
data

Article

Guidelines for a Standardized Filesystem Layout for
Scientific Data

Florian Spreckelsen 1,2,3 , Baltasar Rüchardt 1,2,3 , Jan Lebert 1,2,3,4 , Stefan Luther 1,2,3,5 ,
Ulrich Parlitz 1,2,3 and Alexander Schlemmer 1,3,*

1 Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany;
florian.spreckelsen@ds.mpg.de (F.S.); baltasar.ruechardt@ds.mpg.de (B.R.); jan.lebert@ds.mpg.de (J.L.);
stefan.luther@ds.mpg.de (S.L.); Ulrich.Parlitz@ds.mpg.de (U.P.)

2 Institute for the Dynamics of Complex Systems, Georg-August-Universität, 37077 Göttingen, Germany
3 German Center for Cardiovascular Research (DZHK), partner site Göttingen, 37075 Göttingen, Germany
4 Department of Cardiology and Pneumology, University Medical Center Göttingen,

37075 Göttingen, Germany
5 Institute of Pharmacology and Toxicology, University Medical Center Göttingen, 37075 Göttingen, Germany
* Correspondence: alexander.schlemmer@ds.mpg.de

Received: 1 April 2020; Accepted: 21 April 2020; Published: 24 April 2020
����������
�������

Abstract: Storing scientific data on the filesystem in a meaningful and transparent way is no
trivial task. In particular, when the data have to be accessed after their originator has left the
lab, the importance of a standardized filesystem layout cannot be underestimated. It is desirable
to have a structure that allows for the unique categorization of all kinds of data from experimental
results to publications. They have to be accessible to a broad variety of workflows, e.g., via graphical
user interface as well as via command line, in order to find widespread acceptance. Furthermore, the
inclusion of already existing data has to be as simple as possible. We propose a three-level layout to
organize and store scientific data that incorporates the full chain of scientific data management from
data acquisition to analysis to publications. Metadata are saved in a standardized way and connect
original data to analyses and publications as well as to their originators. A simple software tool to
check a file structure for compliance with the proposed structure is presented.

Keywords: research data management; FAIR; file structure; filesystem layout

1. Introduction

1.1. Motivation

One of the most frequent issues in data management is the organization of files within a
meaningful hierarchical structure. Modern filesystems offer many possibilities regarding the choice of
names and complexity of folder hierarchies which can lead to many omnipresent problems in scientific
data management:

• Finding specific folders in deep folder structures can become a time-consuming task, especially
when dealing with large file sizes and a huge number of individual files.

• The tree-like nature of folder hierarchies can highly impede findability. The hierarchy of folders
itself is in many cases arbitrary and therefore difficult to define in a general way.

• The lack of standards often leads to diverging and unnecessarily expanded folder structures that
are impossible to understand by collaborators or new lab members.

Data 2020, 5, 43; doi:10.3390/data5020043 www.mdpi.com/journal/data

http://www.mdpi.com/journal/data
http://www.mdpi.com
https://orcid.org/0000-0002-6856-2910
https://orcid.org/0000-0002-3857-7767
https://orcid.org/0000-0001-8754-4964
https://orcid.org/0000-0001-7214-8125
https://orcid.org/0000-0003-3058-1435
https://orcid.org/0000-0003-4124-9649
http://dx.doi.org/10.3390/data5020043
http://www.mdpi.com/journal/data
https://www.mdpi.com/2306-5729/5/2/43?type=check_update&version=2

Data 2020, 5, 43 2 of 13

Sophisticated solutions to address these problems can involve databases or object storage systems.
Although these systems can provide a clean interface to data on higher levels, the low-level structuring
problems often remain, as data files need to be accessible on traditional filesystems in many cases.

