 30.36 49.68

High

RI 17.29 17.38 1.53 13.56 20.87 21.66 21.42 2.19 17.68 25.64
RIS 15.82 15.89 1.56 11.80 18.42 20.72 20.58 2.18 17.08 24.72
MElog 9.50 9.48 0.82 7.72 10.97 16.09 16.16 1.40 12.24 19.00
GLMM 15.87 15.75 1.34 13.55 18.82 20.57 20.28 2.14 16.52 25.60
GLMERT 13.08 13.38 1.62 10.15 15.57 18.92 19.54 1.64 16.08 20.76
GMERT 17.63 17.38 1.34 16.04 20.71 21.33 21.66 2.05 18.08 25.04
BiMM 33.62 33.40 1.61 30.70 37.02 39.41 39.48 2.71 33.48 44.80
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Table 2. Cont.

DGP
Random

Effect
Fixed
Effect

Fitted
Model

PMAD (%) PMCR (%)

Mean Median SD Min Max Mean Median SD Min Max

9

Small

Std 16.55 16.78 2.25 11.52 20.62 35.13 35.12 2.43 29.76 39.52

Low

RI 15.94 15.62 1.43 12.37 18.89 36.37 36.18 2.11 31.92 41.04
RIS 15.83 15.55 1.47 12.19 18.91 36.17 36.28 1.88 31.92 41.08
MElog 9.04 8.84 0.87 7.35 11.39 29.03 29.06 0.97 26.72 31.20
GLMM 16.81 16.66 0.76 15.11 18.64 36.71 36.72 1.36 34.00 40.20
GLMERT 13.45 13.64 2.06 10.04 17.46 32.92 32.72 2.93 28.36 38.64
GMERT 13.05 13.04 1.89 10.38 16.16 32.81 33.04 2.59 28.68 37.12
BiMM 16.37 15.82 1.72 13.96 19.86 36.47 35.96 2.20 32.64 41.48

10

Std 26.95 26.57 2.26 22.70 31.94 40.45 39.98 3.19 33.52 47.76

High

RI 15.76 15.90 1.40 12.71 18.94 27.97 27.90 2.19 22.52 32.76
RIS 15.28 15.14 1.39 12.73 18.65 27.61 27.56 2.23 22.72 31.56
MElog 10.80 10.76 1.10 7.86 13.74 24.25 24.24 1.75 20.48 28.16
GLMM 15.45 15.43 1.00 13.18 17.42 27.65 27.88 2.08 23.12 31.96
GLMERT 15.77 16.32 1.79 13.08 18.61 28.03 28.48 2.05 23.92 30.80
GMERT 17.77 18.44 1.79 14.72 20.49 29.83 29.80 2.17 25.56 33.52
BiMM 25.41 24.92 2.14 21.90 29.44 39.33 38.92 2.73 34.56 45.36

Next, we compare the performance of the GMET approach to the results of the MElog
reference model. If the DGP did not include random effect, the difference between PMAD
and PMCR was higher when the fixed effect was large (DGP 1). When the random effect
was large and the fixed effect was small (DGPs 6 and 10), the GMET model performed
similiarly to the MElog model. In terms of PMAD, the differences were 4.61% and 4.48% for
DGPs 6 and 10, respectively; in terms of PMCR, they were 3.02% and 3.36%, respectively.
The difference in predictive accuracy between the two models reached its maximum when
the random effect was small and the fixed effect was large (DGPs 3 and 7). In terms of
PMAD, the differences were 9.59% and 9.69% in DGPs 3 and 7, respectively; in terms of
PMCR, they were 7.33% and 8.25%, respectively.

With respect to the other existing tree-based mixed-effects models, the fact that the
GMET algorithm is not iterative makes it less performant when fixed and when its random
effects are small and easier to be confused; and its performs better when they are large and
easier to be disentangled. Moreover, its step through a glm makes it perform worse when
the DGP includes only a large (in this case, nonlinear) fixed effect, but makes it competitive
with the other existing methods when data have an important random-effects structure.
In order to investigate the performance and to deepen the comparison across methods
under different settings, we report, in Appendix B, additional simulations and results:
we provide more details about the model’s predictive quality in this simulation, e.g., the
recovery of the right tree structure or the identification of the right number of leaves. We
ran new simulations for different DGPs (linear and non-linear fixed-effects) and for a
different response variable in the exponential family, i.e., Poisson. Results show that GMET
on average outperformed all other tree-based methods when data had a linear structure,
for both a binary and a Poisson response variable.

4. Case Study: Application of the Mixed-Effects Tree Algorithm to Education
PoliMi Data

In this section, we describe the PoliMi dataset. We applied the generalised mixed-
effects tree algorithm to these data. Using a GMET model, we could identify discriminating
fixed-effects covariates and estimate the degree programme’s effect on the predicted success
probability. In addition, we also analysed the accuracy of this model for predicting dropout.

The PoliMi dataset consists of 18,612 records in Bachelor of Science (BSc) students
that began between A.Y. 2010/2011 and 2013/2014. Students are nested within I = 19
degree programmes. Table 3 reports the list of the 19 degree programmes and the number
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of students enrolled in each degree program. A descriptive analysis showed that a high
percentage of students leave the Politecnico before obtaining a degree. In particular,
the sample shows a 37.11% dropout rate. Therefore, our goal was to find out which
student-level indicators could discriminate between two different profiles: dropout and
graduate students.

Table 3. Number of students enrolled in the 19 PoliMi degree programmes between A.Y. 2010/2011
and 2013/2014.

Degree Program Number of Students

Aerospace Engineering 1127
Automation Engineering 538
Biomedical Engineering 1456
Building Engineering 671
Chemical Engineering 715
Civil and Environmental Engineering 405
Civil Engineering 855
Electrical Engineering 575
Electronic Engineering 567
Energy Engineering 1485
Engineering of Computing Systems 2173
Environmental and Land Planning Engineering 590
Industrial Production Engineering 288
Management Engineering 2750
Materials and Nanotechnology Engineering 637
Mathematical Engineering 575
Mechanical Engineering 2364
Physics Engineering 469
Telecommunications Engineering 372

We assumed a binary GMET model (3) where student j was nested within degree
programme i. The response variable Y was the status, a two-level factor we coded as a
binary variable:

• status = 1 for studies definitely completed with graduation;
• status = 0 for studies definitely concluded with dropping out.

We would like to make predictions at the very early stages of students’ academic
careers. Thus, we chose as predictors five variables available at the time of enrolment
and three more variables collected just after the first semester of study. The list and
explanation of student-level variables to be included as covariates is reported in Table 4. In
addition, we chose as the grouping variable the degree programme at the time of enrolment
(factor DegreeProgramme) which has 19 levels. The influence of the grouping factor on the
predictor was modelled through a group-level intercept bi. We randomly split the dataset
into training and test subsets, with a ratio of 80% for training and 20% for evaluation. Thus,
the training subset included 14,890 students and the test subset had 3722.
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Table 4. A list and explanations of variables at the student level which were included as covariates in
the GMET model.

