
Annex VIII 

Analysis of data of Annex VII with SAS/STAT® 15.1. 

 

Germination indices are analysed (see Annex VII for the dataset used) as an example.  

First, homogeneity of variances is tested with the GLM procedure. Heteroskedasticity can be expected for 
these indices when they correspond to largely different time-courses, which anyway is not the case here. 

proc GLM; 
class temp; 
model MGT MGR CUG = temp; 
means temp / Tukey hovtest=Levene; 
run; 

RESULTS (excerpts): 

   Table 1. MGT. 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 0.23647245 0.11823622 38.99 <.0001 

Error 15 0.04548365 0.00303224   

Corrected Total 17 0.28195610    

 

   Table 2. MGT. 

R-Square Coeff Var Root MSE MGT Mean 

0.838685 1.781901 0.055066 3.090284 

 

   Figure 1. 

 

 



 

   Table 3. MGR. 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 0.00253526 0.00126763 37.56 <.0001 

Error 15 0.00050631 0.00003375   

Corrected Total 17 0.00304157    

 

   Table 4. MGR. 

R-Square Coeff Var Root MSE MGR Mean 

0.833537 1.792481 0.005810 0.324121 

 

   Figure 2. 

 

 

   Table 5. CUG. 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 9.22626284 4.61313142 5.64 0.0149 

Error 15 12.26068153 0.81737877   

Corrected Total 17 21.48694437    

 

   Table 6. CUG. 

R-Square Coeff Var Root MSE CUG Mean 

0.429389 27.79870 0.904090 3.252275 

 



   Figure 3. 

 

 

   Table 7. MGT. 

Levene's Test for Homogeneity of MGT Variance 
ANOVA of Squared Deviations from Group Means 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 

temp 2 3.857E-6 1.929E-6 0.29 0.7546 

Error 15 0.000101 6.723E-6   

 

   Table 8. MGR. 

Levene's Test for Homogeneity of MGR Variance 
ANOVA of Squared Deviations from Group Means 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 

temp 2 6.72E-10 3.36E-10 0.42 0.6638 

Error 15 1.196E-8 7.97E-10   

 

   Table 9. CUG. 

Levene's Test for Homogeneity of CUG Variance 
ANOVA of Squared Deviations from Group Means 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 

temp 2 3.1483 1.5742 0.87 0.4381 

Error 15 27.0689 1.8046   

 



   Figure 4. 

 

 

   Figure 5. 

 

   Figure 6. 

 

 

The modelled factor, ‘temp’, has a significant (P < 0.0001) effect on MGT (Table 1), with a high determination 
coefficient (R-square) and a tiny coefficient of variation (Table 2). The distribution of the data does not show 
anomalies (Figure 1). MGR, being the reciprocal of MGT, has the same statistical features (Tables 3 and 4), 
and the distribution of the data is a mirror image of MGT (Figure 2). The modelled ‘temp’ factor affects CUG 
too, though in this case it is somewhat less significant (P = 0.0149; Table 5), with a low determination 
coefficient (R-square) and a very high coefficient of variation (Table 6). Figure 3 illustrates the strong 
variability of CUG among replicated plates, essentially due to single outliers. Clearly, this index is much more 
sensitive to stochastic variations among replicates than MGT and MGR. Nonetheless, both MGT, MGR, as 
well as CUG do not appear to display heterogeneous variances in this instance (Tables 7-9). Tukey’s tests for 
mean comparisons indicate a significant difference among all three temperature levels for both MGT (Figure 



4) and MGR (Figure 5), but only between 40 °C and the two other temperatures in the case of CUG (Figure 
6). 

The statistical analyses of MGT and MGR appear solid, and, given the small plate effect (see Annex IV for 
general considerations on this topic) and the absence of heteroskedasticity, no further analysis is considered 
for these data. This might well hold for CUG too, but given the much lower fit of its model, and for the sake 
of illustrating the use of the GLIMMIX procedure in case of heteroskedastic data, a conditional model is 
additionally considered: 

/*conditional model*/ 
proc GLIMMIX method=Laplace; 
class temp plate; 
model CUG = temp; 
random intercept / subject=plate(temp) group=temp; 
lsmeans temp / cl plot=meanplot adjust=Tukey; 
covtest zeroG; 
covtest homogeneity; 
run; 

RESULTS (excerpts): 

   Table 10. 

Model Information 

Data Set WORK.REFFILE 

Response Variable CUG 

Response Distribution Gaussian 

Link Function Identity 

Variance Function Default 

Variance Matrix Blocked By plate(temp) 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

   Table 11. 