From the need for a simple, but generic and standardized filesystem layout we designed an
approach that allows easy implementation. We apply this approach in the Research Group Biomedical
Physics at the Max Planck Institute for Dynamics and Self-Organization in Göttingen. But we believe
it is applicable and beneficial to a much wider variety of disciplines and research groups, especially,
where there is no standardized structure available. Since adoption by scientific users is the main focus
of this effort, several considerations were important for the design:

• The new layout should be compatible with existing structures and at least allow for a smooth
integration of existing file structures.

• The filesystem layout should allow access through very different scientific workflows. Usage by
databases should be similarly possible as an intuitive access of the raw file structure. It should
be accessible via graphical user interfaces as well as command line interfaces and thus allow for
automation, e.g. via shell scripts.

• Simplicity of the layout definition itself in order to lower the threshold for adopting a standardized
way of storing data and metadata in the first place.

In view of the experience, that establishing a standardized filesystem layout in a work group
is not only a technical challenge, but also requires concerted action by all participants, we consider
that these design criteria are extremely relevant. In our experience, the simplicity of the definition in
particular, can be very beneficial to comprehensibility and thus lead to increased acceptance.

When using more sophisticated software such as databases, filesystem structures are often
replaced by random numbers or arbitrary identifiers that are not intended for use by end-users.
However, we believe it is very important to retain traditional filesystem structures and human-readable
filenames, as they have proven to be robust and also provide a fail-safe option in case other specific
software systems fail. The filesystem layout proposed in this article can be integrated into workflows
involving research data management systems.

1.2. Comparison to Other Approaches

There are existing approaches to standardize filesystem structures. To the knowledge of the
authors they are, however, either very specific and tied to a single scientific field (e.g., BIDS [1])
or very abstract (e.g., ISA-Tab [2]). Abstractness is not a problem itself, but grants much freedom
to individual workgroups which again causes diverging systems and non-standardized filesystem
structures. Thus neither the specific nor the abstract approaches that already exist achieve wide-spread
adoption. Some of our aims intersect with those of metadata models like ISA-Tab. Especially, in
that ISA-Tab also links individual experiments (assays) to the larger context (investigations, studies)
and possible publications and provides a systematic documentation of metadata. ISA-Tab, however,
does not (and does not aim to) specify how the actual data collected in individual assays is stored
on the filesystem1. Connections between assays and data files, but also between assays, studies and
investigations have to be extracted from the respective metadata files instead, which in our view limits
the usability. Furthermore, it is designed mainly for experiments in biology, medicine, and life sciences
and is thus not directly applicable to e.g., numerical simulations in solid state physics.

Our approach can be seen as complementary to large metadata repositories (e.g., https://
earthdata.nasa.gov or [3]) and repositories for data publication (e.g., PANGAEA [4]). Metadata
repositories and data repositories aim at gathering and collecting information about complete scientific
fields, while our approach aims at a standardized organization of files, folders and metadata on the

1 See 2.3.9. Data Files in https://isa-specs.readthedocs.io/en/latest/isatab.html.

https://earthdata.nasa.gov
https://earthdata.nasa.gov
https://isa-specs.readthedocs.io/en/latest/isatab.html

Data 2020, 5, 43 3 of 13

local level (e.g., network drives for workgroups, individual computers of scientists, file storage servers).
Another important difference is that data and metadata are typically published in global repositories,
after data acquisition has ended, data analysis is finalized, or articles are submitted, whereas our
approach can be effective during data acquisition and may be particularly helpful for data, that is
actively worked on, too. It is highly desirable to submit consolidated and final data to large-scale
repositories which can be done in addition to our scheme. For this purpose, persistent identifiers
(PIDs) commonly used in such repositories can be added to the metadata files in our layout.

1.3. Aims

The implementation of the filesystem layout we present in this manuscript should achieve the
following design principles:

• Allow for a mapping of the complete chain of scientific data management:

1. Data acquisition (Experiment / Simulation)
2. Data analysis
3. Publication

Links between the different stages must be possible.
• Encourage transparency: The data structure should be understandable and searchable. Folders

and files should have meaningful names. The folder hierarchy should be readily apparent to
persons unfamiliar with it.