Variable Description Type of Variable

Sex gender factor (2 levels: M, F)

Nationality nationality factor (Italian, foreigner)

PreviousStudies high school studies factor (Liceo Scientifico,
Istituto Tecnico, Other)

AdmissionScore PoliMi admission test result real number

AccessToStudiesAge age at the beginning of the natural number
BSc studies at PoliMi

WeightedAvgEval1.1 weighted average of the evaluations real number
during the first semester of the first year

AvgAttempts1.1 average number of attempts to be real number
evaluated on subjects during
the first semester of the first year
(passed and failed exams)

TotalCredits1.1 number of ECTS credits obtained natural number
by the student during the first
semester of the first year

While growing the tree, we fixed to 10 the maximum depth parameter and to 20
the minimum number of observations necessary to attempt a split. Figure 2 shows the
estimated mixed-effects tree for the probability of graduation. Every internal node had a
corresponding condition that split it into two children: if the condition was true, observa-
tions were sent down the tree through the left child; if the condition was false, through
the right child. In addition, all nodes reported two values: the estimated probability of
graduation and the percentage of observations in the node over the total training set. We
remind the reader that variable PreviousStudies has been coded as a three-level factor
with levels S (Liceo Scientifico), T (Istituto Tecnico) and O (other high school studies). The
number of ECTS obtained in the first semester of the first year was used as the first split:
students who obtained less than 13 ECTS were associated with lower success probability
(0.16 versus 0.86). Then, students were further classified using other explanatory variables:
we can see that Italian students who obtained more than 24 ECTS had the highest predicted
success probability (0.95). Other variables actually used to split smaller internal nodes were
Nationality and PreviousStudies: in these nodes, students who attended Istituto Tecnico
and foreign students had lower predicted success than the others. Through this model, it
was possible to find out significant interactions among the covariates: for example, variable
Nationality was used to split the group of students that obtained at least 13 ECTS, but this
same variable did not appear in the complementary branch of the tree. Finally, covariates
Sex, AdmissionScore and AvgAttempts1.1 were not compared in the trees, so they do not
appear to have strong influences on how one’s studies end.
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TotalCredits1.1 < 13

WeiAvgEval1.1 < 20

TotalCredits1.1 < 4 PrevStudies = O,T

Nationality = foreigner

TotalCredits1.1 < 24

PrevStudies = T

0.63
100%

0.16
33%

0.07
25%

0.044
22%

0.27
3%

0.45
8%

0.32
3%

0.44
5%

0.86
67%

0.44
3%

0.88
64%

0.75
17%

0.69
3%

0.76
14%

0.95
47%

yes no

Figure 2. The estimated mixed-effects tree of model (3) for the probability of graduation. Each
node reports the percentage of observations belonging to the node (second line of the node) and
the estimated probability that responses relative to these observations are equal to 1 (first line of the
node). Regarding the splitting criteria, left branches correspond to the case in which the condition is
satisfied, and right branches correspond to the complementary case.

Using the tree structure in Figure 2, we could get population-level predictions for new
observations that did not include the effect of the programme. However, if we also specified
the level of the random effect covariate, our model was able to adjust this prediction
to account for the effect and make a group-specific prediction. Indeed, we extracted
coefficients b̂i from the full estimated mixed model (3) and provide different predictions
for different programmes within each leaf of the tree structure. Figure 3 shows the ranking
of the 19 estimated random-effects intercepts, one for each degree program. Light blue
points correspond to the point estimates b̂i, for i = 1, . . . , 19, and the horizontal black lines
represent the 95% confidence intervals of the estimates. When the 95% confidence interval
does not overlap with 0 (identified by the dashed vertical line), we have evidence to assert
that the degree program’s effect was significantly different from zero, i.e., from the average.
For many groups, the 95% confidence interval does not overlap with the vertical line at zero,
underlining substantial differences between the groups. If we use this model to estimate the
probability of graduation, many degree programs will give results significantly different
from the average. In particular, degree programs whose confidence intervals are entirely
higher (lower) than zero are associated with higher (lower) dropout likelihood with respect
to the average, all else being equal. After fixing all other covariates, Environmental and
Land Planning Engineering and Civil and Environmental Engineering had large positive effects
on the intercept: one student from one of those programmes improves the log odds by
1.051 or 0.705, respectively. On the contrary, studying either Civil Engineering or Electrical
Engineering penalises the log odds by 0.680 and 0.546 respectively.
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DegreeName.out

Civil Engineering

Electrical Engineering

Engineering of Computing Systems

Building Engineering

Chemical Engineering

Mechanical Engineering

Telecommunications Engineering

Materials and Nanotechnology Engineering

Aerospace Engineering

Energy Engineering

Biomedical Engineering

Mathematical Engineering

Electronic Engineering

Physics Engineering

Automation Engineering

Management Engineering

Industrial Production Engineering

Civil and Environmental Engineering

Environmental and Land Planning Engineering

−0.5 0.0 0.5 1.0

(Intercept)

Figure 3. Estimated random intercept for each degree programme in model (3). For each engineering
programme, the blue dot and the horizontal line mark the estimate and the 95% confidence interval
of the corresponding random intercept.

Since we were using a multilevel model, we were able to account for the interdepen-
dence of observations by partitioning the total variance into different components due
to the clustered data structure in model (3). The variance partition coefficient (VPC) is a
possible measure of intraclass correlation: it is equal to the percentage of variation that
is found at the higher level of hierarchy over the total variance [39]. The idea of VPC
was extended using the latent variable approach, to define a method to partition the total
variance in the case of a binary response and the group-specific intercept for the random-
effects structure [40]. In this case, the variance partition coefficient was constant across all
individuals, and it can be estimated as:

VPC =
ψ̂

ψ̂ + σ2
lat

=
0.2988

0.2988 + π2/3
= 0.0612

where ψ̂ is the estimated variance of the random intercept and σ2
lat is the residual variability

that can be explained by neither fixed effects, nor the group features that are represented
by the random intercept. In this case, it is equal to the variance of the standard logistic
distribution. This VPC value means that 6.12% of variation in the response is attributable
to the classification by degree type. This value underlines the need to use a mixed model.

We can now evaluate the performance of the model and its predictive quality using
the area under the ROC curve (AUC) and other performance indexes: accuracy, sensitivity
and specificity. For each test observation, we were given a full set of covariates; therefore,
we were able to compute an estimate p̂ of the probability of successfully concluding a BSc
and getting a degree. We used this estimate to define a binary classifier based on model (3):
we chose p0 = 0.6 as the optimal cutoff value through ROC curve analysis, as shown
in Figure 4. For 20 iterations, we randomly split the observations into training and test
sets. We fit a GMET model with the training set, and we classified test observations using
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the optimal threshold value. Finally, we computed the average accuracy, sensitivity and
specificity values and their standard deviations, which are reported in Table 5. High values
of accuracy, sensitivity and specificity indicate a good model. The model’s performance
was robust, as highlighted by the low standard deviations of the mean performance indexes
and the high AUC, equal to 0.9127 (Figure 4). In addition, Table 6 reports the means and
standard deviations of accuracy, sensitivity and specificity, computed separately for each
degree program.

Table 5. Performance indexes of the classifier based on the mixed-effects tree of model (3).

Index Mean Std Deviation

Accuracy 0.860 0.006
Sensitivity 0.816 0.012
Specificity 0.886 0.008

Table 6. Performance indexes of the classifier based on the mixed-effects tree of model (3), computed
for each degree program.

