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Abstract: Recent tragic marine incidents indicate that more efficient safety procedures and emergency
management systems are needed. During the 2014–2019 period, 320 accidents cost 496 lives, and
5424 accidents caused 6210 injuries. Ideally, we need historical data from real accident cases of ships to
develop data-driven solutions. According to the literature, the most critical factor to the post-incident
management phase is human error. However, no structured datasets record the crew’s actions during
an incident and the human factors that contributed to its occurrence. To overcome the limitations
mentioned above, we decided to utilise the unstructured information from accident reports conducted
by governmental organisations to create a new, well-structured dataset of maritime accidents and
provide intuitions for its usage. Our dataset contains all the information that the majority of the
marine datasets include, such as the place, the date, and the conditions during the post-incident
phase, e.g., weather data. Additionally, the proposed dataset contains attributes related to each
incident’s environmental/financial impact, as well as a concise description of the post-incident
events, highlighting the crew’s actions and the human factors that contributed to the incident. We
utilise this dataset to predict the incident’s impact and provide data-driven directions regarding the
improvement of the post-incident safety procedures for specific types of ships.

Keywords: marine accidents; dataset; accident reports; human error; incident’s impact; contingency
plans; machine learning

1. Introduction

According to the European Maritime Safety Agency, thousands of people were injured
and hundreds died in marine accidents during the last decades, indicating the importance of
safety onboard [1]. Crew members and passengers have been wounded in two ways, either
immediately by the accident’s impact or the post-incident crisis. Despite the established
plans/protocols [2], many omissions have occurred when applied by the crew members [3]
due to the post-incident turmoil. Specifically, post-incident management is a stressful
process, especially for the crew, leading to bad decision-making [4].

Safety for people onboard and accident management constitute timeless issues, re-
sulting in the establishment of several organisations, such as the International Maritime
Organisation (IMO) (https://www.imo.org/, accessed on 20 November 2021) that intro-
duced the Safety of Life at Sea Convention (SOLAS). In recent decades, technological
devices, e.g., sensors, are used for an accurate ship evacuation analysis to provide the crew
with a more precise assessment of the ship’s situation [5]. However, recent accident cases,
such as the Costa Concordia, caused the loss of many human lives, indicating the need for
developing new, more effective safety procedures and emergency management systems [6].

There are many cases where the crew members underestimated or did not properly
assess the accident conditions during the implementation of emergency procedures in the
post-incident phase. A representative case is a fire that burst out aboard on 17 August
2016 at the Caribbean Fantasy passenger vessel. During the evacuation, the ineffective
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crew’s actions caused the injuries of 49 passengers. Specifically, the crew members did not
consider the wind speed, wind direction, or height of the waves, resulting in a steep slope
of the Marine Evacuation System and the lifeboats’ hitting to the side of the Caribbean
Fantasy [7]. However, these data are in text format (i.e., reports), and their further usage
requires the prior process of extracting this information. Creating such structured datasets
for marine incidents is challenging, and there are many restrictions to the use of the already
existing ones [2].

Our work is developed in the context of the Palaemon (EUROPEAN UNION’s Horizon
2020) project, whose vision is to build a sophisticated mass centralised evacuation system
(https://palaemonproject.eu/about-palaemon/, accessed on 20 November 2021). The
main contributions of this work are the following. First, we provide a high-quality
dataset that combines attributes such as the ship’s technical characteristics, the weather
conditions, a description of the accident including the crew’s actions applied in the post-
incident phase, the human factors that contributed to the incident, and the attributes
related to the environmental/financial impact of each incident. To the of our knowledge,
this is the first time a dataset includes characteristics related to the accident’s conditions
(e.g., weather, cause, etc.), the post-incident management process (e.g., successful/failed
evacuation of the ship, the crew actions, etc.), the human factors that contributed to
each incident’s occurrence, and the corresponding environmental/financial impact. We
also describe the framework followed by domain experts to convert all the unstructured
information in accident reports into a structured format. This way, we provide domain
experts/professionals with guidelines for enhancing the proposed dataset with new cases
from additional reports. The dataset also provides the opportunity to improve the safety
procedures during marine accidents. In particular, we identify specific types of ships
and accidents with weaknesses in post-incident management procedures that need to be
updated. Consequently, we pave the way for researchers and domain experts to introduce
data-driven emergency management systems, (e.g., discovering effective/ineffective action
patterns based on weather conditions, causal inference regarding accident conditions,
human errors, etc.) [8]. Finally, we present an experimental study for the prediction of the
incidents’ environmental/financial impact using machine learning algorithms achieving
remarkable performance.

The paper’s structure is as follows. Section 2 presents existing datasets (Section 2.1)
and their role in developing data-driven solutions (Section 2.3), highlighting the differences
between the previous datasets and the proposed one (Section 2.2). Section 3.1 describes the
dataset’s construction process step by step, and Section 3.2 presents a statistical analysis of
it. Section 4 presents the results for the prediction of the incidents’ environmental/financial
impact (Section 4.1) and the findings of the data analysis for the weaknesses of the post-
incident management procedures (Section 4.2). Finally, Section 5 discusses conclusions and
future data-driven directions to strengthen the safety onboard.