• Support of reproducibility: Ideally the structure should enable reproducibility of data analysis
and publications from raw experimental and simulation data.

• All data must remain accessible, understandable, and reusable even when original creators are
not present anymore.

• The structure must provide a possibility for saving metadata.
• Integration of existing structures must be feasible rather than having to adapt to our structure.

These design principles comply with the FAIR [5] guiding principles of data management.

2. Results

2.1. Implementation

The actual implementation of the filesystem layout consists of two parts: the structure of the
directories on the filesystem itself and the storage of metadata. The former determines where data
of individual experiments, simulations, and analyses are stored, while the latter contains necessary
information about the data and is the only strict requirement for the actual contents of the directories.

2.1.1. Data Structure

All data stored in our filesystem structure are categorized as experimental data, simulation
data, data analysis, or publication. Each category has two levels, as shown in Table 1: The top level
specifies the general project, while the lower level contains individual experiments, simulations,
analyses, or publications belonging to the respective projects. As explained above, we decided
to include information into the directory names themselves to make the structure as accessible as
possible. The naming conventions for experiments, simulations, and analyses are identical; the naming
conventions for publications differ slightly (cf. Table 1) and will be discussed later.

Data 2020, 5, 43 4 of 13

Table 1. The two levels of the file structure for each category together with suggested names in the
filesystem. Round brackets in the suggested names denote optional parts.

Category Experiments Simulations Data analysis Publications
ExperimentalData SimulationData DataAnalysis Publications

Project Descriptive project names (possibly with starting year of the
project) but sufficiently general such that individual experiments,
analyses, ... belong to one single project.

Publications include articles,
conference talks, posters, ...

(yyyy_)projectname publicationtype

Entries Specific containers with actual results of experiment, simulation,
analysis. Have to contain metadata, otherwise no restrictions on
substructure.

Individual publications with
date and title.

yyyy-mm-dd(_descriptor) yyyy(-mm-dd)_title

The directories that belong to the categories themselves are simply named ExperimentalData,
SimulationData, DataAnalysis, and Publications. The directory names at project level must be
chosen carefully, especially if more than one person is involved in working on a project. Due to the
hierarchical structure, they must be sufficiently general to prevent single experiments or analyses
from being assigned to more than one project, while at the same time giving a clear impression of
the contents of the project. Project names for experiments, simulations, or analyses belonging to the
same project should be identical within the respective category directories. We suggest that the names
of project directories start with the beginning year of the project, followed by an underscore that
separates the year from the project name. Figure 1 shows the two examples 2020_SpeedOfLight and
2019_ElementaryCharge for two fictitious projects for the experimental determination of the speed of
light and the elementary charge.

Figure 1. The example project 2020_SpeedOfLight contains data from three different experiments each
of which is identified by date and the experimental method used to determine the speed of light.

The entries in the project directories correspond to individual experiments, simulations, or
analyses. Their names should begin with their (start) date. In addition, a descriptor can be given which
further explains the content of the particular entry in more detail. Again, an underscore separates
the date from the descriptor. Three example experiments, each consisting of the measurements
of the speed of light, are shown in Figure 1 as entries of the project 2020_SpeedOfLight. Two of
them, 2020-01-01_TimeOfFlight and 2020-01-01_Cavity, contain the experimental method as a
descriptor in their directory names, while the third one, 2020-01-03, is named after the date only.
These directories contain all collected data and metadata (see Section 2.1.4) in almost arbitrary structure.
In particular, if the proposed filesystem layout is used for already existing data, any structure that may
have been previously defined, can be retained within these directories.

Publications include journal articles, but also dissertations and (conference) lectures or posters, as
well as internal reports. We have found that there are usually only a few publications per project so
there is little point in collecting them in project directories. Instead, we have decided to group them
according to the type of publication, i.e., article, lecture, poster, etc. The directories on the project level

Data 2020, 5, 43 5 of 13

are thus called Articles, Presentations, and so on. The individual entries correspond to individual
publications and should be named (as above) with date and descriptor. For journal articles, a good
descriptor could consist of the first author and the (short) title of the journal.