Degree Program
Accuracy Sensitivity Specificity
Mean (sd) Mean (sd) Mean (sd)

Aerospace Engineering 0.880 (0.028) 0.845 (0.038) 0.897 (0.034)
Automation Engineering 0.880 (0.053) 0.798 (0.098) 0.925 (0.045)
Biomedical Engineering 0.894 (0.019) 0.860 (0.042) 0.912 (0.024)
Building Engineering 0.856 (0.042) 0.860 (0.080) 0.852 (0.050)
Chemical Engineering 0.877 (0.036) 0.889 (0.056) 0.873 (0.049)
Civil and Environmental Engineering 0.879 (0.038) 0.841 (0.081) 0.907 (0.052)
Civil Engineering 0.718 (0.041) 0.650 (0.044) 0.837 (0.060)
Electrical Engineering 0.849 (0.040) 0.840 (0.056) 0.867 (0.058)
Electronic Engineering 0.854 (0.037) 0.806 (0.078) 0.886 (0.053)
Energy Engineering 0.898 (0.023) 0.884 (0.059) 0.903 (0.022)
Engineering of Computing Systems 0.823 (0.022) 0.846 (0.029) 0.805 (0.030)
Environmental and Land Planning Engineering 0.851 (0.034) 0.782 (0.100) 0.878 (0.052)
Industrial Production Engineering 0.822 (0.091) 0.692 (0.164) 0.916 (0.068)
Management Engineering 0.873 (0.014) 0.765 (0.040) 0.931 (0.015)
Materials and Nanotechnology Engineering 0.907 (0.034) 0.867 (0.088) 0.918 (0.031)
Mathematical Engineering 0.893 (0.031) 0.851 (0.058) 0.908 (0.040)
Mechanical Engineering 0.863 (0.023) 0.841 (0.032) 0.875 (0.028)
Physics Engineering 0.902 (0.031) 0.852 (0.062) 0.930 (0.041)
Telecommunications Engineering 0.853 (0.058) 0.845 (0.087) 0.858 (0.061)

It is interesting to compare these average performance indexes against those obtained
using different methods. Our approach had similar accuracy to a standard classification
tree (0.878 versus 0.879), but its accuracy showed less variability across the iterations.
For example, its standard deviation of accuracy was 0.5%; compare that to 2.8% for the clas-
sification tree. Since we were interested in the detection of dropout careers, we compared
mean sensitivity using different models. Using mixed-effects trees, we attained higher
sensitivity than using standard classification trees (0.835 versus 0.800). Thus, the choice
of a mixed-effects model seemed appropriate: the degree programme is a meaningful
covariate for the prediction of status. The mixed-effects tree was slightly less sensitive
than a classifier built through a GLMM (0.835 versus 0.850), suggesting that a tree-like
structure for fixed effects might not be as suitable as the GLMM one. However, it has
other advantages, such as offering an easily interpretable model that could be graphically
displayed and understood. Overall, the good performance of GMET in this application
was due to two reasons. The first is that the variability at the highest level of grouping, i.e.,
degree programs, was not negligible, and therefore, taking it into account improved the pre-
dictive performance of the models. The second is that the good performance of the GLMM
suggests that the association between the most important covariate, i.e., TotaleCredits1.1 (the
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most relevant variable in the tree of Figure 2), and the response can be well approximated
by a linear function. Therefore, µ̂ij, estimated at step 2 of the GMET algorithm and used
as the input for the tree built at step 3, was very precise and representative of the real
dynamics, helping the GMET algorithm to fit the data well.

Figure 4. ROC curve computed on the PoliMi test set. Standing on this evidence, we chose 0.6 as the
optimal value of p0 to be used in the prediction as the threshold value for classification.

Appendix A reports the results of the application of GMERT and BiMM algorithms to
the PoliMi case study and a comparison with GMET results presented in this section.

5. Conclusions

We proposed a multilevel tree-based model for a non-Gaussian response (GMET algo-
rithm), showed a simulation study and applied the GMET algorithm to the PoliMi careers
dataset as a tool to find student-level variables to discriminate between two different
student profiles (graduate and dropout) and to estimate the degree programme’s effect on
the predicted success probability.

The GMET model can deal with a grouped data structure, while providing easily
interpretable models that can outline complex interactions among the input variables. In the
simulation study, the performance of the proposed mixed-effects tree method was a marked
improvement over the CART model when the data generating process (DGP) included
random effects, even if they were of small magnitude. In addition, the performance of
the GMET model was similar to that of the benchmark logistic model that was fitted
assuming the whole specification of the DGP. GMET’s performance was comparable to
that of other existing tree-based mixed-effects models, outperforming them when data had
a linear structure, and it had a clear advantage in convergence time. Although our study
focused on the binary response case, the mixed-effects tree approach could be extended
to other types of response variables. Using a suitable link function, we could study if the
method is appropriate to model different outcomes, such as count data or a multinomial
factor response. Overall, the main advantages of the GMET algorithm are its flexibility
and interpretability [41]. By relaxing the linear assumption of the fixed-effects part, the
method could model more complex functional forms, easily treating potential interactions
among covariates. This complexity is then summarised in a tree structure, which is easy to
interpret and communicate. At the same time, when data present a hierarchy, the method
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is able to take into account the dependence structure within observations and to model it.
In the educational data mining context, this aspect is essential in order to better understand
students and the settings in which they learn. On the other hand, GMET, as CARTs, suffers
from high variance. This means that if we split the training data into two parts at random,
and fit a decision tree to both halves, the results could be quite different. Ensemble methods
which use a mixed-effects tree as a base learner together with a random forest approach
may be developed.

In our case study, the effectiveness of the GMET model in dropout prediction was
comparable to the effectiveness of more established classification methods. A GMET model
with high accuracy and sensitivity was obtained by considering information available at the
time of the admission and the results of the first semester of studies. In addition, our work
identifies a significant effect of the engineering programme on dropout probability. The es-
timated student success probability might be used as a tool to conduct policy experiments
at the institutional level, aimed at identifying the best practices to help and retain at-risk
students. In this setting, PoliMi started an experimental early intervening program that
invites at-risk students (identified by the GMET algorithm) to attend dedicated tutorship
to support them during the beginning of their studies at PoliMi.

In the context of the SPEET project, a future development could be the extension of
our analysis to the other project partners in order to compare the programme effect at the
country level. This would allow us to relate this effect to programme-level variables, and
we could establish whether the same profiles of students at risk of dropout arise at country
level. Moreover, in accordance with the validity and the potential of the GMET method
when applied to modelling student dropout prediction, our future perspective goes in the
direction of major applications in the learning analytics area. This method, when applied
to educational data, can be a useful tool to support the definition of best practices and
new tutoring programmes aimed at enhancing student performances and reducing student
dropout. A worthwhile consideration is also the approach that teachers and students have
with respect to its results. Indeed, this method is also valuable from the perspective of
recommendation systems, since, if its results are interpreted and communicated in the right
way, they can be used to drive students in their career choices.
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Appendix A. Application of GMERT Algorithm to PoliMi Case Study and Comparison
with GMET Results

In this section, we describe the application of the GMERT algorithm proposed in [10]
and the BiMM algorithm proposed in [12] to our case study on PoliMi SPEET data, to
compare their results with our GMET ones (reported in Section 4).

https://www.mdpi.com/article/10.3390/data6070074/s1
https://www.mdpi.com/article/10.3390/data6070074/s1
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We ran GMERT and BiMM algorithms considering the same set of fixed-effects covari-
ates shown in Table 4 and a random intercept given by the grouping of students within
degree programmes. Equivalently to GMET inputs, we fixed to 10 the maximum depth
parameter and to 20 the minimum number of observations necessary to attempt a split
in the GMERF algorithm. Since the BiMM algorithm does not receive in input rpart con-
trol parameters, we ran the algorithm with the default parameters. Figures A1 and A2
report the fixed-effects trees and the random intercepts estimated by GMERT and BiMM.
Regarding the fixed-effects, the trees identified by GMET and GMERT are very similar:
the variables that were determined important are coherent across the two methods (i.e.,
TotalCredits1.1 as the most important one, followed by WeiAvgEval1.1, PrevStudies
and AccessAge). BiMM tree performs a unique split, identifying TotalCredits1.1 as the
most important covariate. Regarding the random-effects, comparing Figures 3 and A2, we
can observe that the random intercepts estimated by the three methods are quite consistent.
In particular, the correlation coefficient between random intercepts estimated by GMET and
GMERT is equal to 0.95, whereas the one between random intercepts estimated by GMET
and BiMM is equal to 0.73. The variance of random intercepts ψ estimated by GMERT is
smaller that estimated by GMET. Indeed, the VPC estimated by model GMERT is 0.0479
(against VPCGMET = 0.0612). The variance ψ estimated by the BiMM algorithm is higher,
and VPCBiMM = 0.0634.