2. Related Work
2.1. Previous Datasets

Many governmental organisations, such as the National Transportation Safety Board
(NTSB) (https://www.ntsb.gov/Pages/default.aspx, accessed on 20 November 2021),
Japan Transportation Safety Board (JTSB) (https://www.mlit.go.jp/jtsb/marrep.html, ac-
cessed on 20 November 2021), and Marine Accident Investigation Branch (MAIB) (https://
www.gov.uk/government/organisations/marine-accident-investigation-branch, accessed
on 20 November 2021) record detailed reports regarding marine accidents. These organi-
sations provide reports to their databases describing each accident; these reports are an
important source to retrieve complete and reliable accident data [9]. However, such infor-
mation is unstructured. There are also limited open-source structured datasets for marine
accidents; in any case, the contact with the respective authorities is a prerequisite for the
dataset’s availability providing details regarding the usage purposes. In [10], the authors
mentioned that they manage to receive structured datasets after several months of contact-
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ing the responsible authorities. In the scientific literature, these datasets are used mostly
for statistical analysis [11].

One of the most complete and detailed databases is the SOS, one of the SMD’s (Swedish
Maritime Department) databases. This database operates on the Microsoft SQL Server
and contains approximately 6000 marine accident reports and provides the correspond-
ing information for each accident in a structured format [12]. The description of each
accident includes the accident’s date, location, the total number of the crew members
and passengers onboard, the event type (e.g., fire), the weather conditions at the accident
time, information about the ship’s cargo (e.g., chemicals), the number of deaths or injuries,
the extent of the environmental damage, other technical ship’s characteristics (e.g., length,
construction material). Furthermore, the IMO (International Marine Organisation) provides
an open-source database with well-structured information about each accident recording
variables such as the accident time and coordinates, the initial event, the causality type,
the ship type, the weather conditions, a summary of each accident events, etc. [13]. Our
work is similar to the one of [14], which manually extracts information from 500 marine
accident reports using multiple sources to identify the accident consequences and related
contributing factors.

2.2. Comparison of the Existing Datasets with the Proposed One

To the best of our knowledge, this is the first time that a dataset includes the human
factors that contributed to each incident’s occurrence as well a short description of the
accident that focuses on the crew’s actions in addition to the weather conditions, the ship’s
technical characteristics, the incident’s location, etc. The literature review illustrates that
human factors are the primary reasons for maritime accidents [15]. The proposed dataset
is an excellent opportunity for researchers to focus on human-related activities in ships’
emergency management operations. This way, it could contribute to establishing new,
more effective procedures targeting the increase of the safety level [16]. Even though
IMOs, SOS, and other databases are valuable sources of information, they do not record
the crew’s actions during the incident or the human factors that contribute to the incident’s
occurrence, preventing researchers from analysing the contribution of the human factor
(which is the most important ones [17]) to the accident occurrence and management.
Furthermore, the proposed dataset is open without any limitations in usage. Our ambition
is to create an open-source database to which anyone following the instructions (described
in Section 3.1) could add new accident cases in a structured format. This process may
encourage researchers to establish new emergency management systems by applying
several techniques (e.g., information retrieval and machine learning) to overcome safety
issues (e.g., real-time decision making). Thus, the proposed dataset bridges the gap between
safety onboard and the maritime transportation industry providing operational data for
safety analysis [18].

2.3. The Role of Data in Onboard Safety Enhancement

Recent evacuation systems use real-time data to facilitate the evacuation process.
For instance, Reference [19] proposes an approach that uses data from smart bracelets and
sensors (e.g., collected via smart cameras) to identify the passengers’ position at the ship.
However, domain experts have highlighted the usefulness of historical data by introducing
various emergency management systems for ships that combine real-time data and data
from past accident cases. For instance, the Smart Escape Support System combines real-time
sensor data with historical data of the ship’s escape routes to generate a faster and safer
route for each passenger to reach the master station [5]. Furthermore, the Decision Support
System (DSS) of [20], for navigation under rough weather, compares motion-related real-
time data with data (e.g., rolling, pitch) from a database to support the captain to identify
possible consequences of each navigation action, e.g., the estimation of the damage caused
to the hull due to high waves considering the ship’s route changes. However, the lack
of operational or experimental data is still an open issue. In [19], the authors mention
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that although we could estimate the time to evacuate up until the master station, it is
impossible to do the same for the lifeboat boarding stage without adequate operational or
historical data.

3. Data Collection
3.1. Dataset Description

The National Transportation Safety Board (NTSB), the Japan Transportation Safety
Board (JTSB), and the Marine Accident Investigation Branch (MAIB) databases were utilised
to retrieve the accidents’ reports. The reports’ structure is more or less the same. They
begin with a summary, which briefly explains the event and the investigators’ findings.
The reports continue with a general description of the vessel and the accident, including
the causes. The conclusion presents the event’s chain, the accident’s underlying factors,
and some recommendations to improve maritime safety (see Figures A1 and A2 and [21]).

Five experts from the naval industry and safety science field collaborated to the Naval
dataset creation. Specifically, each report was inspected by at least two experts (i.e., findings
cross-check). The experts created the dataset in two stages. The process followed during
the first stage encoded the basic characteristics of the 348 reports, i.e., the unique id of each
report (Unique Id), the accident type (Accident Type), the vessel’s name (Vessel Name),
the date of the accident (Date), the vessel’s length (Vessel Length), the vessel’s type (Vessel
Type), and the total number of persons onboard (Persons Onboard), ignoring further details
about the weather conditions, crew’s actions, etc. Table 1 shows the final set of attributes
and their data types in a structured way. The first version of the dataset is named Naval
dataset.