2.1.2. Dates and Years

In the proposed filesystem layout, dates and years play an important role, as all entries must
contain a date, and project names preferably the year. While choosing the “correct” date or year is very
natural in many cases, it can be difficult in some cases. For a single session of an experiment, it would
be very natural to choose the date of that experiment as the date for the folder name. However, this
choice is less obvious, e.g., for measurements that extend over a period of several days or weeks.

We think that it is also very advantageous to save a date in difficult cases, as it can often be
a helpful hint for finding data. In cases where the exact contents or names of projects cannot be
remembered, it is often at least clear when approximately a project was carried out.

We therefore propose to consider the date of a folder as an approximate date that helps to locate
data, rather than an exact timestamp with reliably interpretable meaning. A good standard rule for
selecting dates is to simply take the start date, e.g. the start date of a measurement lasting several days,
for naming the folder or project.

2.1.3. Categories

Note that there may be cases where it is difficult to assign a unique category to an entry.
A numerical simulation could be considered a numerical experiment, and more complex forms
of data collection could also be considered a form of analysis, too. Measurements of e.g., climatic
or geological data are observations rather than experiments and therefore do not really fit into any
of the above categories. The same is true for data collected during field studies. We still decided to
use the four categories experiments, simulations, analyses, and publications since in our experience,
most studies can be sorted into one of them. Ultimately, the use of such human-readable categories
will always lead to certain ambiguities in special cases. We use these four for reasons of generality
and readability, and thus, ultimately, also for user-friendliness. Of course, they can be extended or
replaced if necessary. Additional categories such as MeasuredData or FieldData could be introduced
in addition to or instead of ExperimentalData. The structure of all additional categories has to be the
same as in ExperimentalData, i.e., it hast to contain the projects that in turn contain the individual
entries, as explained above and depicted in Figure 1. We will consider ExperimentalData only in the
following, but it can be read as a proxy for all possible other categories for raw data.

2.1.4. Metadata

After the introduction of the directory structure in which the data is stored on the filesystem,
the second part of our proposed data structure concerns the standardization of metadata. This is the
only strict requirement for the contents of each entry that we propose. We require that each entry
contain a text file called README.md in markdown style following the pandoc implementation [6].
This file consists of a YAML [7] header in which metadata are stored in the form key: value.
The minimal requirements to the keys are shown in Listing 1. It must contain at least the name
of a person responsible for the data under the key responsible and a short description following the
key description. While of course more metadata could and should be stored, we have found that the
combination of these minimal requirements and project and date from the filesystem structure already
greatly improves the accessibility of stored data.

Data 2020, 5, 43 6 of 13

Listing 1. Contents of a minimal YAML header of a README.md containing the responsible person and
a short description. Both pieces of information are given in the form of key: value pairs following
YAML notation. The header starts with three hyphens --- and ends with three periods

Depending on the respective entry, there can be any number of meaningful tags for saving the
metadata to be selected. In the following, some recurring tags are explained, especially those, that are
associated with the linking of the elements of the chain of data management, as explained in Section 1.3.
Experiments, simulations, and analyses often require a description of the files in which the results are
saved. This is done using the results tag as shown in Listing 2. This is where the YAML syntax comes
in handy, since a list of value or a list of key-value pairs can be used instead of a single value. Since the
results are stored in files that may require further explanation, we suggest that these files be listed in
a list of the specific key-value pairs file: <path> and description: <short description>. Paths
can be given either relative or absolute. They may contain wildcards following Python’s glob syntax2,
e.g., if all files of one type in a given directory contain the same type of results. Instead of individual
files, entire directories may be given if all files in this directory contain the same type of results.

