
data

Article

A Principal Components Analysis-Based Method for the
Detection of Cannabis Plants Using Representation Data by
Remote Sensing

Carmine Gambardella, Rosaria Parente * , Alessandro Ciambrone and Marialaura Casbarra

����������
�������

Citation: Gambardella, C.; Parente,

R.; Ciambrone, A.; Casbarra, M. A

Principal Components Analysis-

Based Method for the Detection of

Cannabis Plants Using

Representation Data by Remote

Sensing. Data 2021, 6, 108. https:

//doi.org/10.3390/data6100108

Academic Editor: Juanle Wang

Received: 3 August 2021

Accepted: 8 October 2021

Published: 13 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Benecon University Consortium, 80138 Naples, Italy; gambardella.unescochair@benecon.it (C.G.);
alessandro.ciambrone@unipegaso.it (A.C.); marialaura.casbarra@gmail.com (M.C.)
* Correspondence: rosaria.parente@benecon.it; Tel.: +39-0818-122530

Abstract: Integrating the representation of the territory, through airborne remote sensing activities
with hyperspectral and visible sensors, and managing complex data through dimensionality reduc-
tion for the identification of cannabis plantations, in Albania, is the focus of the research proposed
by the multidisciplinary group of the Benecon University Consortium. In this study, principal
components analysis (PCA) was used to remove redundant spectral information from multiband
datasets. This makes it easier to identify the most prevalent spectral characteristics in most bands
and those that are specific to only a few bands. The survey and airborne monitoring by hyperspectral
sensors is carried out with an Itres CASI 1500 sensor owned by Benecon, characterized by a spectral
range of 380–1050 nm and 288 configurable channels. The spectral configuration adopted for the
research was developed specifically to maximize the spectral separability of cannabis. The ground
resolution of the georeferenced cartographic data varies according to the flight planning, inserted
in the aerial platform of an Italian Guardia di Finanza’s aircraft, in relation to the orography of the
sites under investigation. The geodatabase, wherein the processing of hyperspectral and visible
images converge, contains ancillary data such as digital aeronautical maps, digital terrain models,
color orthophoto, topographic data and in any case a significant amount of data so that they can be
processed synergistically. The goal is to create maps and predictive scenarios, through the application
of the spectral angle mapper algorithm, of the cannabis plantations scattered throughout the area.
The protocol consists of comparing the spectral data acquired with the CASI1500 airborne sensor
and the spectral signature of the cannabis leaves that have been acquired in the laboratory with ASD
Fieldspec PRO FR spectrometers. These scientific studies have demonstrated how it is possible to
achieve ex ante control of the evolution of the phenomenon itself for monitoring the cultivation of
cannabis plantations.

Keywords: remote sensing; machine learning; big data; principal component analysis; cannabis
plantations; drug trafficking control

1. Summary

International organized crime has now taken control of numerous illegal trafficking
schemes by exploiting the existing regulatory gaps in international law that can hardly
be overcome given the different political orientations of the countries involved. Some
activities that were previously linked to national dynamics are now recognized as global
security threats. Criminal organizations of various kinds benefit from the inability of
different countries to provide national security.

Governments are unable to institute efficient countermeasures due to the instability
deriving from historical-economic situations. They are unable to control the entire process
of fast modernization, both from a social and economic point of view and, above all,
from a technological point of view [1]. The same forces of globalization, those that have
guaranteed the immeasurable growth of trade and communications and facilitated all kinds
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of displacements, have created unprecedented opportunities for organized crime. In some
regions, the enormous profits generated by the illegal activities of criminal organizations
have exceeded the gross domestic product of the countries they operate in. The volume of
resources that these trades manage to mobilize turns out to be a potentially fatal threat to
state authorities and to economic development [2].

