
Annex IV 

Analysis of data of Annex III with SAS/STAT® 15.1. 

 

Cumulative germination through time (data from Piacco, 1954) are analysed (see Annex III for the dataset) 
as an example. These data were recorded at uneven time spacings. This is sensible if it is done so that more 
frequent observations are performed at the beginning, as well as during steeper changes, of the germination 
time-course, to obtain a better delineation of the progress curve and its inception. In the present case, the 
adoption of closer observation times appears to have been a bit later and pointlessly protracted. 

It should be noted that germination data through time can be arranged as either different dependent variable 
responses obtained at diverse times, i.e. a multivariate response (data arrangement 1, in Annex III), or as a 
single response variable (i.e. univariate) whose outcome depends on the time of observation (data 
arrangement 2, in Annex III), which is therefore considered a factor for a longitudinal study. Data must be 
arranged differently, according to the kind of analysis. For multivariate analysis, the germination responses 
at every time have to be organized into separate columns. 

The comments to the statistical analysis presented here are based on the SAS/STAT® 15.1 User’s Guide 
(2018), as well as on Littell et al. (2006) and Stroup et al. (2018), to which the readers should refer for a more 
in-depth exposition of the matter. 

Although ‘temp’ (the temperature used for soaking seeds prior to the germination test) is a numerical 
variable, GLM uses linear regression to model continuous variables as covariates and thereby it assumes 
linearity of response to factor variables, but this is not guaranteed in this case. It can be tested with: 

proc SGSCATTER data=reffile; /* ‘reffile’ is the data file, not to be specified if it is the current input*/ 
plot (d0 d1 d2 d3 d3_5 d4 d4_5 d5 d5_5 d6 d6_5 d7)*temp / pbspline; 
run; 

RESULT: 

 

 

Figure 1 

 

 

 

 

 

 

 

 



In Figure 1, it is evident that, from d2 to d7 (i.e., from day 2 to day 7), the germination response to increasing 
temperature is not linear in the range tested. Specifically, a power-like increase is displayed at d2, whereas 
a maximum at 30 °C is apparent starting from d4. An intermediate situation takes place at d3 and d3_5 (note 
that the underscore is used in place of the dot to separate decimals because the latter is not accepted in the 
variable name by the SAS software). Hence, the response to ‘temp’ is not linear and must be dealt with as a 
classification independent variable in an ANOVA model. 

Homogeneity of variances is tested (by means of Levene's test). This requires the use of the GLM procedure 
and a multivariate organization of germination responses (data arrangement 1, in Annex III). Counts are used 
in this multivariate analysis, but proportions/percentages work as well. 

/*MANOVA model*/ 
proc GLM; 
class temp; 
model d0 d1 d2 d3 d3_5 d4 d4_5 d5 d5_5 d6 d6_5 d7 = temp; 
repeated time; 
means temp / Tukey hovtest=Levene; 
run; 
 
With respect to a typical multivariate analysis of variance (MANOVA), the SAS GLM procedure offers a 
‘repeated’ statement that performs MANOVA analysis but applies an adjustment to account for the 
correlation of measurements taken on the same experimental unit (or subject), i.e. on the same plate, by 
performing a repeated measures analysis of variance. The ‘repeated’ statement requests to perform a 
repeated-measures MANOVA wherein multiple response values on the same line in the data file are 
considered sequential measurements taken on the same subject through time. Note that time was not 
previously introduced as a variable (though nothing prevents introducing it in the ‘class’ statement), neither 
it appears in the data table, and is therefore identified here as the implicit variable across which repeated 
measurements were taken. MANOVA (not ANCOVA, since time is managed as a classification variable) is thus 
elicited to test both the effect of time and its interaction with the modelled factor. In addition, one-way 
ANOVAs are automatically performed for every multivariate response (that is, each observation time). The 
‘Tukey’ option of the ‘means’ statement requests that means of the three levels of the ‘temp’ factor within 
each observation time are compared with Tukey’s studentized range test (HSD). The ‘hovtest=Levene’ option 
invokes the Levene's test for the homogeneity of variances within each timepoint. 

RESULTS (excerpts): 

   Table 1. Dependent Variable: d2 

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 2 661.3333333 330.6666667 105.16 <.0001 

Error 15 47.1666667 3.1444444   

Corrected Total 17 708.5000000    
 

   Table 2. Dependent Variable: d3 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 1593.444444 796.722222 29.04 <.0001 

Error 15 411.500000 27.433333   

Corrected Total 17 2004.944444    



 

   Table 3. Dependent Variable: d3_5 

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 2 232.1111111 116.0555556 6.97 0.0072 

Error 15 249.6666667 16.6444444   

Corrected Total 17 481.7777778    

 

   Table 4. 

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of no time Effect 
H = Type III SSCP Matrix for time 

E = Error SSCP Matrix 
 

S=1    M=3.5    N=2.5 

Statistic Value F Value Num DF Den DF Pr > F 

Wilks' Lambda 0.0001545 5032.25 9 7 <.0001 

Pillai's Trace 0.9998455 5032.25 9 7 <.0001 

Hotelling-Lawley Trace 6470.0336917 5032.25 9 7 <.0001 

Roy's Greatest Root 6470.0336917 5032.25 9 7 <.0001 

 

   Table 5. 

MANOVA Test Criteria and F Approximations for the Hypothesis of no time*temp Effect 
H = Type III SSCP Matrix for time*temp 

E = Error SSCP Matrix 
 

S=2    M=3    N=2.5 

Statistic Value F Value Num DF Den DF Pr > F 

Wilks' Lambda 0.01488516 5.60 18 14 0.0011 

Pillai's Trace 1.64662320 4.14 18 16 0.0032 

Hotelling-Lawley Trace 21.74020886 7.90 18 8.5 0.0022 

Roy's Greatest Root 19.45604490 17.29 9 8 0.0002 

NOTE: F Statistic for Roy's Greatest Root is an upper bound. 

NOTE: F Statistic for Wilks' Lambda is exact. 

 

 

 



Table 6. The GLM Procedure for Repeated Measures Analysis of Variance - Tests of 
Hypotheses for Between Subjects Effects. 