Listing 2. The files in which the results of, e.g., an analysis are stored, are listed and described under
the results tag as a list of key: value pairs.

Analyses e.g. of experimental data are linked in a similar way to the respective experiments.
For this purpose, the sources tag is used. Similarly, the publications are linked to the respective
analyses, experiments, and simulations. Listing 3 shows how this looks like for a publication based on
several experiments and the analysis based on them.

Listing 3. A publication links to the corresponding experimental results and data analysis using the
sources tag. Paths to the sources are given as relative paths.

As mentioned above, depending on the metadata requirements, many more tags can be included.
An additional tag that has proven useful is the revisionOf tag. For example, if an analysis contains
errors and needs to be recreated, the metadata of the new, corrected analysis should be linked to the
incorrect analysis using revisionOf.

2 https://docs.python.org/3/library/glob.html#module-glob.

https://docs.python.org/3/library/glob.html#module-glob

Data 2020, 5, 43 7 of 13

Listing 4. The analysis in 2020_SpeedOfLight/2020-01-05_average-all-exp-corr corrects the
errors made in 2020_SpeedOfLight/2020-01-04_average-all-exp. This is contained in the
README.md of the new, corrected analysis using the revisionOf tag.

The tags listed above and in the examples in Section 2.2 represent those that we consider the most
general and relevant. They can be extended as needed or desired. Note that, with the exception of
responsible and description, all tags are optional. Thus, project-specific tags, e.g. those describing
the sample in a type of experiment, can be easily integrated. In this way, also persistent identifiers
(PIDs) can be intuitively included if required, e.g., if the data is published in a larger repository. In this
case, the PID can be added to the metadata file in the form PID: <identifier>.

2.1.5. Remarks on Archiving and Purging Data

At the end of the life cycle of scientific data, they should be archived and then deleted from the
working filesystem. This is especially necessary for possible large original data sets from experiments
or simulations. However, archiving and purging the original data should not break the links between
publications and the corresponding analyses, simulations, and experiments. We therefore recommend
that the contents of the entries are deleted after archiving with the exception of the metadata file
README.md. A tag archived: <date-of-archiving> must be added to its header. Depending on the
details of the archiving, additional information can be specified, such as who archived it and where
exactly the data is located in the archive. This ensures that the archived data remains linked to the
original projects and publications. If necessary, this makes it easier to retrieve original data from old
projects that have already been archived.

2.2. Example Data Chains

Two examples of publications, a journal article and a conference presentation, will be inspected
in more detail below. Both will represent the entire chain of data management; one in a top-down
manner, starting with the publication and retrieving the experimental data published therein, the other
in a bottom-up manner, i.e., from individual measurements and simulations to the conference talk.

2.2.1. Finding the Experimental Data for a Publication

Suppose AuthorA, AuthorB, and AuthorC published an article about a comparative study
of different experimental methods for determining the speed of light in the renowned (fictitious)
Journal of Relativity in 2020. To achieve maximum transparency, the experiments whose data actually
appeared in the publication as well as the analysis of these experimental data must be linked to
the publication itself. According to the structure proposed in Section 2.1.1, the article is stored in
Publications/Articles/2020_AuthorA-JourRel. As explained above, the directory name is chosen
by date, (first) author, and journal. This directory contains the PDF of the article as well as the metadata
in a README.md file. Its content is shown in Listing 5. In addition to the authors as responsible persons
and a short description, experimental results and analyses are listed under the sources tag. After the
end of the YAML header, i.e., after the closing ..., an additional markdown text can be added for
further notes. In Listing 5, a note about a corrected analysis was added.

Data 2020, 5, 43 8 of 13

Listing 5. Contents of the README.md corresponding to the journal article in
/Publications/Articles/2020_AuthorA-JourRel. All three authors are listed as responsible
persons. Both experimental data and the analysis conducted on them are listed as sources. Note
that arbitrary (markdown) text may be added after the end of the YAML header for further notes
and remarks.