Albania has undergone a process of radical change since 1990. Following the disso-
lution of the communist regime, the desire of Albanian citizens to reintegrate themselves
into the great family of Europe after half a century of isolationism was immediately clear.
The Albanians have repeatedly shown that they recognize the purely European roots of
their national identity, and, in the wake of this new awareness, they have faced a process of
radical evolution trying to reproduce in their own country the European social, political
and economic structures. The hope was that this would lead to a substantial improvement
in the socio-economic situation. This process was not easy at all, and the problems that
emerged during of the communist regime created illegal opportunities that could hardly
be solved without the help of neighboring countries, including Italy, which has always
tried to build solid ties with the Albanian state [3].

In this international context and in the progressive integration of Albania into the
European community, international agreements financed by the European community for
technological evolution and digital transformation have been implemented for several
years [4]. Among these activities, particular attention was paid to fight illegal drug traffick-
ing, which often uses the Balkan countries as routes to reach the markets of the countries
of western Europe. These latter, indeed, prove to be important consumers of both soft
and hard drugs. Given the territorial conformation of the innermost part of the Albanian
territory, this state has not only served as an intermediate stage for the illegal trafficking of
narcotic substances from Central Asian countries but has also developed the widespread
cultivation of cannabis. Albania, undoubtedly, has, over the years, taken a predominant
role in the production of this drug, which is then sorted in Europe through the short stretch
of sea that separates Albania from the Italian coasts [5].

Ground investigations to detect illegal cannabis plantations are difficult due to the
inaccessibility of illegal planting areas. Most countries carry out this activity through aerial
surveillance and local knowledge of the planting areas. These methodologies require an
important economic effort due to the instruments used and the men necessary to guarantee
the aerial monitoring and the subsequent processing of the detected images. Through
remote sensing, it is possible to carry out an environmental monitoring of the areas whose
extensions would make it impossible to do so with a direct approach, using a synchronous
and spatially distributed characterization of the ground. This investigation can be car-
ried out at distances ranging from a few meters (proximal sensing) up to thousands of
kilometers (remote sensing). Azaria et al. [6] used ground-based hyperspectral sensing
(an image spectroscopy sensor) for detecting and mapping cannabis crops. The authors
revealed that the spectral characteristics of cannabis are unique only within a wavelength
range of 500–750 nm. Houmi et al. [7] applied satellite remote sensing to detect cannabis
plantations. The authors applied the spectral angle mapper (SAM) method based on a
specific angular threshold on Hyperion EO-1 data in well-known cannabis plantation sites.
However, there are no relevant studies that have used airplanes for the remote sensing of
cannabis plantations.

This article traces the research activity conducted by the Benecon University Con-
sortium, from 2012 to today, demonstrating how it is possible to create a technological
platform for a “Knowledge Factory”. It not only responds to the specific need of uproot-
ing cannabis plantations but also contributes to the creation of multidisciplinary applied
knowledge to prevent hydrogeological risks and to increase and improve agriculture and
urban planning. Good experimental research practices show that human thinking succeeds
in governing technology, measuring the dimensions with the corresponding knowledge
and using innovative technologies that allow to deeply know the artifacts and the territory.
Furthermore, human thinking also succeeds in memorizing the experiences through the



Data 2021, 6, 108 3 of 13

data, coming from the reading of the phenomena on the historical axis, to entrust them
as base knowledge to the institutions in order to wisely govern the modification of the
territory and the protection of architectural heritage.

2. Data Description

Since 2012, thanks to the agreement signed between the Guardia di Finanza (Air
Maritime Exploration Group) and the BENECON SCaRL Regional Competence Center,
remote sensing activity has been implemented, aimed at identifying cannabis plantations
in the Albanian territory, supporting local police forces. These activities use the aircraft
available from the Air Maritime Exploration Department of the Guardia di Finanza and
the hyperspectral sensors supplied by BENECON Regional Competence Center. The
operational protocol provides for:

• the planning of flight campaigns on the Albanian territory
• the acquisition through the use of hyperspectral sensor CASI1500 of hyperspectral images
• the subsequent processing of the acquired data by the researchers of the BENECON

Regional Competence Center
• the analysis of the elaborated data and the identification of cannabis plantations
• the writing of the report for Albanian police forces.