Source DF Type III SS 
Mean 

Square F Value Pr > F 

temp 2 747.0648148 373.5324074 9.58 0.0021 

Error 15 584.5833333 38.9722222   

 

Table 7. The GLM Procedure for Repeated Measures Analysis of Variance - 
Univariate Tests of Hypotheses for Within Subject Effects 

Source DF Type III SS 
Mean 

Square F Value Pr > F 

Adj Pr > F 

G - G H-F-L 

time 11 307002.5926 27909.3266 5848.29 <.0001 <.0001 <.0001 

time*temp 22 1854.4907 84.2950 17.66 <.0001 <.0001 <.0001 

Error(time) 165 787.4167 4.7722     

 

   Table 8. 

Levene's Test for Homogeneity of d2 Variance 
ANOVA of Squared Deviations from Group Means 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 

temp 2 111.5 55.7284 5.01 0.0216 

Error 15 167.0 11.1309   

 

   Figure 2. 

 

 

 

 

 



   Figure 3. 

 

 

   Figure 4. 

 

 

Within single timepoints, one-way ANOVAs indicate a significant effect of ‘temp’ at times 2 d, 3 d and 3.5 d 
(Tables 1, 2 and 3), where ‘significant’ is intended as showing evidence of statistical significance at the P ≤ 
0.05 level. No significant effect of ‘temp’ was detected at the other timepoints (not shown). Note that the 
analysis is not possible for germination at days 0 and 1, whose mean value is zero. Table 4 shows that, as 
obvious, MANOVA found a highly significant effect of time on the germination progress. Table 5 adds that 
the germination progress through time is significantly different across soaking temperatures (‘temp’), as 
shown in Figure 1. Accordingly, both the between-subjects (where plates are the subjects on which the 
repeated measures were performed) effect, that is ‘temp’ (in fact, different plates were subjected to diverse 
temperatures), as well as the within-subjects effects (i.e., time and its interaction with ‘temp’, since repeated 
measures through time were taken on the same plate), had a significant effect (Tables 6 and 7). To account 
for the correlation through repeated measurements, probabilities of the F tests were also corrected 
according to Greenhouse-Geisser (G - G) or Huynh-Feldt-Lecoutre (H-F-L) adjustments to numerator and 
denominator degrees of freedom (Table 7). Finally, Table 8 displays the Levene's test for homogeneity of 
variances at ‘d2’ (day 2), which is the only significant test result shown because all the other timepoints hint 
to non-significant heteroskedasticity. Note that these tests compare variances across the diverse levels of 
‘temp’, not through different timepoints. Strong heteroskedasticity is expected to occur among different 
timepoints during the time-course of germination, but MANOVA cannot evidence it. Neither this is a problem, 
if the effect of treatments is separately contrasted within timepoints: a one-way ANOVA for every 
observation time is performed at every timepoint, allowing to identify the timepoints at which the progress 
of germination is different across the ‘temp’ levels. At 2 d heteroskedasticity was significant, but, given the 
evident diversity of the values among temperature levels at this timepoint, heteroskedasticity does not seem 



to have altered the inference drawn from ANOVA. Unless the group variances (i.e., the between-replicates 
variances) are extremely different, the usual ANOVA test is relatively robust when the contrasted groups are 
all about the same size (Zar, 1999). The Tukey test for multiple pairwise comparisons was performed to 
identify which of the three levels of the ‘temp’ variable is different from each other. Figures 2-4 show a 
different effect for each of the three temperatures at 2 days, but only for 20 °C with respect to the other two 
temperatures at days 3-3.5. 

Although a multivariate analysis is a reasonable approach to repeated measures, GzLMM allow a 
conceptually better analysis of germination time-courses. Specifically, when observations at a given 
timepoint are strongly affected by the treatment, the means, and therefore the variances, are largely 
different as well. Strong heteroscedasticity can bias the statistical analysis, essentially when some means are 
much more different than the others, and GzLMM are then the best statistical approach, especially because 
heteroscedasticity is associated with non-normal errors (Stroup, 2015). 

The GLIMMIX procedure is therefore used because data are binomial and clustered. A GzLMM longitudinal 
(through time) analysis requires a univariate response variable, ‘germ’ (cumulative germination), which must 
therefore be listed in a single column (data arrangement 2, in Annex III). 

proc GLIMMIX method=Laplace; 
class plate temp time; 
model germ/n = temp time temp*time / link=probit; 
random plate(temp); 
*nloptions tech=nrridg; 
/*Note that the above ‘nloptions’ statement can be used to solve convergence and estimation problems. In 
the present instance it has not been used, and it will be discussed when introducing marginal models*/ 
run; 

As we’ll see, this model has some troubles, and it converges to a solution only if fitted by true maximum 
likelihood, and this requires the marginal distribution to be numerically approximated by the Laplace method 
(‘method=Laplace’ option) or by adaptive Gauss-Hermite quadrature (which, anyway, would require some 
re-arrangement of the syntax). This is anyway a useful solution because applying one of these integral 
approximations is recommended for the initial evaluation of the model since they consent the use of true 
likelihood and thus the obtainment of unbiased estimation of overdispersion and of diagnostic tests for the 
variance/covariance structure (Stroup et al., 2018). This aspect is of much greater concern here than it was 
for end-of-test data analysed in Annex II because fitting the right variance/covariance structure is compelling 
in the analysis of longitudinal data. 

The link function, as already mentioned in Annex II, is set to probit because this transformation is 
theoretically, and practically, more suitable to germination data. 

Since the germination progress is not linear to time, not either on the linked scale (as we’ll see), even ‘time’ 
must be considered a categorical variable. Time can be modelled as a continuous variable by, for example, 
introducing suitable polynomial/logarithmic terms that linearize the relationship; a possible solution in this 
sense will be considered subsequently. 

Plates represent clusters of seeds and are subjected to sequential observations. To take into account that 
plates are independent blocks, a ‘random’ statement has been introduced that considers plates as 
representing a random effect within each temperature condition; that is, the germination response is 
assumed to randomly deviate from the seed population average because plates represents random samples 
of the population. This deviation is assumed to be constant throughout the germination time-course, and the 
plate effect is therefore modelled as if it represents a set of random intercepts normally distributed around 



the general linear model. As plates are numbered 1-6 for every between-subjects level of the ‘temp’ factor, 
nesting is made explicit to indicate that plates coded with the same number but containing seeds pre-treated 
at different soaking temperatures are different entities (i.e., different subjects). 

RESULTS (excerpts): 

   Table 9. 