Figure A1. Fixed-effects trees estimated by the GMERT algorithm (left panel) and the BiMM algorithm (right panel) for
the probability of graduation. GMERT tree leaves do not report probability of class 1 as GMET and BiMM leaves do, but
they report the estimated linearised response variable (obtained using a first-order Taylor-series expansion). BiMM notation
is 2 for graduate and 1 for dropout.
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Figure A2. Random intercept for each degree programme, estimated by GMERT (left panel) and BiMM (right panel). For
each engineering programme, the blue dot and the horizontal line mark the estimate and the 95% confidence interval of the
corresponding random intercept.

Regarding the predictive performances of GMERT and BiMM, Figure A3 reports
the ROC curves obtained on the test set and Table A1 reports performance indexes of
the classifiers based on the two methods, computed following the same procedure of
GMET. The predictive performances of GMET and GMERT were very similar, with the
small differences that the AUC of GMERT was slightly higher than that of GMET, but the
accuracy, sensitivity and specificity indexes of GMERT had higher values than those of
GMET. It is worth noting that the time of convergence for GMERT was significantly higher
than that for GMET. BiMM seemed to perform slightly worse than the other two methods
in terms of predictive power.

Figure A3. ROC curve computed on the PoliMi test set for the GMERT model (left panel) and BiMM model (right panel),
respectively. Standing on this evidence, we choose 0.6 as the optimal value of p0 to be used in the prediction as the threshold
value for classification.
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Table A1. Performance indexes of a classifier based on the mixed-effects tree estimated by GMERT
and BiMM algorithms, computed on 20 iterations, randomly splitting the observations into training
and test sets.

GMERT BiMM

Index Mean Std Deviation Mean Std Deviation

Accuracy 0.861 0.008 0.849 0.012
Sensitivity 0.818 0.021 0.806 0.023
Specificity 0.891 0.013 0.874 0.015

Appendix B. Additional Simulations and Results

In this section, we provide more details about the simulations presented in Section 3
and also the results from other simulations with different DGPs.

Appendix B.1. Recovery of the Right Tree Structure

The predictive performances of the GMET algorithm and other tested methods are
given in Table 2, Section 3. Here we present the results about the ability of the methods to
recover the right tree structure. Following the approach presented in [10], three different
ways of looking at this aspect are presented. We evaluate if the tree has: (1) the right
number of leaves (i.e., six), (2) the right structure and right splitting covariates and (3)
the right structure, right splitting covariates and right cutpoints. The third criterion was
achieved if the estimated cutpoints came within 1 unit of the true ones (which were all
5), that is, if 4 < cutpoint < 6 for all cutpoints. These criteria are in increasing order
of difficulty. If the estimated tree achieved (3), then it achieved (2) and (1), and so on.
Table A2 presents the results. In terms of number of leaves, Std, GLMERT and GMERT did
fairly well with median numbers of leaves of six or sometimes five in the first four DGPs.
GLMERT and GMERT tended to underestimate the number of leaves in the last six DGPs.
BiMM tended to underestimate the number of leaves in all DGPs. Contrarily to the others,
GMET tended to overestimate the number of leaves of the tree in all the DGPs. This result
might depend on the second step of the GMET algorithm, in which the response variable is
linearised through a GLM. As a consequence, the tree is built not using the original binary
response y ∼ Be(p) as the target variable, but the p̂ estimated by the GLM. This can lead to
a different tree structure.

Table A2. Results of the 100 simulation runs, presented in Table 2, Section 3, in terms of recovering the right tree structure. #
right splits reports the number of times out of 100 in which we obtained a tree of six leaves with the right splitting covariates;
# right cutpoints reports the number of times out of 100 in which we obtained a tree of six leaves with the right splitting
covariates and cutpoints (i.e., 4 < cutpoint < 5).

DGP
Random

Effect
Fixed
Effect

Fitted
Model

Number of Leaves Right Tree Structure

Mean Median SD Min Max # Right Splits # Right Cutpoints

1

NO
RANDOM

EFFECT

Large

Std 6.11 6.00 0.39 6.00 8.00 84 78
RI 10.08 10.00 1.73 6.00 13.00 0 0
RIS 10.11 10.00 1.78 7.00 14.00 0 0
GLMERT 6.39 6.00 0.59 6.00 8.00 94 63
GMERT 6.13 6.00 0.66 6.00 10.00 89 61
BiMM 2.74 3.00 0.69 2.00 5.00 0 0

2 Small

Std 7.21 6.00 3.07 3.00 15.00 24 16
RI 10.58 10.00 1.48 8.00 13.00 0 0
RIS 10.58 10.00 1.43 8.00 14.00 0 0
GLMERT 4.84 5.00 0.86 4.00 8.00 24 8
GMERT 4.76 5.00 1.05 3.00 7.00 48 25
BiMM 3.66 4.00 0.75 2.00 5.00 0 0
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Table A2. Cont.

DGP
Random

Effect
Fixed
Effect

Fitted
Model

Number of Leaves Right Tree Structure

Mean Median SD Min Max # Right Splits # Right Cutpoints

3

INTERCEPT

Large

Std 7.24 6.00 2.14 4.00 14.00 31 21

Low

RI 10.32 11.00 1.97 6.00 13.00 2 0
RIS 10.24 11.00 1.97 7.00 14.00 0 0
GLMERT 6.24 6.00 0.63 5.00 8.00 75 60
GMERT 5.95 6.00 1.09 3.00 9.00 87 68
BiMM 3.11 3.00 0.83 2.00 5.00 0 0

4

Std 6.26 6.00 3.29 1.00 14.00 8 3

High

RI 10.11 10.50 1.98 5.00 14.00 3 1
RIS 10.08 10.00 1.68 6.00 13.00 0 0
GLMERT 5.53 6.00 1.16 3.00 8.00 44 21
GMERT 4.45 5.00 1.80 1.00 8.00 45 26
BiMM 3.18 3.00 0.56 2.00 4.00 0 0

5

Small

Std 7.32 6.00 3.62 3.00 17.00 8 5

Low

RI 10.18 10.00 1.54 6.00 14.00 0 0
RIS 10.29 10.00 1.71 6.00 13.00 0 0
GLMERT 4.79 5.00 0.84 4.00 7.00 10 3
GMERT 4.76 4.50 1.57 2.00 10.00 36 12
BiMM 3.66 4.00 0.71 3.00 5.00 0 0

6

Std 5.82 4.00 3.75 2.00 16.00 0 0

High

RI 10.03 10.00 1.95 6.00 15.00 0 0
RIS 10.65 11.00 1.84 7.00 15.00 0 0
GLMERT 3.86 4.00 0.98 1.00 6.00 2 2
GMERT 3.08 3.00 1.69 1.00 8.00 8 1
BiMM 3.57 3.00 0.80 3.00 6.00 0 0

7

INTERCEPT
& SLOPE

Large

Std 6.19 6.00 1.85 4.00 11.00 31 15

Low

RI 9.73 10.00 1.95 5.00 13.00 0 0
RIS 9.57 10.00 1.99 5.00 13.00 0 0
GLMERT 6.27 6.00 0.61 5.00 8.00 80 52
GMERT 6.30 6.00 0.81 5.00 9.00 70 30
BiMM 3.14 3.00 0.63 2.00 5.00 0 0

8

Std 6.95 6.00 4.56 1.00 18.00 0 0

High

RI 9.30 9.00 1.79 5.00 12.00 0 0
RIS 9.97 10.00 1.48 8.00 13.00 0 0
GLMERT 4.95 5.00 1.35 3.00 8.00 23 15
GMERT 4.92 5.00 1.82 2.00 9.00 53 23
BiMM 3.54 3.00 0.90 2.00 6.00 3 0

9

Small

Std 7.35 6.00 3.17 2.00 15.00 21 5

Low

RI 10.27 11.00 1.79 7.00 13.00 0 0
RIS 10.30 10.00 1.71 7.00 14.00 0 0
GLMERT 4.84 5.00 0.96 3.00 7.00 23 0
GMERT 4.95 5.00 1.82 1.00 10.00 40 16
BiMM 3.73 4.00 0.73 2.00 5.00 0 0

10

Std 4.86 3.00 3.14 1.00 13.00 3 0

High

RI 10.30 10.00 1.70 6.00 13.00 0 0
RIS 10.41 10.00 2.01 6.00 15.00 2 0
GLMERT 3.89 4.00 0.81 2.00 5.00 3 0
GMERT 3.35 3.00 1.55 1.00 9.00 9 6
BiMM 3.49 3.00 0.84 2.00 6.00 0 0

Appendix B.2. Simulations Based on Data with Linear and Non-Linear Fixed Effects

The DGP presented in the simulation of Section 3 is tree-shaped. To complete this
simulation, we investigated two other DGPs, the first based on data with linear fixed effects
and the second based on data with non-linear fixed effects. Again, 10 different scenarios
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were considered, involving small/large fixed effects and models with/without random
effects. The same cluster configuration and random components shown in Section 3 were
used, and the results are based on 100 runs.