This corrected analysis can be found following the entry under the sources tag. When visiting the
metadata file of DataAnalysis/2020_SpeedOfLight/2020-01-05_average-all-exp-corr which is
shown in Listing 6, this correction is taken into account by the revisionOf tag. It links to the previous,
incorrect analysis that is replaced by the corrected one. Note that the README.md file associated
with the analysis links to the same experimental sources as the one belonging to the publication.
This redundancy is intended because in this way the experimental data are directly visible from the
publication without having to visit the analysis. The results of the analysis and the scripts containing
the analysis are further described using the file and description tags as explained in Section 2.1.4.

Listing 6. The YAML header containing metadata of the analysis stored in
2020_SpeedOfLight/2020-01-05_average-all-exp-corr. Note the quotation marks in line 13
required by YAML for values starting with a wildcard character.

Data 2020, 5, 43 9 of 13

The analysis links to the original experimental data on which it was conducted.
The content of the metadata file of one of these experiments, contained in
ExperimentalData/2020_SpeedOfLight/2020-01-03, is shown in Listing 7. Depending on the
setup, the contents could be extended by, e.g., details of the instruments used in the experiment or of
the environmental conditions during the measurement.

Listing 7. The YAML header of the metadata file of the experimental data stored in
2020_SpeedOfLight/2020-01-03.

2.2.2. From Data Generation to a Conference Talk

Suppose that a new numerical climate model is created in a new project to predict the annual
mean temperatures. This climate model uses historical climate data from 1980 to 2010 as training
data. From this training set, the temperatures from 2010 to 2019 are predicted. Its accuracy is tested
by comparing these predictions to actual measured data from the same years. This project therefore
contains experiments (the measured climate data from 1980 to 2019), simulations (the predictions
by the new climate model), and analysis (comparison of prediction and measurements for the years
2010 to 2019). Before data can be stored, a name for the project directory in all three categories must
be defined. According to the above convention, the name 2020_climate-model-predict is chosen.
It starts with the year of the project start followed by a descriptor for its topic.

AuthorD is responsible for obtaining the historical temperature data provided by the service
weatherdata.example. The data are stored in ExperimentalData3 in separate directories for each
decade. As explained in Section 2.1.2, it is not immediately clear how to define the date for a
measurement covering a decade. As proposed above, the starting date, i.e. 1980-01-01 for temperatures
from 1980-1989, is used in the following. Another reasonable option would be to use the date on
which the data were obtained instead. Since the historical temperatures are the only project-related
measurements, the date is a sufficient directory name for each single entry, so data from the 80ies
are stored in ExperimentalData/2020_climate-model-predict/1980-01-01 and so on. The annual
average temperatures for different measurement stations are contained in separate files together with
their respective geographical locations. This information is condensed into the metadata file shown in
Listing 8, again in the example of the data from 1980 to 1989. Together with AuthorD as the person
responsible for transferring the data and a short description, the file contains the description of the
individual files for each year using a wildcard expression.

3 As explained in Section 2.1.3, such data are not experimental data in a strict sense but rather observations or measurements.
For reasons of simplicity we are using ExperimetalData here. The category could of course be renamed if desired.

Data 2020, 5, 43 10 of 13

Listing 8. Example metadata file of the temperature data stored in
ExperimentalData/2020_climate-model-predict/1980-01-01.

The temperature data from 1980 to 2009 are then used as training data for a new predictive
climate model. The model parameters resulting from the fit to the training data are stored
in SimulationData/2020_climate-model-predict/2020-02-01. Again, only the date is used as
directory name at the entry level. The training data are listed under the sources tag in the metadata
file as in Listing 9. The model parameters obtained by the fit are then used to predict the temperature
development in the years 2010 to 2019. The predictions are stored in the same directory as well as the
python code used for the fit and the prediction.