Model Information 

Data Set WORK.REFFILE 

Response Variable (Events) germ 

Response Variable (Trials) n 

Response Distribution Binomial 

Link Function Probit 

Variance Function Default 

Variance Matrix Not blocked 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 
   Table 10. 

Class Level Information 

Class Levels Values 

plate 6 1 2 3 4 5 6 

temp 3 20 30 40 

time 12 0 1 2 3 4 5 6 7 3.5 4.5 5.5 6.5 

 
   Table 11. 

Number of Observations Read 216 

Number of Observations Used 216 

Number of Events 14668 

Number of Trials 21600 

 

 

 

 



   Table 12. 

Dimensions 

G-side Cov. Parameters 1 

Columns in X 52 

Columns in Z 18 

Subjects (Blocks in V) 1 

Max Obs per Subject 216 

 

   Table 13. 

Optimization Information 

Optimization Technique Dual Quasi-Newton 

Parameters in Optimization 37 

Lower Boundaries 1 

Upper Boundaries 0 

Fixed Effects Not Profiled 

Starting From GLM estimates 

 

   Table 14. 

Fit Statistics 

-2 Log Likelihood 803.45 

AIC  (smaller is better) 877.45 

AICC (smaller is better) 893.25 

BIC  (smaller is better) 910.40 

CAIC (smaller is better) 947.40 

HQIC (smaller is better) 882.00 

 

   Table 15. 

Fit Statistics for Conditional 
Distribution 

-2 log L(germ | r. effects) 763.13 

Pearson Chi-Square 58.53 

Pearson Chi-Square / DF 0.27 

 

 

 



   Table 16. 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

plate(temp) 0.01026 . 

 
   Table 17. 

Type III Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

temp 2 15 0.00 1.0000 

time 11 165 341.95 <.0001 

temp*time 22 165 4.25 <.0001 

 

Table 9 shows that the Variance matrix is not subdivided in blocks (=not blocked), because subjects are not 
explicitly identified, even though plates are indeed subjects of repeated observations. Not having data 
processed in terms of subjects leaves the default Containment Method for calculating the Degrees of 
Freedom. As the model is conditional, that is, the plate effect is considered a random factor, maximum 
likelihood can be used as estimation technique thanks to the Laplace Likelihood Approximation. Table 10 
displays the classification effects and their levels. It can be noted that time levels are not numerically ordered, 
since time is considered a classification effect. Table 11 provides the number of aggregate observations 
(namely, 6 plates x 3 temperatures x 12 times = 216) as well as of individual Bernoulli trials (for a total of 216 
observations x 100 seed/plate = 21600 trials, which gave 14668 response events; note that this would really 
be so only if an independent plate had been used for each observation). Table 12 indicates that even though 
there are three groups of plates (i.e., there are six plates for each of the three temperature levels), a single 
random parameter is estimated (G-side Covariance Parameters = 1), namely, the variance of the ‘plate(temp)’ 
effect, because, if not otherwise specified, the default variance/covariance structure is ‘variance 
components’, and it amounts to estimating the variance of the response among plates, assuming this 
variance is the same across treatments. In the same table it is shown that there are 52 columns in the X 
matrix (the matrix for the fixed effects), corresponding to a column for the intercept, three columns for the 
levels of the ‘temp’ effect, 12 for the ‘time’ effect, and 36 columns for their interaction. There are 18 columns 
in the Z matrix (the matrix for G-side random effects) for this model, corresponding to the 18 plates (six plates 
for each of the three temperature levels). On the other hand, there is a single subject (Blocks in V, where the 
V matrix includes all the random effects, both on the G-side and R-side), since data are not processed by 
subjects (which would otherwise mean that the V matrix would be subdivided in as many blocks as the 
number of subjects), and the whole matrix is therefore considered a single block. Thus, the maximum number 
of observations per subject is 216 (as there are 216 observations for a single block). The default optimization 
technique for GzLMM with binomial data, the Dual Quasi-Newton method, is used (Table 13). Because a 
Laplace approximation of maximum likelihood is used to compute the objective estimation function, the fixed 
effects are not profiled from the optimization (as otherwise typically done), thus that both fixed effects and 
covariance parameters participate in the optimization, and a total of 37 parameters is therefore indicated to 
be in optimization, corresponding to 36 fixed effect parameters and one random variance component (which 



has a lower bound of 0). Also, as the fixed effects are part of the optimization, a few GLM iterations are 
initially performed to obtain starting values for the optimization of the fixed effect parameters. It might be 
noticed that 36, the number of fixed effect parameters, is obtained because all fixed effects are classification 
variables and each categorical predictor with L levels is coded into L−1 dummy variables, so that the 
estimated fixed parameters are: the model intercept, two dummies for temperature, 11 dummies for time 
and 2 x 11 dummies for their interaction (as can be checked by adding the ‘solution’ option into the ‘model’ 
statement). The Fit Statistics, which can be used to compare different models that use estimation techniques 
based on true likelihood, are shown in Table 14, whereas Fit Statistics for Conditional Distribution are 
displayed in Table 15. In the latter table, the Pearson Chi-Square / DF statistics indicates that there is not 
overdispersion in the model, since this ratio is largely below 1. All the relevant factors should therefore have 
been considered. The estimate of the Covariance Parameter, that is, the variance among plates, is given in 
Table 16 as 0.01026 on the probit scale. Variances of random factors are modelled as constant effects on the 
linked scale and correspond to variable spans on the percentile data scale, with a maximum value in the 
middle range, i.e. 50%. A rough method to obtain an idea of the magnitude of these variances is to consider 
the amplitude of the corresponding standard deviations (on the probit scale, the square root of a variance 
represents the standard normal deviates, z, from the mean of the standard normal distribution) once 
transposed onto the data scale around a fixed percentile, with 50% being the best reference. This can be 
seen by, for example, using the cumulative NORM.S.DIST function of Excel and considering that the mean of 
the standard normal distribution is centred to zero on the probit scale, which corresponds to 50 % 
germination on the percentile scale. For these data, this naïvely computed value corresponds to a maximum 
standard deviation of 4 % around 50 % on the percentile scale. Such variability is low, and its standard error 
could not be calculated (unless the ‘nloptions’ statement is used), hinting to some computational problem 
related to the fact that some means are on the boundary of the parameter space since they have values of 
zero. Finally, the type III tests of fixed effects are displayed in Table 17, and indicate a significant effect for 
time and temperature x time interaction but not for temperature. 