Table 1. The first version of the structured dataset. The first row shows the attributes names and the second row is a
description of the corresponding data type.

Unique Id Vessel Name Vessel Type Vessel Length Accident Type Persons Onboard Date

A Serial Number String String Numeric in meters String Integer MM/DD/YYYY

Our motivation to create a dataset that includes characteristics related to both the
accident’s conditions and the post-incident management process guided us to the second stage.
At this stage, the experts created a refined (final) version of the initial dataset, the Naval_v2
dataset, based on the information extracted in the previous step (creation of Naval dataset).
This version of the dataset focuses on extracting accident characteristics related to safety,
e.g., crew’s actions during an evacuation, the human factors contributing to the accident’s
occurrence, and other details, e.g., the weather conditions. Specifically, the experts kept
only the Naval dataset’s accident cases whose value of the attribute Persons Onboard is
greater than zero, i.e., 249 out of 348 reports were again inspected for a more detailed
recording of their characteristics. This filtering criterion allows us to identify the effective-
ness of the crew’s actions based on the number of human casualties at the post-incident
management phase.

In this second stage, we create a second version of the dataset (more refined compared
to the first one) that includes all the available attributes of the previous version, as well
as the weather conditions, a short description of the accident including the crew’s actions,
the number of crew members and passengers onboard, the number of deaths and injuries,
the place that the accident happened, the accident’s economic/environmental impact, and
the human factors that contributed to each incident’s occurrence.

Table 2 shows the separation of the information into fourteen primary categories:
Unique Id, Date, Ship Attributes, Weather Attributes, Accident Type, Impact Attributes,
Accident Description, Effectiveness, Place, Secondary effects of the initial incident, General
human and organisational factors, Human and organisational factors based on incident
type, Environmental Pollution, and Economical Impact. Specifically, the Unique Id attribute
is the identifier of each accident. Furthermore, Ship Attributes consist of six sub-categories:
Length (indicating the ship’s length in meters), the Vessel Type (e.g., cargo, fishing, cruise),
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the No. of Crew Members (that is, the number of crew members onboard), the No, of
Passengers (that is, the number of passengers onboard), the No, of Persons Onboard (that
is, the total number of persons onboard), and the Vessel Name.

Weather Attributes has seven sub-categories. The Rain attribute takes the boolean
value 1 if it rains; otherwise it is equal to 0. The Wind Speed attribute is a numeric value that
indicates the wind speed gusts in m/s at the accident time. Moreover, the Visibility attribute
consists of single numbers that indicate the maximum value in meters that the crew could
see. Additionally, in a few cases, there is a string description of the visibility situation.
The Water Temperature and the Air Temperature attributes consist of single numbers that
indicate the temperature in Kelvin at the accident time. Furthermore, the Wind Direction
attribute is a string value that indicates the wind’s direction. The Sea State attribute
indicates an interval with minimum and maximum values regarding the height of the
waves in meters and also, in a few cases, a string description of the sea’s situation.

The Accident Type category describes the event type (e.g., fire, grounding). The Impact
Attribute, the Accident Description, the General human and organisational factors, and the
Human and organisational factors based on incident type categories are directly connected
with the safety onboard. The Impact Attribute shows the number of deaths and injuries
for each accident. The Accident Description attribute indicates a short description of the
accident; the crew’s actions are separated in brackets (e.g., . . . [The securities check if any
water tide off.] The ship remains in red condition until it gets to the dock. [The engineers
check if everything’s okay.]). The General human and organisational factors are factors
that contribute to the accident’s occurrence. Each of the twenty-four factors has a unique
encoding that consists of three parts. The first and the second parts are the same for all the
factors. These two parts indicate that the categorisation did not take into consideration the
accident type and begin with HFACS-MA (i.e., Human Factors Analysis and Classification
System for Maritime Accidents) according to [15]. The last part of the encoding consists
of a unique number for each factor from one to twenty-four (see Table A1). Furthermore,
the Human and organisational factors refer to groundings, collisions, machinery space fires,
and explosions accident types. Furthermore, each of these factors has a unique encoding
that consists of three parts. The first and the second part are the same for the factors
referring to a specific incident type, i.e., HFACS-Ground for the groundings, HFACS-Coll
for the collisions, and HFACS-MSS for the machinery space fires and explosions according
to [22–24]. The last part of the encoding consists of a unique number for each of these three
accident types, a number from one to twenty-four for the groundings, from one to twenty
for the collisions, and from one to twenty-six for the machinery space fires and explosions
(see Table A2).