Listing 9. YAML header of the metadata file of the temperature predictions stored in
SimulationData/2020_climate-model-predict/2020-02-01. Here, the sources tag is used to denote
the training data used to find the optimal model parameters. Note that instead of a single line, a YAML
multiline block indicated by the greater-than sign > is used for the description in lines 4 to 7.

In a subsequent analysis, the model predictions are compared with the measured data.
The prediction error is determined by calculating absolute and relative differences between
measurements and predictions. The metadata file of this analysis is shown in Listing 10 and references

Data 2020, 5, 43 11 of 13

both the simulation and the measurement as sources. The results are displayed graphically and saved
in the same directory.

Listing 10. Contents of the metadata file of the analysis comparing the predictions
of the new climate model to the measured temperatures of the years 2010 to 2019.
Measurements and simulation results are both listed as sources. It is stored in
DataAnalysis/2020_climate-model-predict/2020-02-08_prediction-errors.

The new model will be presented together with the analysis of the prediction
errors by AuthorD as a conference paper at the (fictitious) Climate Modeling Conference
2020 in Berlin. The presentation slides of this presentation are therefore stored in
Publications/Presentations/2020-03-01_AuthorD_climate-model-conf together with their
metadata, which are shown in Listing 11. They link the presentation to the training and test data as
well as to the simulations and analysis that compares predictions and measurements.

Listing 11. The slides of the conference talk presenting the new climate model and its performance
are stored in Publications/Presentations/2020-03-01_AuthorD_climate-model-conf.
All measurements, simulations and analysis including the training data are listed in the metadata file.

3. Discussion

The filesystem layout presented here is implemented in the Research Group Biomedical Physics at
the Max Planck Institute for Dynamics and Self-Organization in Göttingen. Currently, 10 experimental
project folders, 17 folders for data analysis, 49 folders with publications and 15 project folders
containing simulation data are stored according to this specification. These include numerical

Data 2020, 5, 43 12 of 13

studies of dynamical systems as well as biomedical experiments. Many more data sets are in a
transition phase from previous heterogeneous structures. In our workgroup, we employ the RDMS
CaosDB [8]. The CaosDB crawler is able to index all data which complies with the proposed filesystem
layout. CaosDB provides a high-level interface to the data and allows for manual or automatic
semantic queries.

The approach presented here is not intended to cover any detail of possible data structures. It is
rather intended to be a first step towards a standardized data structure that can be extended in many
ways. In our experience, this first step already provides a great advantage in terms of findability and is
most likely compatible with more sophisticated data management solutions.

It has also proven to be a valuable workflow to introduce new users within the workgroup directly
to this data structure. In many cases, they have not yet decided on a fixed file naming scheme, so that
they can adopt the approach presented here directly.

To make the transition to this standardized file structure smoother, we have created an open
source validation tool (see Appendix A). This program is written in Python and can be executed
on a file tree. The program checks whether the structure contained in this tree complies with this
file structure definition and issues detailed notes in case of deviations. To make it easier to use, we
plan to extend this tool in the future with a graphical user interface, that also allows the transfer and
conversion of existing data into this structure.

Author Contributions: Conceptualization, F.S., B.R., J.L. and A.S.; software, J.L. and A.S.; writing—original draft
preparation, F.S. and A.S.; writing—review and editing, F.S., B.R., J.L., S.L., U.P. and A.S.; supervision, F.S. and
A.S.; project administration, S.L., U.P. and A.S.; funding acquisition, S.L. and U.P. All authors have read and
agreed to the published version of the manuscript.

Funding: We acknowledge support from the German Federal Ministry of Education and Research (BMBF) (project
FKZ 031A147, GO-Bio), the German Research Foundation (DFG) (Collaborative Research Centers SFB 1002 Project
C03) and the German Center for Cardiovascular Research (DZHK e.V.).

Acknowledgments: We thank all members of the Research Group Biomedical Physics for their support in the
design and implementation of this file structure.