Again, we followed the DGP presented in [10]. The first DGP had linear fixed effects
f (xij). The large-effects scenario used f (xij) = 1.20x1ij − 0.3x2ij − 0.2x3ij , and the small-
effects scenario had f (xij) = −0.6x1ij − 0.15x2ij − 0.10x3ij. The results are presented in
Table A3. As expected, the GLMM had the best predictive performance, since it used
the true fixed and random effect structures. Nevertheless, RI’s and RIS’s performances
were very similar to that of GLMM, and they outperformed all other methods, for all
random effects scenarios. This is the best result regarding the GMET method, which when
data had a linear structure, thanks to its step involving a GLM model, had outstanding
performances.

The second DGP had non-linear fixed effects f (xij). The large-effects scenario used
f (xij) = 1.0x2ij − 0.60x2

2ij − 4.80(x3ij > 0) + 0.80x1ijx3ij; the small-effects scenario had

f (xij) = 0.50x2ij − 0.30x2
2ij − 2.40(x3ij > 0) + 0.40x1ijx3ij. The results are presented in

Table A4. Again, GLMM had the best predictive performance, followed by GLMERT.
GMET and GMERT had similar performances that increased when random effects were
high; they got very close to GLMERT;s performance.

Table A3. Results of the 100 simulation runs in terms of predictive probability mean absolute deviation (PMAD) and
predictive misclassification rate (PMCR) of the seven models for the 10 DGPs based on data with linear fixed effect. GMET
outperformed all other tree-based methods.

DGP
Random

Effect
Fixed
Effect

Fitted
Model

PMAD (%) PMCR (%)

Mean Median SD Min Max Mean Median SD Min Max

1

NO
RANDOM

EFFECT

Large

Std 10.25 10.53 1.30 8.12 12.29 12.97 12.84 1.21 10.76 15.44
RI 7.38 7.38 0.60 6.15 8.46 13.55 13.28 2.14 11.16 23.08
RIS 7.41 7.50 0.61 6.19 8.34 12.49 12.64 0.72 10.92 13.68
GLMM 3.26 3.32 0.67 2.02 4.55 11.08 11.06 0.80 9.28 12.40
GLMERT 8.32 8.20 0.73 6.94 9.54 16.54 14.36 5.10 12.32 35.24
GMERT 11.65 11.46 0.97 9.79 13.58 13.32 13.18 1.16 11.56 16.20
BiMM 10.88 10.94 0.98 8.61 12.96 13.24 13.48 1.03 10.56 15.00

2 Small

Std 4.97 4.95 0.49 4.12 6.31 4.72 4.64 0.51 3.80 6.36
RI 2.85 2.75 0.52 1.90 3.91 6.19 5.76 1.51 4.24 9.80
RIS 2.95 2.89 0.59 2.20 4.23 7.14 6.92 1.28 4.32 9.20
GLMM 2.51 2.43 0.61 1.40 3.76 7.39 7.10 1.34 5.20 11.40
GLMERT 3.30 3.15 0.60 2.55 4.66 6.17 6.28 1.40 3.80 9.04
GMERT 7.60 7.49 0.50 6.68 8.64 6.40 6.12 1.72 4.20 9.80
BiMM 5.01 4.97 0.47 4.26 6.31 4.65 4.62 0.40 3.80 5.80

3

INTERCEPT

Large

Std 16.22 16.24 1.46 13.63 19.25 17.15 16.80 1.17 15.28 20.20

Low

RI 9.50 9.49 0.68 7.92 10.91 13.47 13.36 1.03 11.48 15.44
RIS 9.35 9.26 0.74 7.83 10.82 13.35 13.20 1.07 11.52 15.44
GLMM 6.65 6.67 0.73 5.32 7.76 11.92 11.94 1.00 9.76 13.92
GLMERT 10.31 10.27 0.84 8.86 12.87 14.23 14.32 1.02 12.44 16.20
GMERT 16.80 16.77 0.61 15.70 18.07 15.78 15.84 1.35 13.24 18.44
BiMM 16.43 16.21 1.23 14.14 18.59 17.19 16.86 1.14 15.32 19.08

4

Std 21.14 21.37 2.44 14.17 25.81 21.28 21.66 1.78 17.64 24.56

High

RI 9.89 9.88 0.76 8.26 11.92 13.54 13.46 1.02 11.56 16.52
RIS 9.67 9.60 0.69 8.09 11.07 13.17 13.20 0.98 11.08 15.24
GLMM 7.18 7.16 0.69 5.58 8.45 11.50 11.62 1.01 9.28 13.40
GLMERT 10.76 10.92 0.82 8.96 12.18 14.18 14.18 0.97 12.32 15.84
GMERT 21.29 21.51 1.73 16.31 24.91 18.85 18.72 2.73 14.92 27.80
BiMM 21.18 21.37 2.31 14.63 25.81 20.85 20.56 1.81 16.44 24.56
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Table A3. Cont.

DGP
Random

Effect
Fixed
Effect

Fitted
Model

PMAD (%) PMCR (%)

Mean Median SD Min Max Mean Median SD Min Max

5

Small

Std 5.95 5.93 0.62 4.59 7.38 5.30 5.28 0.65 4.24 6.72

Low

RI 3.69 3.64 0.66 2.63 5.76 7.02 7.02 1.62 4.36 10.08
RIS 3.73 3.70 0.73 2.94 6.80 7.94 7.88 1.27 5.52 10.60
GLMM 3.30 3.16 0.68 2.41 6.01 8.13 8.06 1.04 6.40 11.80
GLMERT 4.07 4.05 0.54 3.10 5.29 6.91 6.98 1.55 4.36 9.20
GMERT 8.32 8.26 0.49 7.46 9.40 6.91 7.08 1.32 4.36 9.36
BiMM 5.95 5.93 0.62 4.59 7.38 5.30 5.28 0.65 4.24 6.72

6

Std 12.28 12.40 2.00 8.26 15.67 9.98 9.92 1.76 6.32 13.84

High

RI 5.80 5.82 0.83 4.01 7.35 9.99 9.92 1.88 6.88 14.24
RIS 5.78 5.83 0.83 4.00 7.22 9.84 9.84 1.70 6.88 13.20
GLMM 5.03 4.98 0.78 3.41 6.65 9.49 9.48 1.61 6.80 13.12
GLMERT 6.40 6.26 0.93 4.78 8.13 10.36 10.20 1.70 7.36 14.64
GMERT 12.32 12.34 1.30 9.62 14.62 10.96 10.40 2.42 6.52 17.20
BiMM 12.30 12.40 1.98 8.26 15.67 9.88 9.86 1.77 6.32 13.84