As said, the above-mentioned missing standard error of the random variance suggests that there is some 
trouble in the calculations. Moreover, ‘temp’, which was shown to be significant by MANOVA (Table 6), is 
not significant in this analysis. What is most probably troubling the analysis is that some averages, notably 
those observed at the initial times of observations (days 0-1), have a value of zero. In generalized linear 
(mixed) models, means are analysed on the linear scale, and a mean of zero cannot be defined on a probit 
scale (as well as on a logit scale). These means were already an issue for the multivariate analysis, as they 
prevented performing the one-way ANOVA for data at days 0 and 1 (in such case, the problem was that an F 
ratio cannot be defined if the error variance is null), though the analysis of the subsequent non-zero means 
was not prevented. Since in GzLMM all the longitudinal means are modelled together, the inclusion of zero 
means makes the computation difficult to manage. Nevertheless, it ought to be noted that these zero means 
correspond to the initial lag time, required for seed imbibition and metabolism re-activation, when the seeds 
cannot yet attain visible germination. There is, therefore, a strong conceptual difference between this stage 
and the subsequent germination time-course. Thus, a separate analysis of the non-zero means can be a 
sensible approach, and it can be obtained with a ‘BY’ statement, which utilizes the ‘stage’ variable to define 
the initial lag period when the germination progress curve has not yet started. To identify, and to separate, 
the initial lag in a given experiment makes sense because a lag time is almost always required to start 
germination, and, of course, no difference in the germination progress can occur before germination is 
observed and all the data are zeros. This actually corresponds to exclude the lag data from the analysis 
because they cannot be properly analysed with ANOVA and linear models, at least without more 
sophisticated approaches. 

It is worth mentioning that the lag data might be simply deleted by means of the following program code: 



DATA new; 
set reffile; 
if germ=0 then delete; 
run; 

This ‘DATA’ command reads the data set ‘work.reffile’, and then removes all observations that do not meet 
the condition specified in the ‘if’ statement. The result is stored in the data set ‘work.new’. Modelling can 
then be done processing this latter file, so that the ‘by’ statement is no longer necessary. It must be noted, 
however, that, in this way, any observation with ‘germ=0’ would be deleted, and even though this is not a 
trouble for the present dataset, it can bias estimates because it would erase also individual replications with 
values of zero for means that are not zero themselves (since some other replications would then have non-
zero values). It could also be unnecessary, because, whereas means are modelled on the linked scale, where 
zeros cannot be transposed, the single observations are modelled on the data scale, where zeros are not of 
trouble. This would require, anyway, that true likelihood and not pseudo-likelihood is used as estimation 
technique, because pseudo-likelihood involves a transposition of the whole dataset on the linked scale. 
Nevertheless, due to shrinkage of BLUPs of random effects toward their mean, means with only some data 
having a value of zero can still be dealt with even if pseudo-likelihood is utilized, but standard errors can 
hugely increase. Pseudo-likelihood is applied by default for models containing random factors, or an R-side 
random effect (i.e., a variance/covariance structure), for non-Gaussian data, and it can be substituted with 
true likelihood, if there are not R-side effects, using an integral approximation by Laplace or adaptive 
quadrature method (Stroup et al., 2018). 

As the Laplace integral approximation allows proper overdispersion diagnostics and covariance parameters 
testing (Stroup et al., 2018), a ‘covtest’ statement is included to test significance of the inclusion of the plate 
random effect, which was previously shown to be quite small: 

proc GLIMMIX method=Laplace; 
by stage; 
class plate temp time; 
model germ/n = temp time temp*time / link=probit; 
random plate(temp); 
covtest zeroG; 
run; 

RESULTS (excerpts): 

 

   Table 18: stage=progress 

Number of Observations Read 180 

Number of Observations Used 180 

Number of Events 14668 

Number of Trials 18000 

 

 

 

 



   Table 19: stage=progress 

Dimensions 

G-side Cov. Parameters 1 

Columns in X 44 

Columns in Z 18 

Subjects (Blocks in V) 1 

Max Obs per Subject 180 

 
   Table 20: stage=progress 

Fit Statistics 

-2 Log Likelihood 803.45 

AIC  (smaller is better) 865.45 

AICC (smaller is better) 878.86 

BIC  (smaller is better) 893.06 

CAIC (smaller is better) 924.06 

HQIC (smaller is better) 869.26 

 
   Table 21: stage=progress 

Fit Statistics for Conditional 
Distribution 

-2 log L(germ | r. effects) 763.14 

Pearson Chi-Square 58.53 

Pearson Chi-Square / DF 0.33 

 
   Table 22: stage=progress 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

plate(temp) 0.01026 0.004422 

 

 

 

 

 



   Table 23: stage=progress 

Type III Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

temp 2 15 7.17 0.0065 

time 9 135 417.94 <.0001 

temp*time 18 135 5.20 <.0001 

 
   Table 24: stage=progress 

Tests of Covariance Parameters 
Based on the Likelihood 

Label DF 
-2 Log 

Like ChiSq Pr > ChiSq Note 

No G-side effects 1 838.61 35.16 <.0001 MI 

MI: P-value based on a mixture of chi-squares. 