Dimensions 

G-side Cov. Parameters 3 

R-side Cov. Parameters 1 

Columns in X 4 

Columns in Z per Subject 3 

Subjects (Blocks in V) 18 

Max Obs per Subject 1 

 

 



   Table 12. 

Optimization Information 

Optimization Technique Dual Quasi-Newton 

Parameters in Optimization 7 

Lower Boundaries 4 

Upper Boundaries 0 

Fixed Effects Not Profiled 

Starting From GLM estimates 
 

   Table 13. 

Fit Statistics for Conditional 
Distribution 

-2 log L(CUG | r. effects) 0.98 

Pearson Chi-Square 0.77 

Pearson Chi-Square / DF 0.04 
 

   Table 14. 

Covariance Parameter Estimates 

Cov Parm Subject Group Estimate Standard Error 

Intercept plate(temp) temp 20 0.02096 0.07928 

Intercept plate(temp) temp 30 1.0381 0.6665 

Intercept plate(temp) temp 40 0.6354 0.4340 

Residual   0.1163 . 
 

   Table 15. 

Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

temp 2 15 7.06 0.0069 
 

   Table 16. 

temp Least Squares Means 

temp Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

20 3.6486 0.1513 15 24.12 <.0001 0.05 3.3262 3.9711 

30 3.8610 0.4386 15 8.80 <.0001 0.05 2.9260 4.7959 

40 2.2472 0.3540 15 6.35 <.0001 0.05 1.4928 3.0017 

 



 

 

    
 Figure 7. 

 

 

 

 

 

 

 

   Table 17. 

Differences of temp Least Squares Means 
Adjustment for Multiple Comparisons: Tukey-Kramer 

temp temp Estimate 
Standard 

Error DF t Value Pr > |t| Adj P Alpha Lower Upper Adj Lower Adj Upper 

20 30 -0.2123 0.4640 15 -0.46 0.6538 0.8918 0.05 -1.2013 0.7767 -1.4175 0.9929 

20 40 1.4014 0.3849 15 3.64 0.0024 0.0064 0.05 0.5809 2.2219 0.4016 2.4013 

30 40 1.6137 0.5636 15 2.86 0.0118 0.0300 0.05 0.4123 2.8151 0.1497 3.0778 

 

   Table 18. 

Tests of Covariance Parameters 
Based on the Likelihood 

Label DF -2 Log Like ChiSq Pr > ChiSq Note 

No G-side effects 3 44.1703 5.85 0.0408 MI 

Homogeneity 2 44.1703 5.85 0.0536 DF 

DF: P-value based on a chi-square with DF degrees of freedom. 
MI: P-value based on a mixture of chi-squares. 

As the event/trial syntax was not used, the response variable is assumed to have a Gaussian distribution and 
Maximum Likelihood (ML) is used as estimation technique (Table 10) since the Laplace approximation was 
invoked. Table 11 shows that three G-side variance/covariance parameters were computed, namely, the 
three between-plates variances separately estimated for each temperature level, as required by the ‘group=’ 
option. One R-side parameter was estimated as well, i.e. the residual scale parameter, though no ‘random 
residual’ statement was present, because for mixed models with normal data, the GLIMMIX procedure 
computes, from the initial GLM estimates, the scale parameter, which, for Gaussian data, represents the 
maximum likelihood estimate of the error variance, and not an overdispersion parameter. The X matrix (the 
matrix for the fixed effects) comprises 4 columns, corresponding to a column for the intercept and three 
columns for the levels of the ‘temp’ effect. There are 3 columns in the Z matrix (the matrix for G-side random 
effects) for this model, corresponding to the three distinct variances modelled for the three temperature 
levels. On the other hand, there are 18 subjects (Blocks in V, where the V matrix includes all the random 