The Place category consists of three attributes: the first is a text description of the place
where the accident occurred; the second is the Location Type and takes five categorical
values (i.e., 0: The accident happened at the open sea, 1: The accident happened at the
port, 2: The accident happened at a gulf or a canal, 3: The accident happened at the river
and 4: The accident happened at the lake); and the last attribute is the Place Geo-location
that indicates the coordinates of the place where the accident happened. The Secondary
effects of the initial incident are the effects that the incident had on the ship, e.g., if the
ship sunk after a grounding, the secondary effect is the ship’s sinking. The Environmental
Pollution takes the value 1 if environmental damage occurred after the accident, else it
is 0. The Economic Impact consists of two attributes. The first is the Damage to a vessel,
which indicates the damage to the vessel in dollars. The second is the Damage to facilities,
showing the damage caused to infrastructures in dollars (e.g., damage to the port). The Date
attribute corresponds to the date that the accident happened. The Effective attribute takes
the boolean value 1 if no one was injured, else it is 0. Based on the previous definition,
the Naval_v2 dataset consists of 144 Effective and 105 Ineffective cases.
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Table 2. The attribute categories, sub-categories, type, and measurement unit of Naval_v2 dataset.

Basic Attributes Basic Attributes Categories Attributes Type Measurement Unit

Unique Id A Serial Number Numeric -

Date - MM/DD/YYYY -

Ship
Attributes

Length Numeric Meters

Vessel Type String -

No of Crew Members Numeric -

No of Passengers Numeric -

No of Person Onboard Numeric -

Vessel Name String -

Weather
Attributes

Rain Boolean 1 or 0

Wind
Speed Numeric m/s

Wind
Direction String -

Water
Temperature Numeric K

Air
Temperature Numeric K

Visibility Numeric Meters

Sea State Numeric Meters

Accident
Type - String -

Impact
Attributes

No of Deaths Numeric -

No of Injuries Numeric -

Accident
Description - String -

Effective - Boolean 1 or 0

Place

A brief description of the place String -

Location Type Categorical 0–4

Place Geo-location Longitude, Latitude -

Secondary effects
of the initial incident - String -

General Human and
organisational factors - String -

Human and organisational
factors based on incident type - String -

Environmental
Pollution - Boolean 1 or 0

Economic
Impact

Damage on vessel Numeric Dollars

Damage on facilities Numeric Dollars

To the best of our knowledge, this is the first time that a dataset (i.e., Naval_v2) enables
researchers to discover the relation between the accident’s conditions and the post-incident
management or between the accident and the economic/environmental consequences, etc.
This process may result in the establishment of new, more effective emergency management
systems. The two versions of the dataset, i.e., the preliminary Naval dataset and the final
Naval_v2 dataset are available here (https://zenodo.org/record/5592999, accessed on 20
November 2021).

https://zenodo.org/record/5592999
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3.2. Statistical Analysis of the Dataset

This section presents a statistical analysis of the Naval_v2 dataset. This analysis
uses charts, a timeline analysis, a map with the accidents’ places, and statistics about the
human factors contributing to the accident. Figure 1 shows the percentages of the ship
types in the dataset: 29.7% of the sample are Fishing Vessels, 16.2% Towing Vessels, 14.9%
Passenger Vessels, 9.2% General Cargoes, 7.6% Bulk Carriers, 6% Tankers, and 3.2% Cruise
Ships, and smaller percentages correspond to other ship types (13.2%). Figure 2a shows
the distribution per accident type in the dataset: 22.1% of cases are collisions, 20.5% are
machinery fires and explosions, 16.5% are groundings, and 8.4% heavy weather damages,
and the other cases belong to other accident types (32.5%). Figure 2b shows the distribution
of the location types that the accident occurred in the dataset: 37.3% of cases occurred at
open seas, 26.5% of the cases occurred at gulfs or canals, 16.5% at rivers, 16.1% at ports,
and 3.2% at lakes.

Figure 1. Distribution of ship types in the dataset.

Figure 3 shows the distribution of deaths and injuries with respect to wind speed.
In this case, we split the dataset into two categories. The first category includes the acci-
dents with light or moderate wind speed conditions, i.e., (0, 34] Knots, whereas the second
one includes the cases with strong wind speed conditions (https://www.canada.ca/en/
environment-climate-change/services/general-marine-weather-information/understanding-
forecasts/beaufort-wind-scale-table.html, accessed on 20 November 2021), i.e., (34, 130]
Knots. In the first category, the majority (85%) of the persons on board are injured, while
the deaths’ percentage is equal to 15%. On the contrary, the percentage of deaths in the
second category is much higher (79%) due to the worse wind conditions.

(a) (b)
Figure 2. (a) Distribution per accident type in the dataset. (b) Distribution of the location types where
the accidents occurred.

https://www.canada.ca/en/environment-climate-change/services/general-marine-weather-information/understanding-forecasts/beaufort-wind-scale-table.html
https://www.canada.ca/en/environment-climate-change/services/general-marine-weather-information/understanding-forecasts/beaufort-wind-scale-table.html
https://www.canada.ca/en/environment-climate-change/services/general-marine-weather-information/understanding-forecasts/beaufort-wind-scale-table.html
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Figure 3. Distribution of deaths and injuries regarding the wind speed conditions.

Figure 4 shows the distribution of deaths and injuries based on visibility condi-
tions during the accident. In this case, the dataset is split into four categories: good
(more than 5 nautical miles), moderate (between 2 and 5 nautical miles), poor (between
1 and 2 nautical miles), and very poor or foggy visibility conditions (less than 1 nautical
mile (https://www.metoffice.gov.uk/weather/guides/coast-and-sea/glossary, accessed
on 20 November 2021)). For the third and especially for the fourth category, deaths over-
come the injuries percentage, with 88% of persons onboard suffering deadly injuries with
very poor or foggy visibility conditions. In conclusion, Figures 3 and 4 confirm that the
visibility and wind speed conditions are strongly related to fatality [14], as accidents that
happened under adverse weather conditions had more human losses.