This model properly finds a null variance among plates for the lag stage, as well as non-significance of both 
the fixed effects and the random factor, which is obvious in absence of germination. On the other hand, it 
provides a better analysis of the germination progress stage. Table 18 shows that, for the progress stage, the 
number of aggregate observations is 180 (namely, 6 plates x 3 temperatures x 10 times = 180), with a 
corresponding number of Bernoulli trials. Table 19 indicates that there are 44 columns in the X matrix (the 
matrix for the fixed effects), corresponding to a column for the intercept, three columns for the levels of the 
‘temp’ effect, 10 for the ‘time’ effect, and 30 columns for their interaction. There are 18 columns in the Z 
matrix (the matrix for G-side random effects), corresponding to the 18 plates (six plates for each of the three 
temperature levels), and the maximum number of observations per subject is 180 (as there are 180 
observations for a single block in the V matrix). A total of 31 parameters were under optimization (not 
shown), corresponding to 30 fixed effect parameters and one random variance component (which has a 
lower bound of 0). The number of fixed effect parameters is obtained as: the model intercept, two dummies 
for temperature, 9 dummies for time and 2 x 9 dummies for their interaction (as can be checked by adding 
the ‘solution’ option into the ‘model’ statement). The Fit Statistics (Table 20) have all declined (i.e., 
improved), except the -2 Log Likelihood (which is not penalized for the number of parameters), with respect 
to Table 14, for the sole reason that the number of parameters has diminished, while the data are the same 
but for the null means of the lag stage. The Fit Statistics for Conditional Distribution (Table 21) are the same, 
as they derive from the -2 Log Likelihood, but the overdispersion parameter has slight increased (though still 
largely < 1), because of the smaller degrees of freedom after the two lag timepoints were analysed apart. 
The estimate of the Covariance Parameter (Table 22), that is, the variance among plates, still is 0.01026 on 
the probit scale, but its standard error has now been estimated. The type III tests of fixed effects are displayed 
in Table 23, and now they indicate a significant effect (P ≤ 0.05) for both time and temperature as well as for 
their interaction. Finally, the Tests of Covariance Parameters (Table 24) demonstrates a significant effect of 
the plate random effect. The previously highlighted troubles have now been addressed. 

The analysis can then be further implemented by plotting the residuals and providing estimates of means 
and multiple comparisons. Least-square means (LS-means) ought to be computed for the highest interaction 



effect (of time with the other fixed factors) present in the model, i.e. temp*time in this instance, and multiple 
contrasts are usually requested within each timepoint, although this depends upon the scope of the analysis. 

/*Conditional model with categorical time and integral approximation*/ 
proc GLIMMIX method=Laplace order=data plots=(residualpanel(ilink marginal) studentpanel(conditional)); 
by stage; 
class plate temp time; 
model germ/n = temp time temp*time / link=probit; 
random plate(temp); 
lsmeans temp*time / cl ilink plot=meanplot slice=time slicediff=time adjust=smm; 
run; 

Residual panels have been described in Annex II. The ’lsmeans’ statement prescribes that: least-squares 
means are estimated for the levels of the ‘temp*time’ effect (on the linked scale) with their confidence limits 
(cl), whereas the ‘ilink’ option requests that the estimated means and confidence limits are also reported on 
the scale of the data. The ‘plot=’ option ensures that a plot of the estimates (on the linked scale) is displayed. 
Significance of the between-subjects effect is assessed through time points with the ‘slice’ option, and 
multiple contrasts are performed at each timepoint (‘slicediff=time’) with the studentized maximum modulus 
adjustment for multiplicity (‘adjust=SMM’), which, for longitudinal data, protects the overall Type I error rate 
better than the Tukey’s adjustment. The SMM adjustment can be useful in longitudinal data analysis to 
reduce the risk that small stochastic changes in the germination progress curve are identified as significant. 
The ‘order=data’ option was introduced in the GLIMMIX statement because, by default, the SAS software 
sorts the levels of classification variables according to an alphanumeric order that, as shown in Table 10, is 
not the same as if the variable were considered numerically continuous. A correct display of the plot of the 
estimates (requested by the ‘plot=meanplot’ option) requires that timepoints are arranged in increasing 
order. If the dataset is already ordered according to increasing time, then adding the ‘order=data’ option will 
do the job. 

RESULTS (excerpts): 

   Figure 5: stage=progress 

 

 

 

 

 

 

 

 

 

 



   Table 25: stage=progress 

Tests of Effect Slices for temp*time 
Sliced By time 

time 
Num 

DF 
Den 
DF F Value Pr > F 

2 2 135 24.78 <.0001 

3 2 135 23.48 <.0001 

3.5 2 135 5.88 0.0036 

4 2 135 0.85 0.4317 

4.5 2 135 1.02 0.3617 

5 2 135 1.14 0.3243 

5.5 2 135 0.90 0.4096 

6 2 135 0.75 0.4742 

6.5 2 135 0.75 0.4742 

7 2 135 0.87 0.4223 

 
 
   Table 26: stage=progress 

Simple Effect Comparisons of temp*time Least Squares Means By time 
Adjustment for Multiple Comparisons: SMM 

Simple 
Effect 
Level temp temp Estimate 

Standard 
Error DF t Value Pr > |t| Adj P Alpha Lower Upper 

Adj 
Lower 

Adj 
Upper 

time 2 20 30 -0.4279 0.1299 135 -3.29 0.0013 0.0038 0.05 -0.6849 -0.1710 -0.7419 -0.1140 

time 2 20 40 -0.8560 0.1239 135 -6.91 <.0001 <.0001 0.05 -1.1012 -0.6109 -1.1556 -0.5565 

time 2 30 40 -0.4281 0.1093 135 -3.92 0.0001 0.0004 0.05 -0.6443 -0.2120 -0.6922 -0.1640 

time 3 20 30 -0.5413 0.09634 135 -5.62 <.0001 <.0001 0.05 -0.7318 -0.3507 -0.7741 -0.3084 

time 3 20 40 -0.5904 0.09680 135 -6.10 <.0001 <.0001 0.05 -0.7819 -0.3990 -0.8243 -0.3565 

time 3 30 40 -0.04916 0.09954 135 -0.49 0.6222 0.9456 0.05 -0.2460 0.1477 -0.2897 0.1914 

time 3.5 20 30 -0.3298 0.1060 135 -3.11 0.0023 0.0068 0.05 -0.5394 -0.1201 -0.5860 -0.07357 

time 3.5 20 40 -0.2853 0.1052 135 -2.71 0.0075 0.0224 0.05 -0.4933 -0.07729 -0.5395 -0.03112 

time 3.5 30 40 0.04448 0.1097 135 0.41 0.6859 0.9687 0.05 -0.1725 0.2615 -0.2207 0.3096 

time 4 20 30 -0.1513 0.1164 135 -1.30 0.1959 0.4784 0.05 -0.3816 0.07895 -0.4327 0.1301 

time 4 20 40 -0.07496 0.1146 135 -0.65 0.5142 0.8844 0.05 -0.3016 0.1517 -0.3519 0.2020 

time 4 30 40 0.07638 0.1179 135 0.65 0.5184 0.8873 0.05 -0.1569 0.3096 -0.2087 0.3614 

time 4.5 20 30 -0.1407 0.1212 135 -1.16 0.2476 0.5721 0.05 -0.3804 0.09892 -0.4335 0.1521 

time 4.5 20 40 0.01942 0.1170 135 0.17 0.8684 0.9977 0.05 -0.2120 0.2509 -0.2634 0.3022 

time 4.5 30 40 0.1601 0.1207 135 1.33 0.1869 0.4608 0.05 -0.07863 0.3989 -0.1316 0.4519 

time 5 20 30 -0.1735 0.1264 135 -1.37 0.1720 0.4307 0.05 -0.4234 0.07640 -0.4789 0.1319 