7

INTERCEPT
& SLOPE

Large

Std 14.96 15.08 1.41 11.61 17.73 16.31 16.42 1.23 13.56 18.16

Low

RI 9.52 9.42 0.70 8.17 11.26 14.05 14.04 0.96 12.08 16.48
RIS 9.66 9.65 0.71 8.30 11.31 14.04 14.06 0.95 12.56 16.52
GLMM 6.77 6.69 0.60 5.71 7.98 12.62 12.66 0.89 11.08 14.40
GLMERT 10.73 10.79 0.93 8.95 12.47 14.90 14.84 1.15 12.72 17.00
GMERT 15.50 15.62 1.05 13.52 17.77 15.61 15.26 1.17 13.44 18.88
BiMM 15.20 15.12 1.35 11.91 17.73 16.86 16.90 1.34 13.56 19.92

8

Std 23.07 22.76 2.58 19.28 29.66 22.32 22.24 2.57 17.64 28.80

High

RI 10.71 10.44 1.11 9.11 13.27 14.47 14.36 1.69 11.76 19.12
RIS 10.56 10.38 1.15 8.96 14.22 14.63 14.62 1.49 12.20 18.40
GLMM 7.97 8.02 1.02 6.22 10.38 12.93 12.96 1.33 10.76 16.60
GLMERT 12.13 11.77 0.97 10.55 14.80 16.00 15.84 1.65 12.92 20.32
GMERT 18.52 18.57 1.01 16.82 21.02 18.77 18.70 2.12 15.76 23.68
BiMM 23.20 23.08 2.49 19.45 29.66 22.76 22.50 2.62 17.32 28.56

9

Small

Std 5.65 5.57 0.65 4.71 7.35 5.09 5.16 0.52 3.92 6.20

Low

RI 3.46 3.42 0.54 2.39 4.44 6.87 6.78 1.69 4.48 10.16
RIS 3.63 3.73 0.61 2.68 4.80 7.71 7.64 0.99 6.28 10.44
GLMM 3.14 3.08 0.67 2.01 4.67 8.02 7.76 1.13 6.16 10.52
GLMERT 3.88 3.72 0.67 3.01 5.59 8.23 7.80 1.35 5.20 11.00
GMERT 8.02 8.03 0.45 7.13 8.98 8.42 8.32 1.23 6.36 11.00
BiMM 5.68 5.59 0.64 4.79 7.35 5.10 5.20 0.52 3.92 6.20

10

Std 9.34 9.31 1.49 6.33 13.26 7.93 7.84 1.49 5.00 10.68

High

RI 5.63 5.54 0.93 3.84 7.31 9.69 9.84 1.49 7.00 12.32
RIS 5.71 5.61 0.95 3.70 7.45 9.94 10.24 1.71 6.36 13.88
GLMM 5.14 5.19 0.96 3.11 7.72 9.79 9.92 1.56 6.40 12.92
GLMERT 5.89 5.90 0.83 4.33 7.48 10.09 10.08 1.35 7.16 12.76
GMERT 10.56 10.50 0.86 9.07 12.66 10.97 11.00 1.99 8.04 15.24
BiMM 9.34 9.31 1.49 6.33 13.26 7.93 7.84 1.49 5.00 10.68



Data 2021, 6, 74 25 of 31

Table A4. Results of the 100 simulation runs in terms of predictive probability mean absolute deviation (PMAD) and
predictive misclassification rate (PMCR) of the seven models for the 10 DGPs based on data with non-linear fixed effect.

DGP
Random

Effect
Fixed
Effect

Fitted
Model

PMAD (%) PMCR (%)

Mean Median SD Min Max Mean Median SD Min Max

1

NO
RANDOM

EFFECT

Large

Std 14.96 14.96 1.71 11.15 17.79 12.17 12.60 1.25 9.32 14.08
RI 17.75 17.90 1.65 13.59 20.18 15.63 15.56 1.74 12.08 20.32
RIS 18.00 17.91 1.80 14.00 21.95 15.67 15.52 1.69 11.96 20.72
GLMM 9.45 9.49 0.72 7.91 10.55 8.49 8.44 0.67 7.36 9.72
GLMERT 12.34 12.34 1.35 9.75 15.06 11.90 12.00 1.34 9.24 14.88
GMERT 17.59 17.35 1.12 15.77 21.03 12.53 12.52 1.31 9.76 16.00
BiMM 26.12 25.60 2.90 21.92 31.53 47.78 47.74 0.87 45.96 49.68

2 Small

Std 14.62 14.38 1.67 11.81 17.83 13.16 13.00 1.37 11.12 16.44
RI 16.74 16.72 1.58 13.80 20.19 16.89 16.68 1.83 14.28 20.88
RIS 16.54 16.67 1.31 12.79 18.84 16.18 16.16 1.44 14.16 19.76
GLMM 9.14 9.22 0.58 7.88 10.46 9.77 10.00 0.56 8.48 10.64
GLMERT 13.54 13.52 1.23 11.17 16.03 14.24 13.80 2.01 11.72 19.24
GMERT 16.33 15.94 1.11 14.58 18.89 13.51 13.28 1.55 11.28 18.00
BiMM 24.75 23.95 2.91 19.99 31.41 48.21 48.46 1.05 45.80 50.00

3

INTERCEPT

Large

Std 18.03 17.71 2.29 14.29 26.00 14.94 14.56 2.09 11.24 20.68

Low

RI 18.01 17.90 1.95 14.88 21.99 15.61 15.40 1.77 12.32 18.76
RIS 17.71 17.88 1.79 14.25 21.09 15.63 15.84 1.66 12.88 18.80
GLMM 10.20 9.90 0.86 8.95 11.94 8.96 8.92 0.77 7.52 10.12
GLMERT 13.62 13.33 1.34 11.45 16.56 12.98 13.16 1.43 10.88 16.20
GMERT 18.25 18.22 0.96 16.13 20.06 13.25 12.92 1.31 10.36 16.44
BiMM 26.38 25.88 3.25 21.34 33.48 47.99 48.06 1.18 44.64 49.96

4

Std 18.60 18.82 1.71 15.48 20.16 15.48 15.72 1.32 13.24 16.88

High

RI 17.94 17.40 1.84 14.74 21.87 15.44 15.60 1.24 13.28 17.36
RIS 17.67 17.21 1.71 14.56 20.34 15.61 15.68 1.27 12.96 18.08
GLMM 10.53 10.59 0.86 8.96 12.61 9.31 9.44 0.71 7.92 11.12
GLMERT 14.45 14.51 1.29 11.98 16.84 13.86 13.88 0.94 12.16 16.12
GMERT 18.97 18.97 0.98 17.07 21.15 13.84 13.64 1.38 11.16 15.92
BiMM 27.76 26.56 3.15 23.03 34.41 48.01 48.18 1.13 45.12 50.04

5

Small

Std 15.36 15.64 1.91 12.43 20.27 14.03 14.00 1.65 10.72 18.92

Low

RI 17.08 17.11 1.70 14.25 21.35 16.83 16.32 1.80 13.96 20.04
RIS 16.41 16.39 1.56 14.22 20.63 16.23 16.00 1.75 13.12 20.16
GLMM 9.46 9.28 0.81 7.44 11.50 10.03 10.04 0.86 8.12 11.40
GLMERT 13.35 13.13 1.18 11.56 16.37 14.30 14.20 1.60 11.04 17.96
GMERT 17.05 16.96 0.96 14.97 19.62 14.45 14.48 1.23 10.80 17.08
BiMM 25.46 25.29 2.75 18.59 29.47 48.29 48.50 1.18 44.96 50.56

6

Std 17.50 17.64 1.99 12.66 21.25 15.73 15.76 1.60 12.40 18.56

High

RI 16.77 16.82 1.14 14.13 18.56 16.39 16.52 0.96 14.28 18.16
RIS 16.92 16.78 1.63 12.96 21.42 16.47 16.36 1.27 13.92 18.48
GLMM 10.46 10.38 0.62 9.26 12.18 11.05 10.88 0.71 10.04 12.52
GLMERT 14.52 14.62 1.06 12.05 16.77 15.36 15.44 1.45 12.48 18.28
GMERT 18.77 18.64 1.13 16.46 21.04 15.93 15.96 1.51 12.84 18.56
BiMM 26.89 26.62 2.90 21.34 31.80 48.45 48.52 1.38 44.60 51.60
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Table A4. Cont.