3. Methods
3.1. Remote Sensing Flight Planning Phase

The planning of the hyperspectral remote sensing flight represents a fundamental step
within the entire activity; it is processed once the overflight area has been identified and
circumscribed on a cartographic basis. The flight planning takes into account the orogra-
phy, the average altitude and the exposure of the land under investigation. These latter
parameters are functional to the correct definition of the hyperspectral digital images to be
acquired. The spectral mode configuration of the CASI sensor [8] is aimed at maximizing
the number of spectral channels that can be acquired. The configuration of the hyper-
spectral sensor has to take into consideration the 10 conditions imposed by the geometric
resolution of the desired ground pixel and the integration time required for detecting the
radiant energy reflected from the ground. Specifically, in the case under consideration, the
selected bands are uniformly distributed over the entire available spectral range.

The definition of the flight parameters, that is, the configuration of the sensors, the
flight attitude and the speed of the aircraft, is followed by the drawing on the cartography
of the scan runlines. This last phase consists in the organized representation of runlines
series (linear scan trajectory) to be flown with an overlap of 30%. This latter parameter can
vary considerably on the basis of the orography of the area.

The flight plan is drawn paying particular attention to the orography of the territory
to fly over and the fixed parameters validated during the year, trying to minimize the effect
of vegetation anisotropy on the survey (Figure 1). The flight planning concludes with the
drafting of the time schedule of the acquisition campaign, which depends on the technical
specifications of the sensors installed on board. In fact, the operational acquisition flights
with the hyperspectral sensor, to be effective, require the presence of the light source (the
Sun) at the moment of maximum radiation, the sunlight at noon, in which the spectral
distribution of the emitted light is close to white [9].
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Figure 1. Mission planning: focus on a flight plan designed over the southeast of the Albanian territory. Each flight plan is
specifically designed taking into consideration the orography of the territory to fly over. Software used: Global Mapper.

3.2. The Acquisition Phase

The sensors used for remote sensing are generally divided into two large families: ac-
tive sensors and passive sensors. The active sensors illuminate the surfaces of a spatial map
under analysis from the electromagnetic point of view, subsequently detecting the return
electromagnetic radiation and measuring the spectral signature in terms of reflectance; a
typical example of an active sensor is radar. Passive sensors measure the solar radiation
reflected by the surfaces on the ground in a discrete set of wavelength ranges in the visible
and near-infrared range. For each element of the detected map, the sensor provides the
value of the observed radiative flux measured in terms of radiance, then returns the energy
flux per unit of surface and unit of solid angle as a function of the central frequency of each
acquisition band [10].

The CASI-1500 hyperspectral sensor (Table 1), owned by BENECON, is a remote
sensing instrument, mounted on board the P166 DP1 aircraft of the Guardia di Finanza,
capable of measuring the solar radiation reflected by the area overflown, in the wavelengths
between the visible and near-infrared. In particular, the CASI sensor measures electromag-
netic energy, called reflectance, in the wavelengths between 380 and 1050 nm. It falls into
the category of passive systems [11]. The CASI sensor is a so-called pushbroom sensor.
Relying on the relative forward motion between the lens and the target, a recognizable
hyperspectral “image” is created by the successive build-up of individual scan lines. These
scan lines are continually appended to the spatial imagery as the aircraft moves forward.
The axes of these scan lines lie perpendicular to the platform’s direction of movement.
Each scan line is sensed, measured and recorded from the sensor array across the spectral
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bands with a linear resolution of 1500 pixels. Their corresponding wavelengths are chosen
between 1 and 288 bands and range from the ultraviolet to the near-infrared field. Thanks
to high-quality optics and the use of latest generation CCD sensors, the system can produce
images that guarantee a ground resolution of about 25 cm [12].

Table 1. CASI-1500 hyperspectral sensor specifications.