Figure 4. Distribution of deaths and injuries regarding the visibility conditions.

https://www.metoffice.gov.uk/weather/guides/coast-and-sea/glossary
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Figure 5 shows the number of accidents for the period 1983–2020. There is a clear
increasing trend to the number of accidents from the year 2010. The increasing trend may
be due to the improvement of the reporting procedures, resulting in an increased number
of reports [11]. Figure 6 indicates all the places where accidents happened. This figure
shows each accident place, including rivers, lakes, and sea areas.

Figure 5. Timeline for the total number of accidents for the period 1983–2020.

Figure 6. Map of the accident locations for the period 1983–2020.

Finally, we provide some statistics about the human factors that contribute to the
incident’s occurrence. Table 3 shows the percentages of the general human and organisa-
tional factors that contribute to incidents’ occurrence. The most frequent factor is asset
management (HFACS-MA-5) with 17.32%, followed by the decision errors (HFACS-MA-22)
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with 15.58%. In the other ranking positions, we see the planned inappropriate operation
factor (HFACS-MA-9) with 12.55%, the organisational process factor (HFACS-MA-7) with
8.23%, the resource management factor (HFACS-MA-17) with 6.49%, the skill-based errors
factor (HFACS-MA-20) with 6.06%, the physical environment factor (HFACS-MA-12) with
4.76%, and smaller percentages corresponding to the other factors (29.01%).

Table 4 shows the percentages of the factors that contribute to grounding incidents.
The most frequent factors are judgement/decision (HFACS-Ground-2) with 12.2% and
resource management (HFACS-Ground-20) with 12.2%, followed by the skill-based factor
(HFACS-Ground-1) with 9.76%, the inappropriate planned operations factor (HFACS-
Ground-17) with 9.76%, the physical/mental limitations factor (HFACS-Ground-12) with
7.31%, the perceptual (HFACS-Ground-13) factor with 7.31%, the physical environment
factor with 4.76%, and smaller percentages corresponding to the other factors (41.46%).
Table 5 shows the percentages of the factors that contribute to the machinery fire engine
and explosion incidents. The most frequent factor is equipment/facility (HFACS-MSS-5)
resources with 34.78% followed by the technological environment factor (HFACS-MSS-
17) with 23.91%, the skill-based errors factor (HFACS-MSS-22) with 10.87%, and smaller
percentages corresponding to the other factors (30.44%). Table 6 shows the percentages of
factors that contribute to the collision incidents. The most frequent factor is decision errors
(HFACS-Coll-2) with 23.21% followed by planned inappropriate operation (HFACS-Coll-
14) with 17.86%, ship resource mismanagement (HFACS-Coll-11) with 10.71%, perceptual
errors violations (HFACS-Coll-3) with 8.93%, organisational process (HFACS-Coll-19) with
8.93%, and smaller percentages corresponding to the other factors (30.36%).

Table 3. Percentages of general human and organisational factors that contribute to the incidents’ oc-
currence.

Factor Percentage (%)

HFACS-MA-5 17.32

HFACS-MA-22 15.58

HFACS-MA-9 12.55

HFACS-MA-7 8.23

HFACS-MA-17 6.49

HFACS-MA-20 6.06

HFACS-MA-12 4.76

Table 4. Percentages of the human factors that contribute to grounding incidents.

Factor Percentage (%)

HFACS-Ground-2 12.2

HFACS-Ground-20 12.2

HFACS-Ground-1 9.76

HFACS-Ground-17 9.76

HFACS-Ground-12 7.31

HFACS-Ground-13 7.31
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Table 5. Percentages of the human factors that contribute to machinery fire engine and explosion in-
cidents.

Factor Percentage (%)

HFACS-MSS-5 34.78

HFACS-MSS-17 23.91

HFACS-MSS-22 10.87

Table 6. Percentages of the human factors that contribute to collision incidents.

Factor Percentage (%)

HFACS-Coll-2 23.21

HFACS-Coll-14 17.86

HFACS-Coll-11 10.71

HFACS-Coll-3 8.93

HFACS-Coll-19 8.93

4. Experimental Study

This section provides deeper insights into the proposed dataset, highlighting its
usefulness in the naval domain. Specifically, Section 4.1 presents the experimental results
of two different classification tasks. First, we are interested in predicting whether an
incident that occurs under specific conditions (e.g., weather) results in environmental
pollution (e.g., oil spill) or not. In the second task, we try to estimate the size of the financial
damage to a vessel (i.e., low, moderate, and high-cost) due to the accident. Our study
in both tasks aims to show the utility of the Naval_v2 dataset in the prediction of an
incident’s environmental/financial impact based on informative attributes of the dataset
without applying extensive data pre-processing and model tuning. We experiment with the
following machine learning algorithms: Random Forest [25], Support Vector Machines [26],
K Nearest Neighbours, Logistic Regression [27], Bagging [28] with Decision Tree as base
estimator, and Decision Trees [29]. Tables 7 and 8 show the experimental results. We
use overall Accuracy as an evaluation measure with 10-fold cross-validation. We also
give the standard deviation in parentheses for each model. Finally, Section 4.2 presents
clustering results, according to the K-means algorithm [30], to highlight the usefulness of
the raw dataset’s attribute (which briefly describes the incident and the crew’s actions)
towards improving safety onboard. We use the scikit-learn (https://scikit-learn.org/
stable/, accessed on 20 November 2021) python library in our study.