effects, both on the G-side and R-side), since data are processed by subjects, that is, the V matrix is subdivided 
in as many blocks as the number of subjects; in fact, Table 10 already indicated the Variance Matrix blocked 
by ‘plate(temp)’. Note that data are processed by subjects because these are explicitly called in the ‘random’ 
statement by the ‘subject=plate(temp)’ option as subjects modelled in terms of random intercepts; if the 
same statement had been formulated with a shorter syntax (to wit, ‘random plate(temp) / ...’) the whole 
matrix would have been considered a single block (but the estimates would have been unaffected). Seven 
parameters are under optimization (Table 12): the means of the three temperature levels (the fixed effects), 
their three variances (the random effects), and the scale parameter. The means have no estimation 
boundaries, whereas the random effects parameters have a lower boundary of zero. The Pearson Chi-Square 
/ DF parameter (which, for a conditional model with Gaussian data, does not represent an estimation of the 
scale parameter, but, rather, another measure of variability of the observations around the mean) indicates 
that there is little residual variation (Table 13), and, indeed, the residual variance is low (Table 14). The 
estimates of the random variances among plates at the diverse temperatures (Table 14) suggest that the 
variance among plates at 20 °C was smaller, though this difference is not significant (Table 9), because larger 
variances at 30 and 40 °C were essentially due to a single outlier datum in each case (Figure 3). This model 
indicates a stronger significance of the temperature effect on CUG (P = 0.0069; Table 15) than found by the 
GLM analysis (P = 0.0149; Table 5). This is presumably owing to the inclusion of the random effects of plates 
into the model, which leaves out only a small residual variance (Tables 13 and 14), and therefore improves 
the power of the analysis. In this respect, it ought to be noticed that, without the Laplace approximation 
(which invokes both ML, instead of REML, and the ‘noprofile’ option) or just the use of the ‘noprofile’ option 
(which requests that the scale parameter be included into the optimization rather than profiled from it) in 
the GLIMMIX statement, this model would incur in troubles because the modelled random effect is 
equivalent to the residual variance, and, specifically, the estimate of the profiled scale parameter, i.e. the 
residual variance, is linearly related, and almost equivalent, to the random variances under optimization, 
thus that the random effects are estimated in conditions close to over-specification. In fact, the variance of 
the between-plates effect is modelled as a random factor, and the scale parameter models the variance of 
the interaction between the plate random effect and the ‘temp’ fixed factor, but plates are nested within 
temperature levels and nesting corresponds to an entirely unbalanced interaction. As the variance of the 
fully unbalanced interaction over the three levels of the fixed factor is equivalent (apart from BLUPs 
shrinkage) to the variance of the nested random factor across the three levels of the fixed factor, the two 
variance sources are confounded. Under the normality assumption, the random interaction cannot appear 
in the linear predictor because it is confounded with the residual variance (Gbur et al., 2012). However, 
Laplace estimates typically exhibit better asymptotic behaviour and, in this specific case, the inclusion of the 
scale parameter in the optimization solves the conflict between having to estimate the scale parameter as 
profiled from optimization while random variances, practically equivalent to the scale parameter, are 
estimated by optimization. Thus, including the scale parameter into the optimization partially overcomes this 
problem. Nonetheless, the standard error of the residual estimate cannot be calculated (Table 14), suggesting 
that a conditional model is indeed at the boundaries of estimability for these data. Table 15 displays the LS-
means for the three temperature levels, which coincide with those found with the GLM analysis (Figure 3). 
Figure 7 illustrates the estimated means with their confidence intervals. Results of multiple comparisons 
(Table 17) confirm a significant difference of CUG at 40 °C from the other two temperatures, as found with 
GLM (Figure 6). Finally, including the between-plates random effects in the model has a significant impact (at 
P = 0.05), and considering heterogeneous variances among temperature levels, albeit non-significant at P = 
0.05 (like found by GLM analysis; Table 9), represents a non-entirely useless effect (Table 18). The over-
specification of the conditional model can be overcome using a marginal model: 

proc GLIMMIX; /*marginal model*/ 
class temp plate; 
model CUG = temp; 
random residual / group=temp; 
lsmeans temp / cl plot=meanplot adjust=Tukey; 
covtest homogeneity; 
run; 



From a general perspective, it is worth noticing that in both the ‘random’ (G-side) and ‘random residual’ (R-
side) statements, the default variance/covariance structure is the ‘variance components’ (vc), which assigns 
a distinct variance to each of the specified effects. When a random effect is modelled as a G-side effect with 
the default ‘vc’ variance/covariance structure, however, the scale parameter is modelled together with the 
random variances (as seen when discussing Table 11), which means that such a structure is equivalent to 
modelling residuals, i.e. to an R-side effect, with ‘compound symmetry’ variance/covariance structure, 
typically arising in presence of nested random effects. Modelling, instead, the R-side effect with the default 
‘vc’ structure avoids considering the residuals as an R-side parameter. Thus, the above marginal model with 
the ‘group=’ option only provides separate modelling of the residual variances for the levels of the ‘temp’ 
factor, and does not incur in the over-specification of the conditional model, which, in absence of the Laplace 
approximation causes an overlapping of estimations that leads to the warning that “A linear combination of 
covariance parameters is confounded with the residual variance”. It might be further noticed that in this 
example it is not even necessary to specify that ‘plate(temp)’ is the effect for which the residuals are 
modelled, because there is no other residual effect. If it were specified, it could also be processed by subjects 
making explicit the option that ‘subject=plate(temp)’ in the ‘random residual’ statement. All these syntax 
variants would lead to the same inference, as would simply including the ‘residual’ keyword amid the options 
of the ‘random statement’ used in the conditional model (providing that the ‘method=Laplace’ option were 
removed from the first statement of that model). 