Simple Effect Comparisons of temp*time Least Squares Means By time 
Adjustment for Multiple Comparisons: SMM 

Simple 
Effect 
Level temp temp Estimate 

Standard 
Error DF t Value Pr > |t| Adj P Alpha Lower Upper 

Adj 
Lower 

Adj 
Upper 

time 5 20 40 -0.01344 0.1215 135 -0.11 0.9120 0.9993 0.05 -0.2537 0.2268 -0.3070 0.2801 

time 5 30 40 0.1601 0.1267 135 1.26 0.2087 0.5027 0.05 -0.09054 0.4107 -0.1462 0.4663 

time 5.5 20 30 -0.1500 0.1270 135 -1.18 0.2394 0.5581 0.05 -0.4011 0.1011 -0.4569 0.1568 

time 5.5 20 40 -0.00177 0.1224 135 -0.01 0.9885 1.0000 0.05 -0.2439 0.2403 -0.2976 0.2941 

time 5.5 30 40 0.1483 0.1270 135 1.17 0.2452 0.5680 0.05 -0.1029 0.3995 -0.1587 0.4552 

time 6 20 30 -0.1519 0.1278 135 -1.19 0.2367 0.5534 0.05 -0.4046 0.1008 -0.4607 0.1569 

time 6 20 40 -0.03810 0.1241 135 -0.31 0.7593 0.9859 0.05 -0.2836 0.2074 -0.3381 0.2619 

time 6 30 40 0.1138 0.1288 135 0.88 0.3787 0.7586 0.05 -0.1410 0.3686 -0.1976 0.4251 

time 6.5 20 30 -0.1519 0.1278 135 -1.19 0.2367 0.5534 0.05 -0.4046 0.1008 -0.4607 0.1569 

time 6.5 20 40 -0.03810 0.1241 135 -0.31 0.7593 0.9859 0.05 -0.2836 0.2074 -0.3381 0.2619 

time 6.5 30 40 0.1138 0.1288 135 0.88 0.3787 0.7586 0.05 -0.1410 0.3686 -0.1976 0.4251 

time 7 20 30 -0.1690 0.1283 135 -1.32 0.1901 0.4669 0.05 -0.4228 0.08478 -0.4791 0.1411 

time 7 20 40 -0.07996 0.1253 135 -0.64 0.5246 0.8916 0.05 -0.3278 0.1679 -0.3828 0.2229 

time 7 30 40 0.08903 0.1306 135 0.68 0.4965 0.8713 0.05 -0.1692 0.3472 -0.2265 0.4045 

 
 

Figure 6: stage=progress 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 7: stage=progress 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The full table of ‘temp*time Least Squares Means’ is not shown, but the plot of ‘LS-Means for temp*time’ is 
displayed with the estimated least-square means and their confidence interval with 95% limits on the linked 
scale (Figure 5). In this Figure, it may be noted that heteroscedasticity of means at day 2 (see Table 8) is 
modest, on the linked scale. Tests of significance for temperature effect sliced by timepoints (Table 25) show 
a significant effect of the tested temperature levels only for days 2-3.5, like found with one-way ANOVAs in 
MANOVA (Tables 1, 2 and 3). Multiple comparisons at each timepoint (Table 26) indicate a different effect 
for each of the three temperatures at 2 d, but only for 20 °C with respect to the other two temperatures at 
3-3.5 d, like obtained with MANOVA (Figures 2-4). Residuals (Figure 6) are quite typical for binomial data with 
no evidence of anomalies. Platykurtosis is apparent (upper right plot in Figure 6) and linked to 
underdisperison (Table 21), because binomial errors of means close to the boundaries of the percentile range 
are skewed and are centred on the mean (if they could, hypothetically, be centred on the mode, neither 
platykurtosis nor underdispersion would presumably be found). Conditional studentized residuals (Figure 7) 
look better, as it should be. In this case, the Quantile plot (on the lower left) indicates a quite good fit of the 
conditional studentized residuals with the theoretical normally-distributed quantiles. In the present case, 
100 seeds per plate and six plates for each mean are evidently enough to approximate a Gaussian distribution 
of conditional studentized residuals. These residuals are properly centred around the mean (lower right plot 
in Figure 7). Altogether, this conditional model appears correct, but it has some weakness, to wit, it might be 
too loose. 

Although integral approximation is required for overdispersion diagnostics and covariance parameters 
testing, in the case of small-sized experiments (as common for germination tests), pseudo-likelihood is more 
accurate for the computation of confidence intervals and control of type I errors when using the Kenward-
Roger method (‘ddfm=KR2’ option in the ‘model’ statement) for the adjustment of degrees of freedoms in F 
tests and of confidence intervals, available with pseudo-likelihood only (Stroup et al., 2018). Hence, once a 
conditional model has been satisfactorily identified, the integral approximation option should be removed to 
allow for the computation of pseudo-likelihood with the Kenward-Roger method (Stroup et al., 2018). In 



addition, when P values are adjusted for multiplicity, the ‘adjdfe=row’ option in the ‘lsmeans’ statement 
ought to be specified to take into account the row-wise degrees of freedom in computing the adjusted P 
values of the contrasts as well. The model therefore becomes: 

/*Conditional model with categorical time*/ 
proc GLIMMIX order=data; 
by stage; 
class plate temp time; 
model germ/n = temp time temp*time / link=probit ddfm=KR2; 
random plate(temp); 
lsmeans temp*time / cl ilink plot=meanplot slice=time slicediff=time adjust=smm adjdfe=row; 
run; 

RESULTS (excerpts): 