Table 7. Mean and standard deviation of the overall accuracy of the classification algorithms using
10-fold cross-validation for the prediction of the environmental impact.

Algorithm Overall Accuracy (std.)

Random Forest 0.78 (0.08)
Support Vector Machines 0.64 (0.01)

K Nearest Neighbours 0.67 (0.08)
Logistic Regression 0.66 (0.08)

Bagging 0.76 (0.08)
Decision Trees 0.69 (0.10)

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
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Table 8. Mean and standard deviation of the overall accuracy of the classification algorithms using
10-fold cross-validation for the prediction of the financial impact.

Algorithm Overall Accuracy (std.)

Random Forest 0.71 (0.07)
Support Vector Machines 0.69 (0.02)

K Nearest Neighbours 0.71 (0.08)
Logistic Regression 0.69 (0.02)

Bagging 0.72 (0.08)
Decision Trees 0.63 (0.10)

4.1. Prediction of the Incidents’ Environmental/Financial Impact

First, we experimented with various classifiers to predict whether the accidents caused
environmental pollution. Intuitively, the Ship Type attribute is strongly related to the
possibility of environmental pollution (e.g., tankers that store liquids or gases are more
threatening than fishing vessels), as well as the Ship Length attribute, which gives a
sense of the ship’s size. Moreover, weather conditions, described by Visibility and Wind
Speed attributes, usually play an important role in both the accident’s occurrence and the
post-incident management to restrict its consequences. Finally, information related to the
location type (i.e., Location Type attribute) and the number of crew members (i.e., No of
Crew Members attribute) indicates the availability of human and technical resources to
restrain the accident’s impact (e.g., the timely intervention of the authorities and a sufficient
number of crew members enable the immediate intervention in different parts of the ship
where there are damages). We converted the Accident Type variable into a categorical
variable (i.e., 1: Collision, 2: Grounding, 3: Heavy weather, 4: Machinery space fires and
explosions, and 5: Other), as well as the Ship Type variable (i.e., 1: Fishing, 2: Towing, 3:
Passenger, 4: Other, 5: Cargo, 6: Bulk, 7: Tanker, and 8: Cruise). Missing values for the
categorical and numerical variables are replaced with the highest frequency value and the
mean value of each variable, respectively. Random Forest achieves the best performance,
i.e., 0.78, outperforming all the other classifiers due to its ability to deal with small sample
sizes (as in our case) [31] (see Table 7). Bagging follows in the final ranking, also achieving
high overall accuracy (i.e., 0.76).

Table 8 shows the results for the prediction of the size of the financial damage to the
vessel (i.e., low, moderate, and high-cost) due to the accident. To predict the financial
cost, we used the Economic impact damage on vessel dataset’s attribute to create three
categories, i.e., the first category contains all the damages that cost from $0 to $500,000,
the second from $500,000 to $5,000,000, and the last one $5,000,000 and higher. So, in this
case, we predict which of these three categories the financial cost will belong to. These
categories represent low-, moderate-, and high-cost damages. Intuitively, the number of
deaths (i.e., No. of Deaths attribute) is strongly related to the financial damage because it
implicitly reveals the accident’s severity. In this vein, the number of passengers (i.e., No. of
Passengers attribute) is a complementary but equally important element that the model
considers along with the number of deaths to infer the magnitude of human loss. Moreover,
the No. of Passengers is a quite informative attribute in many ways; e.g., it also gives a
sense for the ship’s type (for example, large ships such as cruise ships carry a large number
of passengers, and even minor damage to these ships can be costly). Furthermore, weather
conditions, specifically the wind (i.e., Wind Speed attribute), usually play an important
role in both the accident’s occurrence and the post-incident management to restrict the
consequences (e.g., for fire accidents). Finally, information related to the location type
(i.e., Location Type attribute) indicates the availability of human and technical resources
to restrain the accident’s impact (timely intervention). In this task, Bagging achieves the
best performance, i.e., 0.72, outperforming all the other classifiers due to its proven ability
to deal with small sample sizes [32]. K Nearest Neighbours Classifier and Random Forest
follow in the final ranking, also achieving high accuracy (i.e., 0.71).
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4.2. Identifying Specific Types of Ships and Accidents with Weaknesses in Post-Incident Procedures

First, we represent each accident’s text description, appearing at the Raw attribute
of the dataset, as a TF-IDF vector [33]. The TF-IDF is measures the importance of a word
by comparing the number of times the word appears in a document with the number of
documents where the word appears and is defined as:

wi,j = TFi,j × log(
N

DFi
) (1)

where wi,j is the TF-IDF score for term i in the document j, N is the number of documents
in the collection, TFi,j is the term frequency of the term i in document j, and DFi is the
document frequency, which is equal to the number of documents in the collection that
contain the term i [34]. Then, we use the clustering algorithm K-means to group the
TF-IDF vectors (First, we convert all uppercase characters into lowercase and remove
stopwords and punctuation. Then, we use the scikit-learn Python library for the TF-IDF
vector representation) into three clusters (https://github.com/ContextLab/hypertools,
accessed on 20 November 2021) (see Figure 7). The three clusters that have been created
contain the following number of instances: cluster 1 has 93 instances, cluster 2 has 96,
and cluster 3 has 60.