Conflicts of Interest: A.S. is co-founder of IndiScale GmbH, a company providing commercial services for CaosDB
(mentioned in the discussion and in Appendix A). IndiScale GmbH was neither involved in the design of the
study, nor in the collection, analysis or interpretation of the data, nor in the writing of the manuscript or the
decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

RDMS Research Data Management System
YAML YAML ain’t markup language
md Markdown
FAIR Findable, Accessible, Interoperable and Reusable
PID Persistent identifier

Appendix A. Supporting Software

There are currently two software projects which make use of the file structure proposed here:

• CaosDB [8] is an Open Source scientific research data management system that uses automated
crawling for inserting data. The CaosDB standard crawler is able to insert and update data based
on this specification.

• Check SFS is a collection of software tools for creating and checking file structures according to
this specification. It is released as Open Source software here: https://gitlab.com/salexan/check-
sfs.

https://gitlab.com/salexan/check-sfs
https://gitlab.com/salexan/check-sfs

Data 2020, 5, 43 13 of 13

References

1. Gorgolewski, K.J.; Auer, T.; Calhoun, V.D.; Craddock, R.C.; Das, S.; Duff, E.P.; Flandin, G.; Ghosh, S.S.;
Glatard, T.; Halchenko, Y.O.; et al. The brain imaging data structure, a format for organizing and describing
outputs of neuroimaging experiments. Sci. Data 2016, 3, 1–9. [CrossRef] [PubMed]

2. Sansone, S.A.; Rocca-Serra, P.; Field, D.; Maguire, E.; Taylor, C.; Hofmann, O.; Fang, H.; Neumann, S.; Tong,
W.; Amaral-Zettler, L.; et al. Toward interoperable bioscience data. Nat. Genet. 2012, 44, 121. [CrossRef]
[PubMed]

3. Ma, X.; Fox, P.; Tilmes, C.; Jacobs, K.; Waple, A. Capturing provenance of global change information.
Nat. Clima. Chang. 2014, 4, 409–413. [CrossRef]

4. Diepenbroek, M.; Grobe, H.; Reinke, M.; Schindler, U.; Schlitzer, R.; Sieger, R.; Wefer, G. PANGAEA—An
information system for environmental sciences. Comput. Geosci. 2002, 28, 1201–1210. [CrossRef]

5. Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.;
Boiten, J.W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data
management and stewardship. Sci. Data 2016, 3, 160018. [CrossRef] [PubMed]

6. Dominici, M. An overview of Pandoc. TUGboat 2014, 35, 44–50.
7. Ben-Kiki, O.; Evans, C.; döt Net, I. YAML Ain’t Markup Language (YAMLTM) Version 1.2, 3rd ed.; 2009.

Available online: https://yaml.org/spec/1.2/spec.html (accessed on 23 April 2020).
8. Fitschen, T.; Schlemmer, A.; Hornung, D.; tom Wörden, H.; Parlitz, U.; Luther, S. CaosDB—Research Data

Management for Complex, Changing, and Automated Research Workflows. Data 2019, 4. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/sdata.2016.44
http://www.ncbi.nlm.nih.gov/pubmed/27326542
http://dx.doi.org/10.1038/ng.1054
http://www.ncbi.nlm.nih.gov/pubmed/22281772
http://dx.doi.org/10.1038/nclimate2141
http://dx.doi.org/10.1016/S0098-3004(02)00039-0
http://dx.doi.org/10.1038/sdata.2016.18
http://www.ncbi.nlm.nih.gov/pubmed/26978244
https://yaml.org/spec/1.2/spec.html
http://dx.doi.org/10.3390/data4020083
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Motivation
	Comparison to Other Approaches
	Aims

	Results
	Implementation
	Data Structure
	Dates and Years
	Categories
	Metadata
	Remarks on Archiving and Purging Data

	Example Data Chains
	Finding the Experimental Data for a Publication
	From Data Generation to a Conference Talk

	Discussion
	Supporting Software
	References