RESULTS (excerpts): 

   Table 19. 

Model Information 

Data Set WORK.REFFILE 

Response Variable CUG 

Response Distribution Gaussian 

Link Function Identity 

Variance Function Default 

Variance Matrix Diagonal 

Estimation Technique Restricted Maximum Likelihood 

Degrees of Freedom Method Containment 

 

   Table 20. 

Dimensions 

R-side Cov. Parameters 3 

Columns in X 4 

Columns in Z 0 

Subjects (Blocks in V) 1 

Max Obs per Subject 18 

 

 



   Table 21. 

Optimization Information 

Optimization Technique Dual Quasi-Newton 

Parameters in Optimization 3 

Lower Boundaries 3 

Upper Boundaries 0 

Fixed Effects Profiled 

Starting From Data 

 

   Table 22. 

Fit Statistics 

-2 Res Log Likelihood 40.04 

AIC  (smaller is better) 46.04 

AICC (smaller is better) 48.22 

BIC  (smaller is better) 48.17 

CAIC (smaller is better) 51.17 

HQIC (smaller is better) 46.02 

Generalized Chi-Square 15.00 

Gener. Chi-Square / DF 1.00 

 

   Table 23. 

Covariance Parameter Estimates 

Cov Parm Group Estimate 
Standard 

Error 

Residual (VC) temp 20 0.1648 0.1042 

Residual (VC) temp 30 1.3853 0.8761 

Residual (VC) temp 40 0.9021 0.5705 

 

   Table 24. 

Type III Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

temp 2 15 5.88 0.0130 

 

 



   Table 25. 

Differences of temp Least Squares Means 
Adjustment for Multiple Comparisons: Tukey-Kramer 

temp temp Estimate 
Standard 

Error DF t Value Pr > |t| Adj P Alpha Lower Upper Adj Lower Adj Upper 

20 30 -0.2123 0.5083 15 -0.42 0.6821 0.9089 0.05 -1.2957 0.8711 -1.5325 1.1079 

20 40 1.4014 0.4217 15 3.32 0.0046 0.0121 0.05 0.5026 2.3002 0.3061 2.4967 

30 40 1.6137 0.6174 15 2.61 0.0196 0.0485 0.05 0.2977 2.9298 0.009946 3.2175 

 

   Table 26. 

Tests of Covariance Parameters 
Based on the Restricted Likelihood 

Label DF -2 Res Log Like ChiSq Pr > ChiSq Note 

Homogeneity 2 44.9186 4.88 0.0873 DF 

DF: P-value based on a chi-square with DF degrees of freedom. 

 

REML is now the estimation technique (Table 19). No G-side effects, and therefore no columns in Z, are 
modelled (Table 20). No subject effect was specified and thus data are not processed by subjects. There are 
only three parameters in optimization (Table 21) because a residual likelihood technique is used to compute 
the objective function and thus the fixed effects are profiled from the optimization (i.e., they are computed 
analytically as exact values rather than as asymptotic estimation). The Generalized Chi-Square / DF parameter 
is displayed (Table 22) as a measure of variability of the observations around the approximated model, which 
assumes the fixed factors as given (since they are profiled). The three error (or random residual) variance 
estimates are displayed in Table 23, whereas residual variance is no longer estimated as R-side parameter. 
Significance of the temperature effect on CUG (P = 0.0130; Table 24) is closer to the value found by the GLM 
analysis (P = 0.0149; Table 5) than to that found by the conditional model with Laplace approximation (P = 
0.0069; Table 15). Inference about the differences between the means collimates with the other models 
(Table 25). The impact of modelling heterogeneous errors for the three means (Table 26) is similar to that 
found with the conditional model.  

The conditional and marginal models do not introduce any substantial change into the inference previously 
reached with the general linear model, but they, the latter in particular, furnish an example of how to 
elaborate values of germination indices if these are heteroskedastic. As seen in Annex IV, germination data 
typically correspond to hierarchical designs, and modelling them with the aid of the R matrix improves 
robustness of convergence and optimization. Marginal models can therefore be preferred for the analysis of 
indices and other response variables with Gaussian distribution, because the aggregate observations, i.e the 
plates, are subjects nested within each treatment rather than true blocks (that is, replicates of the whole set 
of experimental contrasts), and this can lead to over-specification of the conditional model. 
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