Specifically, cluster 1 includes 93 instances, and the mean length of the vessels in
this cluster is 136.31 m, which is the larger mean compared to the other two clusters
(see Figure 8). More than half of the vessels in this cluster are Cargoes, Bulk, Tankers,
and Cruises (i.e., 47 out of 93, see Figure 9), so this cluster represents the larger ves-
sels. Furthermore, 65 out of 93 (i.e., approximately 70%) in this cluster are Collisions or
Groundings (see Figure 10). Finally, 38 out of 93 cases cost human injuries or deaths (i.e.,
approximately 40%).

Cluster 2 includes 96 instances whose mean vessels’ length is 42.18 m, which is the
smaller mean compared to the other two clusters (see Figure 8). More than half of the
vessels in this cluster are Fishing (i.e., 51 out of 96, see Figure 9), representing the smaller
vessels. Furthermore, in this cluster, 47 out of 96 (i.e., approximately 50%) belong to the
Other type of accident ( see Figure 10). Finally, 39 out of 96 cases cause human injuries or
deaths (i.e., 37.5%).

Cluster 3 includes 60 instances whose mean vessel length is 94.09 m (see Figure 8).
Approximately half of the vessels in this cluster are Towing or Passenger (i.e., 27 out of
60—see Figure 9), representing the middle-sized vessels. Furthermore, in this cluster, 57 out
of 60 (i.e., 95%) belong to machinery space fire and explosion accidents (see Figure 10). Finally,
28 out of 60 cases caused human injuries or deaths (i.e., approximately 50%).

This data-driven study is consistent with the literature (e.g., [2]), highlighting the fact
that existing post-incident management plans include some common steps. Specifically,
collision and grounding accidents response contain common steps, e.g., the captain sent
crew members to assess the damage and identify any water inflow. On the other hand,
as the nature of the accident is different during machinery space fires and explosion
accidents, another action plan is followed. In this case, it is reasonable why the TF-IDF
vectors of the collision and grounding accidents are in the same cluster and the machinery
space fires and explosion accidents in another cluster (see Figure 10).

To sum up, there is a need for more effective and well-defined post-incident man-
agement plans for the collisions, groundings, and machinery space fires and explosions
accidents. As we identified above, a considerable number of grounding or collision acci-
dents, as well as machinery space fire and explosion accidents, caused human injuries or
deaths, i.e., 39 out of 96 and 28 out of 60 cases, respectively. The data analysis indicated that
the instructions and actions for such accident types were ineffective in protecting human
life. Hence, there is a need for updated contingency plans, especially for the collisions
and groundings accidents for large vessels and fire accidents for middle-sized vessels.
Experience from such historical data could effectively contribute to accidents response by
improving safety protocols.

https://github.com/ContextLab/hypertools
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Figure 7. A 3D projection of the dataset’s TF-IDF vector representations using PCA. Each point
represents an accident’s description. There are three clusters (according to K-means algorithm)
represented by different colours.

Figure 8. The length of the ships in each cluster.

Figure 9. The ship types in each cluster.
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Figure 10. The accident types in each cluster.

5. Conclusions and Future Directions

In this work, we provide a high-quality dataset, called Naval_v2, that combines char-
acteristics related to accident conditions, the post-incident management process, the human
factors contributing to each incident’s occurrence, and the corresponding environmen-
tal/financial impact. Our experimental study indicates a need for updated contingency
plans regarding collisions and groundings accidents for large vessels and fire accidents
for middle-sized vessels. Furthermore, the dataset enables us to predict with remarkable
accuracy (i.e., 0.78) whether an incident causes environmental pollution or not and the
economic impact of the accident to the vessel with satisfactory accuracy (i.e., 0.72) without
applying extensive data pre-processing and models’ tuning, indicating that the datasets’
attributes are very informative.

Furthermore, we plan to enrich the Naval_v2 dataset using more accident cases
from the Japan Transportation Safety Board (https://www.mlit.go.jp/jtsb/marrep.html,
accessed on 20 November 2021) and UK Government (https://www.gov.uk/maib-reports,
accessed on 20 November 2021) databases. Experience from such historical data could
effectively contribute to accident responses by improving safety protocols. Specifically,
data-driven Artificial Intelligence approaches could be built to support the captain in
better decision-making. We also aim to develop a real-time decision support system
using machine learning techniques (e.g., Classifier Chains [35]) and the experience of past
accidents to find the most appropriate set of actions based on the dedicated situation (e.g.,
weather conditions, ship technical characteristics, etc.) for an effective (i.e., without human
losses and injuries) post-incident management.

Author Contributions: Conceptualization, P.P. and A.L.; methodology, P.P. and A.L.; investigation
P.P., K.G. and N.A.; data curation, P.P. and A.L.; writing, P.P., K.G., N.A. and A.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This paper has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 814962 (PALAEMON).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used for this paper can be found at https://zenodo.org/
record/5592999, accessed on 22 October 2021.

Acknowledgments: I would like to thank all the partners that participated in Palaemon’s project for
their useful feedback.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mlit.go.jp/jtsb/marrep.html
https://www.gov.uk/maib-reports
https://zenodo.org/record/5592999
https://zenodo.org/record/5592999


Data 2021, 6, 129 16 of 19

Appendix A

Example of accident reports and the information that they provide.