DGP
Random

Effect
Fixed
Effect

Fitted
Model

PMAD (%) PMCR (%)

Mean Median SD Min Max Mean Median SD Min Max

7

INTERCEPT
& SLOPE

Large

Std 15.87 15.25 2.38 12.04 22.45 12.72 12.52 1.70 9.80 17.68

Low

RI 17.58 17.65 1.51 14.46 19.90 15.40 15.40 1.30 12.68 18.12
RIS 17.36 17.55 1.39 14.48 19.54 15.48 15.48 1.31 12.68 18.56
GLMM 9.97 9.86 0.84 8.49 11.52 9.21 8.92 0.84 7.76 10.92
GLMERT 13.48 13.29 1.26 11.02 16.17 13.18 13.16 1.63 9.80 16.56
GMERT 18.27 18.33 0.97 16.55 20.16 13.03 13.00 1.51 10.28 15.32
BiMM 25.98 25.76 2.70 20.66 30.75 47.92 48.04 1.09 44.00 49.16

8

Std 16.98 16.77 2.03 13.43 20.19 13.76 14.00 1.49 10.92 17.72

High

RI 18.39 17.82 1.84 14.84 21.40 15.85 16.08 1.66 11.60 18.92
RIS 17.84 17.70 1.81 14.51 20.98 15.69 15.80 1.53 12.08 18.84
GLMM 10.48 10.47 0.92 8.55 12.19 9.73 9.60 0.84 8.36 11.52
GLMERT 14.27 14.16 1.04 12.40 16.59 13.51 13.32 1.41 11.20 17.20
GMERT 19.22 19.19 1.35 16.74 22.30 13.99 13.92 1.74 11.24 17.80
BiMM 27.10 26.19 3.36 21.90 34.64 47.65 47.64 1.27 44.64 50.44

9

Small

Std 15.24 14.99 1.67 12.15 19.15 13.76 13.40 1.09 11.96 16.04

Low

RI 16.54 16.36 1.63 13.90 21.18 16.01 15.92 1.10 13.52 18.72
RIS 16.57 16.44 1.51 13.88 20.16 16.13 16.24 1.11 13.52 18.80
GLMM 9.47 9.57 0.54 8.13 10.37 10.16 10.16 0.69 8.84 11.72
GLMERT 13.33 13.00 1.08 11.45 15.47 14.35 14.28 1.36 10.76 16.76
GMERT 16.84 16.81 1.07 15.41 19.88 14.22 14.40 1.18 12.48 17.24
BiMM 25.95 25.96 3.40 20.12 32.32 48.01 48.10 0.94 45.16 49.64

10

Std 17.04 17.00 1.96 13.83 23.24 15.44 15.44 1.46 12.92 19.28

High

RI 16.18 16.41 1.56 13.81 19.33 15.32 16.96 1.31 13.84 17.68
RIS 16.12 16.28 1.08 14.35 17.91 15.18 15.32 1.36 12.88 18.44
GLMM 10.44 10.54 0.61 9.19 11.31 11.06 11.08 0.72 9.36 12.36
GLMERT 14.59 14.69 1.27 12.38 18.56 15.32 15.16 1.50 13.12 19.76
GMERT 18.61 18.40 1.18 15.87 21.72 15.58 15.24 1.70 11.96 20.16
BiMM 26.69 26.31 3.01 21.28 34.81 48.66 48.58 1.19 46.00 51.40

Appendix B.3. Simulation Based on Data with a Poisson Response Variable and
Unbalanced Clusters

In all the simulations presented in previous sections, we always considered the case
of a binary response variable and balanced clusters. Here, to extend the simulation to a
broader scenario, we consider DGPs for data with a different response variable in the expo-
nential family, i.e., a Poisson response variable, and unbalanced clusters. We investigated
10 different scenarios involving small/large linear fixed-effects and 10 different scenarios
involving small/large tree-shaped fixed-effects, both cases involving models with/without
random effects. Random and fixed components for the 10 DGPs with tree-shaped fixed
effects are shown in Table A5. Random components for the DGPs with linear fixed effects
were those in Table A5, and linear fixed effects were f (xij) = 0.6x1ij + 0.3x2ij + 0.2x3ij
for the large fixed-effects scenario and f (xij) = 0.3x1ij + 0.15x2ij + 0.1x3ij for the small
fixed-effects scenario. The variables X1, . . . , X8 were generated as uniformly distributed
on the interval [0, 5]. Regarding the cluster configuration, we simulated a new scenario
in which the 50 clusters were unbalanced, while considering 10 different cluster sizes. In
particular, the number of observations within clusters took values in {62, 64, 66, . . . , 80},
considering five clusters for each pair between 62 and 80. Within each cluster, about 30%
of observations were used as the training set and 70% as the test set. For the Poisson
response variable simulations, we compared GMET with the standard tree (Std), GLMM
and GLMERT. We omitted BiMM because it can handle only a binary response variable
and GMERT because the code did not work for a Poisson family distribution. Results in
terms of PMAD are reported in Tables A6 and A7 for the tree-shaped and linear fixed
effects, respectively.
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By looking at Table A6, we can observe that GLMERT still had the best performances.
Nonetheless, GMET’s performances were very close to those of GLMM in DGPs 1–6. GMET
performed better than GLMM in DGPs 7–10. Lastly, by according to Table A7, GMET had
good performance compared to other tree-based methods, when data had a linear structure.
Indeed, except for DGPs 1 and 7, GMET was always second to GLMM, outperforming
GLMERT and Std.

Table A5. Data generating processes (DGP) for the simulation study with a Poisson response variable.

DGP RANDOM COMPONENT FIXED COMPONENT

Structure Effect ψ11 ψ22 Effect ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

1 No random
effect

– – – Large 4 6 8 6 4 10
2 – Small 2 4 6 4 2 8

3

Random
Intercept

Low 2.00 – Large 4 6 8 6 4 104 High 5.00 –

5 Low 0.25 – Small 2 4 6 4 2 86 High 2.00 –

7 Random
Intercept

and
Slope

Low 2.00 0.05 Large 4 6 8 6 4 108 High 5.00 0.25

9 Low 0.25 0.01 Small 2 4 6 4 2 810 High 2.00 0.05

Table A6. Results of the 100 simulation runs in terms of predictive probability mean absolute deviation (PMAD) of the five
models for the 10 DGPs with a Poisson response variable and tree-shaped fixed effects.