Feature Specification Feature Specification

Airborne sensor CASI-1500 Band 01 367.2 nm ± 3.6 nm
Aircraft velocity 120 knots Band 72 1046.7 nm ± 3.6 nm
Aircraft altitude ~3000 m AGL File output format .img; .hdr

Bandwidth 7.2 nm Resolution 1.5 m pixel resolution
Date 1 August 2012 Sky Conditions clear

The hyperspectral survey and the monitoring of the territory have been made with
the airborne sensor Itres CASI 1500, owned by Benecon. The hyperspectral sensor has
the characteristics shown in Table 1: wide-array airborne hyperspectral VNIR imager
(0.38–1.05 microns), programmable; up to 288 spectral channels; 40◦ FOV; high signal-to-
noise ratio; IFOV 0.49 mrad.

The hyperspectral configuration used for the mission has been developed and per-
fected throughout the years to enhance and maximize the representation of the spectral
signature of the cannabis plant. The ground resolution used is 0.75 m2, obtained by opti-
mizing the flight planning and relating the spectral configuration to the orography of the
territory. The hyperspectral sensor is boarded on the Guardia di Finanza’s Piaggio 166DP1
aircraft with the nadiral PhaseOne iXA camera with an 80 Mpx pixel resolution.

The technological platform, including the GPS instruments, inertial units and hard-
ware input/output devices, is the result of studies and scientific research made in order to
deepen the knowledge of the material and immaterial components to represent correctly
and in a geo-corrected way the design of the territory.

Benecon University Consortium has, through the years, developed an ever-more
precise and efficient protocol. The procedure includes the processing of raw data through
radiometric and geometric correction and the creation of the desired processing image up
to loading the processed image file into the platform GIS along with auxiliary files such as:

• digital aeronautical maps
• digital elevation models; textured orthophoto
• topographic files in .shp format
• topographic paper maps.

The areas to fly over have been identified according to several factors:

• the existing cartography, the analysis of aerial patrol missions carried out in the early
stages of the mission

• critical evaluations that take into consideration elements that characterize the cultiva-
tion of cannabis

• the reports of the local police.

The product of the remote sensing data processing phase is a georeferenced multi-
layer model in which each homogeneous layer of data corresponds to a wavelength
recorded by the sensor and synthesized in each pixel composing the image. The real
geometric dimensions of the pixel, and therefore the degree of sintering of the reflected
electromagnetic components, are a function of the planning and flight parameters [13].

3.3. Drawing the Territory

The data is collected and systematized in a geo-database, a digital platform for man-
aging remote sensing data, from flight planning to thematic data restitution. During the
acquisition phase, the hyperspectral data are recorded according to the position of the GPS
and assets of the aircraft. The CASI sensor raw data, the GPS antenna and the inertial
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unit data are elaborated along with the flight track to produce a precise geo-located data
(Figure 2).
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The hyperspectral images acquired and the aircraft altitude and position in flight data
are suitably stored according to organizational rules functional to the subsequent image pre-
processing phase. The pre-processing of the image is aimed at correcting radiometric and
geometric errors and georeferencing images through the following activities: differential
correction of GPS data, processing of inertial data, radiometric calibration (correction)
of images and orthorectification [14]. The calculation of the position and altitude of the
aircraft is performed through the integration of the data of the permanent GNSS stations
(static acquisition) with the raw data of the inertial platform and on-board GNSS (dynamic
acquisition). As is known, the former record satellite coverage over the large remote sensing
area between the airport and the study area. The latter are combinations of data, measured
every second, between the aircraft’s position and attitude (roll, pitch, drift), recorded from
takeoff to landing. The integrated processing of all these data returns the geo-referenced
path made by the plane, so that all the hyperspectral and thermographic images can
be automatically referred to the scanned area [15]. The image processing consists of
two consecutive software procedures processed with ITRES GUI softwares: radiometric
correction and geometric correction. In the radiometric correction of images acquired with
the CASI sensor, the raw data (digitized radiance measurements) are transformed into
spectral radiance units, thus estimating the true brightness of the target. Converting CASI
data to reflectance units requires that the soil spectral measurements coincide with the
aerial image data. During the geometric correction, the image (radiometrically corrected)
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is aligned with the aircraft’s altitude and position data. In this phase, each across-line of
the image (linear sequence of pixel-images orthogonal to the runline), acquired in a known
instant of the flight (stored in the raw file through the connection to the GNSS antenna
of the aircraft) is redrawn and projected in orthographic mode on the XY cartographic
plane (with respect to a chosen DATUM) thanks to the software integration with the DEM
(digital elevation model) of the territory flown over. The geometric correction makes the
acquired image geometrically congruent with the chosen reference, thus establishing a
perfect correspondence between the position of the pixel in the image and its location on
the territory [16].