Figure A1. Extracting features related to the unique id of each report, the accident type, the vessel’s
name, the date of the accident, the vessel’s length, the vessel’s type, and the persons onboard [36].

Figure A2. Extracting data related to the sea state, the wind speed, the existence of rain at the accident
time, the number of crew members, the number of deaths and injuries, the air temperature, the wind
direction, the water temperature, and the visibility [37].
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Appendix B

Table A1. The HFACS-MA factors for all the type of accidents.

All Incidents

Factors Dataset Encoding

Legislation gaps HFACS-MA-1
The deficiencies in the administration HFACS-MA-2

Flaws in design HFACS-MA-3
Others HFACS-MA-4

Asset management HFACS-MA-5
Organizational climate HFACS-MA-6
Organizational process HFACS-MA-7
Inadequate supervision HFACS-MA-8

Planned inappropriate operation HFACS-MA-9
Failure to correct known problems HFACS-MA-10

Violations in supervision HFACS-MA-11
Physical environment HFACS-MA-12

Technological environment HFACS-MA-13
Adverse mental states HFACS-MA-14

Adverse physical conditions HFACS-MA-15
Physical or mental limitations HFACS-MA-16

Resource management HFACS-MA-17
Readiness for the task HFACS-MA-18

Communication (ships and VTS) HFACS-MA-19
Skill-based errors HFACS-MA-20
Perception errors HFACS-MA-21
Decision errors HFACS-MA-22

Routine violations HFACS-MA-23
Exceptional violations HFACS-MA-24

Table A2. The HFACS-MSS factors for the machinery space fire and explosion accidents, the HFACS-Ground factors for the
grounding accidents, and the HFACS-Coll factors for the collision accidents.

Machinery Space Fires and Explosions Groundings Collisions

Factors Dataset Encoding Factors Dataset Encoding Factors Dataset Encoding

International standards HFACS-MSS-1 Skill-based HFACS-Ground-1 Skill-based errors HFACS-Coll-1
Flag State

implementation HFACS-MSS-2 Judgment Decision HFACS-Ground-2 Decision errors HFACS-Coll-2

Human resources HFACS-MSS-3 Perceptional error HFACS-Ground-3 Perceptual errors
violations HFACS-Coll-3

Technological resources HFACS-MSS-4 Routine HFACS-Ground-4 Routine violations HFACS-Coll-4
Equipment/facility

resources HFACS-MSS-5 Exceptional HFACS-Ground-5 Exceptional violations HFACS-Coll-5

Structure HFACS-MSS-6 Physical environment HFACS-Ground-6 Physical environment HFACS-Coll-6

Policies HFACS-MSS-7 Technological
environment HFACS-Ground-7 Technological

environment HFACS-Coll-7

Culture HFACS-MSS-8 Infrastructures HFACS-Ground-8 Adverse mental
state HFACS-Coll-8

Operations HFACS-MSS-9 Cognitive factors HFACS-Ground-9 Adverse physiological
state HFACS-Coll-9

Procedures HFACS-MSS-10 Psycho-behavioral factors HFACS-Ground-10 Physical/mental
limitations HFACS-Coll-10

Oversight HFACS-MSS-11 Adverse physiological
state HFACS-Ground-11 Ship Resource

Mismanagement HFACS-Coll-11

Shipborne and shore
supervision HFACS-MSS-12 Physical/Mental

limitations HFACS-Ground-12 Personal readiness HFACS-Coll-12

Shipborne operations HFACS-MSS-13 Perceptual factors HFACS-Ground-13 Inadequate leadership HFACS-Coll-13

Shipborne related
shortcomings HFACS-MSS-14

Coordination
Communication

Planning
HFACS-Ground-14 Planned inappropriate

operation HFACS-Coll-14

Shipborne violations HFACS-MSS-15 Personal readiness HFACS-Ground-15 Failed to correct
problem HFACS-Coll-15
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Table A2. Cont.

Machinery Space Fires and Explosions Groundings Collisions

Factors Dataset Encoding Factors Dataset Encoding Factors Dataset Encoding

Physical environment HFACS-MSS-16 Inadequate supervision HFACS-Ground-16

Leadership violations
(non compliance with
Safety Management

System SMS)

HFACS-Coll-16

Technological
environment HFACS-MSS-17 Planned inappropriate

operations HFACS-Ground-17 Resource management HFACS-Coll-17

Cognitive factors HFACS-MSS-18 Failed to correct
known problems HFACS-Ground-18 Organisational climate HFACS-Coll-18

Physiological state HFACS-MSS-19 Supervisory violations HFACS-Ground-19 Organisational process HFACS-Coll-19
Crew interaction HFACS-MSS-20 Resource management HFACS-Ground-20 Outside factors HFACS-Coll-20

Personal readiness HFACS-MSS-21 Organizational climate HFACS-Ground-21
Skill-based errors HFACS-MSS-22 Organizational process HFACS-Ground-22

Decision and judgment
errors HFACS-MSS-23 Regulation gaps HFACS-Ground-23

Perceptual errors HFACS-MSS-24 Other factors HFACS-Ground-24
Routine HFACS-MSS-25

Exceptional HFACS-MSS-26
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