   Table 27: stage=progress 

Model Information 

Data Set WORK.REFFILE 

Response Variable (Events) germ 

Response Variable (Trials) n 

Response Distribution Binomial 

Link Function Probit 

Variance Function Default 

Variance Matrix Not blocked 

Estimation Technique Residual PL 

Degrees of Freedom Method Kenward-Roger2 

Fixed Effects SE Adjustment Kenward-Roger2 

 
   Table 28: stage=progress 

Fit Statistics 

-2 Res Log Pseudo-Likelihood -93.34 

Generalized Chi-Square 69.47 

Gener. Chi-Square / DF 0.46 

 
   Table 29: stage=progress 

Covariance Parameter Estimates 

Cov Parm Estimate Standard Error 

plate(temp) 0.01286 0.005794 

 



   Table 30: stage=progress 

Type III Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

temp 2 15.53 5.99 0.0118 

time 9 150 423.87 <.0001 

temp*time 18 150 5.27 <.0001 

 
   Table 31: stage=progress 

Tests of Effect Slices for temp*time 
Sliced By time 

time 
Num 

DF 
Den 
DF F Value Pr > F 

2 2 119.3 23.34 <.0001 

3 2 57.71 21.39 <.0001 

3.5 2 80.72 5.45 0.0060 

4 2 110.7 0.79 0.4561 

4.5 2 122.9 0.97 0.3832 

5 2 144.1 1.08 0.3436 

5.5 2 147 0.85 0.4287 

6 2 150 0.71 0.4932 

6.5 2 150 0.71 0.4932 

7 2 150 0.80 0.4532 

 
   Table 32: stage=progress 

Simple Effect Comparisons of temp*time Least Squares Means By time 
Adjustment for Multiple Comparisons: SMM 

Simple 
Effect 
Level temp temp Estimate 

Standard 
Error DF t Value Pr > |t| Adj P Alpha Lower Upper 

Adj 
Lower 

Adj 
Upper 

time 2 20 30 -0.4286 0.1333 150 -3.22 0.0016 0.0048 0.05 -0.6919 -0.1652 -0.7502 -0.1069 

time 2 20 40 -0.8561 0.1274 141.2 -6.72 <.0001 <.0001 0.05 -1.1080 -0.6042 -1.1638 -0.5483 

time 2 30 40 -0.4275 0.1132 88.04 -3.78 0.0003 0.0009 0.05 -0.6525 -0.2025 -0.7029 -0.1522 

time 3 20 30 -0.5410 0.1008 55.32 -5.37 <.0001 <.0001 0.05 -0.7430 -0.3391 -0.7889 -0.2931 

time 3 20 40 -0.5899 0.1012 56.27 -5.83 <.0001 <.0001 0.05 -0.7927 -0.3872 -0.8387 -0.3411 

time 3 30 40 -0.04893 0.1038 62.27 -0.47 0.6391 0.9520 0.05 -0.2564 0.1586 -0.3034 0.2055 

time 3.5 20 30 -0.3298 0.1100 78.45 -3.00 0.0036 0.0108 0.05 -0.5487 -0.1108 -0.5979 -0.06164 



Simple Effect Comparisons of temp*time Least Squares Means By time 
Adjustment for Multiple Comparisons: SMM 

Simple 
Effect 
Level temp temp Estimate 

Standard 
Error DF t Value Pr > |t| Adj P Alpha Lower Upper 

Adj 
Lower 

Adj 
Upper 

time 3.5 20 40 -0.2851 0.1092 76.24 -2.61 0.0109 0.0321 0.05 -0.5026 -0.06765 -0.5515 -0.01875 

time 3.5 30 40 0.04464 0.1136 89.21 0.39 0.6952 0.9713 0.05 -0.1810 0.2703 -0.2315 0.3208 

time 4 20 30 -0.1509 0.1201 111.3 -1.26 0.2113 0.5073 0.05 -0.3888 0.08697 -0.4418 0.1400 

time 4 20 40 -0.07461 0.1183 104.9 -0.63 0.5296 0.8947 0.05 -0.3091 0.1599 -0.3614 0.2122 

time 4 30 40 0.07633 0.1215 116.9 0.63 0.5312 0.8960 0.05 -0.1644 0.3170 -0.2179 0.3706 

time 4.5 20 30 -0.1404 0.1247 129.3 -1.13 0.2622 0.5965 0.05 -0.3870 0.1063 -0.4418 0.1610 

time 4.5 20 40 0.01973 0.1206 113.5 0.16 0.8704 0.9978 0.05 -0.2193 0.2587 -0.2725 0.3119 

time 4.5 30 40 0.1601 0.1242 127.7 1.29 0.1998 0.4858 0.05 -0.08573 0.4059 -0.1403 0.4605 

time 5 20 30 -0.1731 0.1297 150 -1.33 0.1840 0.4552 0.05 -0.4295 0.08320 -0.4863 0.1400 

time 5 20 40 -0.01303 0.1250 130.7 -0.10 0.9171 0.9994 0.05 -0.2603 0.2342 -0.3152 0.2891 

time 5 30 40 0.1601 0.1301 150 1.23 0.2203 0.5243 0.05 -0.09690 0.4171 -0.1538 0.4741 

time 5.5 20 30 -0.1496 0.1303 150 -1.15 0.2526 0.5809 0.05 -0.4071 0.1078 -0.4642 0.1649 

time 5.5 20 40 -0.00131 0.1259 134.5 -0.01 0.9917 1.0000 0.05 -0.2503 0.2476 -0.3055 0.3029 

time 5.5 30 40 0.1483 0.1304 150 1.14 0.2570 0.5882 0.05 -0.1093 0.4059 -0.1663 0.4630 

time 6 20 30 -0.1514 0.1311 150 -1.15 0.2500 0.5764 0.05 -0.4105 0.1077 -0.4679 0.1651 

time 6 20 40 -0.03752 0.1275 141.7 -0.29 0.7690 0.9876 0.05 -0.2896 0.2146 -0.3456 0.2705 

time 6 30 40 0.1139 0.1321 150 0.86 0.3901 0.7718 0.05 -0.1472 0.3750 -0.2051 0.4328 

time 6.5 20 30 -0.1514 0.1311 150 -1.15 0.2500 0.5764 0.05 -0.4105 0.1077 -0.4679 0.1651 

time 6.5 20 40 -0.03752 0.1275 141.7 -0.29 0.7690 0.9876 0.05 -0.2896 0.2146 -0.3456 0.2705 

time 6.5 30 40 0.1139 0.1321 150 0.86 0.3901 0.7718 0.05 -0.1472 0.3750 -0.2051 0.4328 

time 7 20 30 -0.1660 0.1316 150 -1.26 0.2093 0.5040 0.05 -0.4260 0.09411 -0.4837 0.1517 

time 7 20 40 -0.07732 0.1287 147 -0.60 0.5489 0.9075 0.05 -0.3317 0.1770 -0.3881 0.2334 

time 7 30 40 0.08864 0.1338 150 0.66 0.5086 0.8805 0.05 -0.1757 0.3530 -0.2343 0.4115 