DGP
Random

Effect
Fixed
Effect

Fitted
Model

PMAD (%)

Mean Median SD Min Max

1

NO
RANDOM

EFFECT

Large

Std 2.89 2.85 1.75 0.07 6.10
RI 10.58 10.49 2.34 5.33 16.91 4
RIS 11.15 11.18 2.34 5.36 16.91
GLMM 8.46 8.44 2.28 4.44 16.59
GLMERT 3.99 3.22 2.66 0.30 11.04

2 Small

Std 4.64 2.82 3.95 1.31 17.62
RI 16.57 16.33 3.76 8.59 28.19
RIS 16.76 16.25 3.92 8.71 28.65
GLMM 12.89 12.16 3.19 7.79 22.97
GLMERT 5.96 4.75 4.55 1.31 17.63

3

INTERCEPT

Large

Std 557.78 551.49 228.98 229.48 1351.42

Low

RI 32.26 32.79 5.70 20.91 44.37
RIS 32.86 33.33 5.77 21.13 45.65
GLMM 30.95 30.69 6.37 20.57 47.55
GLMERT 27.12 26.38 5.82 18.10 42.41

4

Std 2920.44 2265.68 2382.02 412.82 12318.30

High

RI 52.60 52.36 13.56 21.34 86.19
RIS 54.28 55.26 13.95 21.65 91.11
GLMM 49.08 47.20 13.07 21.94 84.06
GLMERT 38.95 36.60 12.34 20.89 71.20

5

Small

Std 176.50 175.42 29.01 131.43 271.54

Low

RI 32.16 32.50 3.37 23.73 38.54
RIS 32.30 32.48 3.30 24.15 38.47
GLMM 31.27 31.86 3.56 22.82 36.21
GLMERT 28.59 29.27 3.77 19.81 34.86

6

Std 1074.88 982.37 394.96 519.43 2068.50

High

RI 42.26 42.55 5.45 31.33 57.30
RIS 45.62 45.47 6.19 33.86 59.50
GLMM 41.74 41.60 5.72 29.47 54.00
GLMERT 36.77 37.38 5.70 26.49 52.03
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Table A6. Cont.

DGP
Random

Effect
Fixed
Effect

Fitted
Model

PMAD (%)

Mean Median SD Min Max

7

INTERCEPT
& SLOPE

Large

Std 768.61 661.59 395.50 256.47 1842.23

Low

RI 148.34 132.52 59.64 63.67 330.14
RIS 42.36 41.44 8.80 26.37 68.05
GLMM 41.80 43.44 6.90 28.98 56.31
GLMERT 38.71 39.91 7.87 25.13 58.30

8

Std 8197.50 5322.26 9631.35 1428.45 47,610.80

High

RI 2010.04 1170.11 2150.09 250.94 10,877.54
RIS 85.43 83.32 27.42 39.57 158.14
GLMM 89.12 77.31 41.90 38.69 265.94
GLMERT 71.17 65.29 22.84 43.63 138.36

9

Small

Std 206.85 200.50 32.50 151.81 279.47

Low

RI 61.09 60.30 8.71 44.70 81.25
RIS 41.40 41.24 4.17 34.27 51.55
GLMM 41.23 40.29 3.63 36.25 50.12
GLMERT 38.79 38.25 3.76 33.00 45.77

10

Std 1570.61 1331.61 1068.54 503.47 5989.87

High

RI 303.01 247.81 166.30 147.81 893.52
RIS 61.23 61.58 14.25 40.12 103.83
GLMM 62.74 62.20 14.53 40.53 113.51
GLMERT 56.69 55.13 12.32 35.43 93.44

Table A7. Results of the 100 simulation runs in terms of predictive probability mean absolute deviation (PMAD) of the five
models for the 10 DGPs with a Poisson response variable and linear fixed effects.

DGP
Random

Effect
Fixed
Effect

Fitted
Model

PMAD (%)

Mean Median SD Min Max

1

NO
RANDOM

EFFECT

Large

Std 167.20 165.86 6.16 158.25 180.22
RI 161.46 161.06 5.15 147.96 171.24
RIS 154.84 157.35 9.30 137.29 167.30
GLMM 19.37 19.39 4.00 11.63 29.76
GLMERT 137.01 137.46 5.85 124.88 147.33

2 Small

Std 35.52 34.66 3.52 29.49 46.30
RI 26.52 26.18 1.38 24.35 29.55
RIS 26.84 26.78 1.61 24.37 30.52
GLMM 11.31 11.23 2.07 6.83 15.96
GLMERT 34.38 34.48 2.86 29.50 39.94

3

INTERCEPT

Large

Std 4721.44 4580.55 1647.63 2531.04 10,154.36

Low

RI 955.46 884.97 294.72 559.66 1895.78
RIS 812.60 751.71 236.17 489.89 1600.11
GLMM 86.95 84.49 13.71 64.38 119.16
GLMERT 748.79 725.66 237.72 395.91 1536.27

4

Std 29,879.11 23,361.45 28,903.16 8831.63 163,613.27

High

RI 4765.29 3490.10 4220.57 1488.83 23,464.90
RIS 4020.26 3191.48 3262.35 1404.12 17,930.40
GLMM 161.18 152.26 68.80 93.19 497.72
GLMERT 4463.56 3063.96 4394.33 1184.40 22,811.63
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Table A7. Cont.

DGP
Random

Effect
Fixed
Effect

Fitted
Model

PMAD (%)

Mean Median SD Min Max

5

Small

Std 196.94 187.97 28.00 146.76 249.27

Low

RI 58.32 57.60 4.36 51.28 68.91
RIS 59.01 58.07 4.46 51.45 68.53
GLMM 32.59 32.56 3.14 27.64 39.31
GLMERT 63.72 63.18 4.26 57.68 70.82

6

Std 1076.42 898.49 617.26 518.63 3709.94

High

RI 135.98 117.49 99.36 76.91 636.51
RIS 116.19 113.54 32.04 74.79 195.33
GLMM 41.82 39.14 8.56 28.96 67.62
GLMERT 122.63 104.09 56.03 74.17 376.44

7

INTERCEPT
& SLOPE

Large

Std 7208.83 6637.47 3058.53 2687.22 15,020.33

Low

RI 1588.80 1449.69 583.86 710.16 2803.83
RIS 1181.85 1085.58 432.46 524.84 2208.55
GLMM 133.09 130.27 22.26 96.65 187.50
GLMERT 496.32 442.54 193.57 263.06 1049.15

8

Std 114,321.97 66,083.74 177,762.92 8903.18 909,771.14

High

RI 28,423.89 15,363.83 43,872.04 2250.90 207,622.27
RIS 11,753.23 5637.47 20,408.21 1366.25 107,551.55
GLMM 305.21 255.73 145.78 127.61 811.44
GLMERT 11,844.52 4530.65 22,981.80 561.41 10,7891.01

9

Small

Std 236.25 230.69 42.66 161.23 361.97

Low

RI 70.23 70.95 8.95 55.76 86.57
RIS 63.67 63.89 6.76 51.49 77.41
GLMM 38.91 39.50 4.25 29.06 46.83
GLMERT 69.70 69.83 6.32 57.10 82.35

10

Std 2069.59 1778.77 1740.42 437.63 9234.87

High

RI 312.70 257.02 218.08 96.06 1201.62
RIS 112.36 122.74 99.71 71.13 427.66
GLMM 63.24 61.68 12.61 45.85 92.99
GLMERT 125.77 108.76 77.33 63.03 464.06

Notes
1 Universitat Autonoma de Barcelona (UAB)—Spain; Instituto Politecnico de Braganca (IPB)—Portugal; Opole

University of Technology—Poland; Politecnico di Milano—Italy; Universidad de Leon—Spain; University of Galati
Dunarea de Jos—Romania.

2 In particular, the proposed method can deal with response variables that belong to the following families: binomial,
Gaussian, gamma, inverse-Gaussian, Poisson, quasi, quasi-binomial, quasi-Poisson (i.e., the distributions handled
by GLMM).

3 Fixed-effects covariates, random effect coefficents and binary response variables were generated using the runif(),
rnorm() and rbinom() functions implemented R software, respectively. Parameters of these functions are reported in
Figure 1 and Table 1.

4 The random intercept was the only random effect structure that BiMM algorithm handled.
5 We chose 20 as the minimum number of observations to attempt a split because it is the default number within the

rpart R package; 10 as maximum depth was chosen in order not to grow “overly large” trees, but interpretable ones.
The final depth of each tree was chosen by cross-validation (the complexity parameter of the tree was automatically
chosen by cross-validation within the algorithm), and it was always smaller than 10.

6 This might have also been due to the fact that BiMM was disadvantaged, since it does not handle a random slope but
only a random intercept.
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