3.4. Qualitative and Quantitative Analysis of Hyperspectral Data

The acquired data, then, are uploaded in a geo-database and compared to a big library
of cannabis’ spectral signature using the ENVI software platform. To gather selectively the
complexity of the information contained in the spectral “orthophoto-maps”, the data are
elaborated and analyzed on image analysis software SNAP, according to some procedures
known from the scientific literature:

• “true color” images, sampled in the electromagnetic wavelengths distinguishable by
the human eye, for the photo-realistic representation of the territory; this natural color
representation associates 700 nm, 550 nm and 450 nm bands respectively to the red,
green and blue channels of the monitor;

• redVeg images enhance the greater or lesser density of the vegetation with shades of
red [17]. Indeed, for the representation of vegetated areas, this false color represen-
tation associates to each red, green and blue channel of the monitor the 789, 675 and
542 nm hyperspectral band respectively (Figure 3).
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To improve the reliability of the identification procedure of a cannabis plantation, it is
necessary to analyze in detail the spectral signature of the scanned areas. To do this, it is
essential to first select a region of interest identified based on certain characteristics; these
regions are areas that are spectrally anomalous [18,19]. The high number of channels of the
CASI allows the use of automatic algorithms for the identification of spectrally anomalous
areas. As the spectral signature of the materials and surface conditions to be identified
was not known a priori, it was necessary to use an algorithm developed on a statistical
basis, which measures the spectral diversity of each pixel of the image with respect to
its surroundings [20]. The algorithm used in this study is that of Reed–Xiaoli detector
(RXD) [21], well documented in the literature and used in numerous application contexts.
Each of the images acquired with the CASI is then processed by the Reed–Xiaoli algorithm,
using a comparative window of 50 × 50 m2 for each pixel of the image. A total of 0.05%
of the spectrally most divergent pixels were selected, and the sequence of morphological
filters opening 3 × 3 and closing 3 × 3 was applied to remove the isolated pixels and
obtain geometrically regular areas. Once the region of interest (ROI) has been identified,
it is necessary to analyze in detail the spectrum associated with it. Figure 3 shows the
spectral image, as returned by the application of the RedVeg vegetation index in order to
enhance the greater or lesser density of the vegetation with shades of red in an area in
which a spectrally anomalous region has been identified [22]. The spectral bands selected
were: R = 786 nm, G = 672 nm, B = 529 nm. In addition, it is accompanied by zooming
into the region of interest with an indication of the longitude and latitude coordinates of
the center of that region identified by the yellow symbol. Finally, the spectrum of this
region of interest is reported. The spectral signature obtained in this way represents a valid
tool for automatically identifying a cannabis plantation from an image detected with the
hyperspectral sensor. Its shape is an essential feature of the objects contained in the region
of interest and therefore, allows discrimination with respect to others that are contained in
the selected scenes. However, we remind you that so far, we have only identified some
spectrally anomalous areas since, as indicated above, the spectral signature of the materials
and surface conditions to be identified is not known a priori, it is necessary to proceed
through a comparison procedure. To be sure that it is a cannabis plantation, it is therefore
necessary to be able to compare the spectrum of the spectrally anomalous area with that one
of other regions characterized by different elements. Given the difficulties associated with
such a procedure, the tables obtained with the application of the Reed–Xiaoli detector (RXD)
algorithm [21], relating to regions of interest identified and verified as cannabis plantations,
are compared with those relating to regions of interest characterized by different objects.

The areas characterized by a greater spectral similarity with the searched crop are
displayed in the GIS environment together with other cartographic information.

The definitive perimeter of the plantation is supported by photographic shots with
high spatial resolution. From the geo-database, for each intercepted cannabis plantation, a
personal data sheet is extracted with a unique ID, geographical coordinates, spectral and
photographic data, areal extension and an estimate of the state of growth of the plants. The
file then is shared with the local authority for the uprooting of the plantation [23].

3.5. Principal Component Analysis (PCA)-Based Method

Principal component analysis is a technique used in the field of multivariate statis-
tics [24]; it is a linear transformation that reorganizes the variance in a hyperspectral
multiband image into a new set of image bands. The PCA bands are uncorrelated linear
combinations of the input bands. Principal components analysis transformation’s main
goals are:

• the reduction of the original data with the consequent computational simplification
• the reinterpretation of these observations.

If we consider a set of n data on measured on p variables, it is natural to think that
exactly p principal components are required to reproduce the total variability of the system.
Much of this variability can be quantified by a smaller number of these so-called principal
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components, thus arriving at the conclusion that k components (with k < p) can replace
the initial p variables. We thus obtain that the original set of data, which consisted of
n measurements on p characteristics, is transformed into a set consisting of n measurements
on k principal components [24].

PCA, once applied, often reveals relationships between observations and new vari-
ables that were not originally suspected. It is clear then, that the application of PCA
involves a deeper reinterpretation of the data. Like all applications in data analysis, PCA
also comes at a cost: the loss of some initial information. On the other hand, it is a technique
widely used in the most varied sectors precisely because it reduces this loss within accept-
able limits. In other words, if the number of components is chosen wisely, the tradeoff
between the loss of information and the simplification of the problem is almost always
an advantage.

The primary purpose of this technique is the reduction of a high number of variables,
representing as many characteristics of the phenomenon analyzed in some latent variables.
This occurs through a linear transformation of the variables that projects the original
ones into a new Cartesian system in which the variables are sorted in decreasing order of
variance: therefore, the variable with the greatest variance is projected on the first axis, the
second on the second axis and so on. The reduction of complexity occurs by limiting itself
to analyzing the main (by variance) new variables. Unlike other (linear) transformations
of variables practiced in the field of statistics, in this technique it is the same data that
determine the transformation vectors [25].

PCA was used as a classification algorithm for the identification of features [20]. In this
case, the eigenvectors are computed from a sample set of images, each representing a type
of object. In identifying an anomaly, the highest eigenvalue and its associated eigenvector
are identified. Each eigenvector represents a feature of the image, and all together represent
a feature space. Each image can thus be obtained as a linear combination of eigenvectors
and projected into the features space. In the recognition phase, the components of an image
are calculated by projecting it into the features space and comparing it with the components
of the other images. Every image of the sample set represents a portion of the territory.
Every class is represented by several images in the sample set. For the classification to
be successful, the classes must be well-separated by a series of features. In the training
phase, the system calculates the eigenvectors of the set of training samples to produce an
image space. In the classification phase, each new image can be classified by comparing its
components in the features space with the components of the sample set that are part of a
given class [26].

With the PCA, we represent a set of data with a non-diagonal covariance matrix and
of dimension N in a space of dimension less than N in which the same data is represented
by a diagonal covariance matrix. Diagonalization is achieved by rotating the coordinates in
the base of the eigenvectors representing the principal components. Each eigenvector is
associated with an eigenvalue that corresponds to the variance of the associated principal
component. If the original variables are partially correlated with each other, some eigenval-
ues have a negligible value. In practice, the corresponding eigenvectors can be neglected,
and we can limit the representation only to the eigenvectors with the largest eigenvalues.

Since the covariance matrix in the principal component base is diagonal, the total
variance is the sum of the variances of the individual principal components. It remains
necessary to estimate the importance of the residual, or rather of the neglected part of
variance. PCA is a second-order method since both the new coordinates and the criterion
for size reduction are based solely on the properties of the covariance matrix. In fact, the
variance is called the second moment of a distribution and is proportional to the square of
the variable. PCA is intrinsically based on the hypothesis that the variable x is normally
distributed; in this case the covariate matrix is positive definite and therefore invertible.
The average is generally rendered null, and therefore, all statistical information is contained
in the covariance matrix (Figure 4).
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Figure 4. False color representation PCA (principal components analysis), sampled according to the statistical processing of
the acquired electromagnetic bands that maximizes the variance of the spectral data and filters the electromagnetic noise.

Principal components describe the directions of maximum correlation between the
data, whereby the higher-order principal components are oriented towards the directions
of maximum correlation and those of lower order towards the directions of poor correlation.
Limiting the decomposition to the highest order, principal components therefore mean
keeping the directions of maximum correlation and removing the unrelated ones. In the
unrelated part, there is information not useful in identifying the anomaly; this redundant
information represents noise and makes the classification more difficult. PCA is therefore a
method of reducing the amount of noise in a multivariate dataset (Figure 5).
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Figure 5. Principal components analysis elaboration with a focus on cannabis planting with the spectral signature.

4. Results and Discussion

Over ten years of missions, aerial remote sensing activities were carried out, reporting
the results collected in Table 2.

Table 2. Results and accomplishments of the missions in Albania from 2012 to 2020.

Mission Year Scanned Area
(km2) Suspected Plantation Detected

2012 990 62
2013 3618 304
2014 4313 815
2015 4549 1368
2016 5066 2086
2017 7487 90
2018 7336 27
2019 7350 151
2020 5865 189

An analysis of Table 2 shows a progressive increase of the scanned area in the missions
that followed in the first part of the monitoring (2012–2016). This increment in the scanned
area has led to an exponential increase in the suspected plantations detected. In the second
part of the monitoring (2017–2020), despite having scanned an area comparable to the one
scanned in 2016, suspicious plantations were drastically reduced (from 2086 in 2016 to
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only 90 in 2017). This result is certainly a consequence of the monitoring activity that has
directed the Albanian police forces in the repression of this illegal activity.

The amount of data collected was fundamental for the subsequent machine learning
processing. The ongoing experiments are confirming how starting from the drawing,
understood as knowledge of the territory, and the landscape, it is possible to fight a
frequent and continuous phenomenon over time until it can be monitored, predicted and
anticipated creating forecast scenarios. Thanks to the application of machine learning
methodology, we are experimenting with the elaboration of increasingly accurate clusters
of the phenomenon in question. Moreover, our main objective is applying machine learning
methodology to direct and plan aerial remote sensing flights over increasingly limited areas,
in order to reduce the costs and create maps and scenarios forecasting for the identification
of cannabis plantations scattered throughout the territory.

5. Conclusions

This work describes the methodology adopted in the research activities carried out by
the Benecon University Consortium, from 2012 to 2020, in the fight against illegal cannabis
cultivation activities in the Albanian territory. An experimental protocol was developed
that used the Itres CASI 1500 hyperspectral sensor mounted on a Piaggio 166 DP1 aircraft.
The hyperspectral images detected were subsequently processed for the extraction of the
feature. Finally, a principal component analysis (PCA) based methodology was applied
to remove redundant spectral information from multiband datasets. This made it easier
to identify the spectral characteristics prevalent in most bands and those specific to only
a few bands. In nine years of activity (2012–2020) about 46,574 km2 of Albanian territory
have been scanned, identifying about 5092 suspicious plantations.

In years of experimentation, it has been possible to demonstrate that, through the
use of innovative technologies and the work of researchers, it is possible to identify the
cannabis cultivation fields and alert local law enforcement officers who can, once the area
has been identified, intervene by destroying the plantation. The activity carried out has
shown that the application of hyperspectral aerial remote sensing activities not only allows
the identification of the plantations but also demonstrates a preventive effectiveness in the
sense that it causes a progressive reduction of the activity on the territory.

The future objective of integration between the representation of the territory and the
management of complex data has, as a crucial element, the use of artificial intelligence
to start a monitoring activity of marine waters as well as of the cultural heritage present
throughout Albania to create maps and forecast scenarios. The connection between the
different disciplines, knowledge and cultures has made it possible to better understand the
Albanian landscape design and also to foresee the future of landscape design.
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