 
Residual PL is now specified as estimation technique, with Kenward-Roger2 method for degrees of freedom 
and fixed effects SE adjustments (Table 27). The fit statistics are changed to PL-specific ones, with the 
Generalized Chi-Square / DF providing a rough, but, in this case, not so bad (compared to the proper estimate 
in Table 21), evaluation of overdispersion (Table 28). The estimates of the random deviance of the intercept 
due to plates and its standard error have slightly increased (Table 29; compare to Table 22) and should 
represent better estimates of this effect, likewise to overall F test probabilities (Table 30), timepoint F tests 
probabilities (Table 31) and multiple comparisons (Table 32). Inference has not changed, anyway. If the 
experimental design is simple, and all the effects have been properly modelled, the integral approximation 
with true likelihood is just a check. 

It would be, at this point, also interesting to evaluate a model with continuous time, since, if properly 
modelled, a continuous variable contains more information than a classification one, and, if modelling the 



time-course spares the number of parameters in optimization, this approach could require less degrees of 
freedom and therefore increase the power of the analysis. If ‘time’ is simply removed from the ‘classification’ 
statement (and the ‘lsmeans’ statement is removed because only fixed effects that are ‘class’ variables, or 
involve only ‘class’ variables, can, presently, be computed by this statement), convergence is faster (and the 
‘order=data’ specification can be removed too, because time is now considered as a numerical variable and 
the ordering of timepoints is consequential), but same troubles promptly arise. 

proc GLIMMIX method=Laplace; 
by stage; 
class plate temp; 
model germ/n = temp time temp*time / link=probit; 
random plate(temp); 
run; 

RESULTS (excerpts): 

   Table 33: stage=progress 

Dimensions 

G-side Cov. Parameters 1 

Columns in X 8 

Columns in Z 18 

Subjects (Blocks in V) 1 

Max Obs per Subject 180 

 

   Table 34: stage=progress 

Optimization Information 

Optimization Technique Dual Quasi-Newton 

Parameters in Optimization 7 

Lower Boundaries 1 

Upper Boundaries 0 

Fixed Effects Not Profiled 

Starting From GLM estimates 

 
   Table 35: stage=progress 

Fit Statistics 

-2 Log Likelihood 2637.55 

AIC  (smaller is better) 2651.55 

AICC (smaller is better) 2652.20 

BIC  (smaller is better) 2657.78 



Fit Statistics 

CAIC (smaller is better) 2664.78 

HQIC (smaller is better) 2652.40 

 
   Table 36: stage=progress 

Fit Statistics for Conditional 
Distribution 

-2 log L(germ | r. effects) 2599.60 

Pearson Chi-Square 1975.37 

Pearson Chi-Square / DF 10.97 

 
   Table 37: stage=progress 

Type III Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

temp 2 15 17.60 0.0001 

time 1 159 3147.58 <.0001 

time*temp 2 159 14.50 <.0001 

 

The number of column in the X matrix (Table 33) has decreased to 8 (from 44, in Table 19) because the 
number of parameters in optimization (Table 34) was reduced to 7 (from 31). In fact, in linear models, a 
continuous variable is modelled, by default, as being linear, and a linear regression requires only two 
parameters, an intercept and a slope, rather than L-1 dummies for L levels of the continuous factor. Thus, 
the seven parameters correspond to one random variance component (which has a lower bound of 0) plus 
six fixed effect parameters (as can be checked by adding the ‘solution’ option into the ‘model’ statement). 
The latter are: the model intercept, two dummies for temperature, a slope for time (the overall model 
intercept is already present and therefore another intercept would be redundant), and two temperature 
dummies for their interaction, since only the slope parameter is modelled for time. This saves a lot of 
calculations and spares several degrees of freedom, but it comes at a big price: all the fit statistics burst 
higher (Table 35), evidencing a severe loss of fit in the model. In fact, the overdispersion parameter 
skyrocketed (Table 36). Nonetheless, the significance of effects remained high and even increased for ‘temp’ 
(Table 37). What has happened is that the smaller number of parameters has increased the power of 
significance tests, but the germination response to time was assumed to be linear, whereas it is not. The time 
effect is indisputable, whether it is considered as linear or not, so it is still highly significant, but the residuals 
were largely increased (higher overdispersion) because the actual curvilinear response is approximated with 
a straight line. What’s going on with this model can be clarified by suitable graphs. 

To report the actual data on the probit (linked) scale, a new column of probit-transformed data is introduced 
with a ‘DATA’ statement, and the model is run again adding an ‘output’ statement that produces an output 
file that automatically includes all variables already present in the original data set and also contains the 



predicted values of the BLUPs on the scale of the link function (the linearized scale; here, the probit scale). A 
first plot is requested to show how the predicted values fit a two-step linear model, wherein the separate 
linear fits, as obtained according to the ‘BY’ statement, are evident for the ‘lag’ and ‘progress’ stages on the 
linked scale. A second plot then compares the same two-steps linear fitting to the original data previously 
reported on the linked scale. 

DATA reffile; 
set reffile; 
p=probit(germ/n); 
run; 

proc GLIMMIX method=Laplace; 
by stage; 
class plate temp; 
model germ/n = temp time temp*time / link=probit; 
random plate(temp); 
output out=gmxout pred=pred; 
run; 

proc SGPLOT data=gmxout; 
loess y=pred x=time / group=temp nomarkers name="fit"; 
scatter y=pred x=time / group=temp; 
keylegend "fit" / title="Temp"; 
run; 

proc SGPLOT data=gmxout; 
loess y=pred x=time / group=temp nomarkers name="fit"; 
scatter y=p x=time / group=temp; 
keylegend "fit" / title="Temp"; 
run; 

RESULTS (excerpts): 

   Figure 8 

 

 



   Figure 9 

 

 

It is immediately evident that the predicted values have been modelled to adapt a linear trend (separately 
for the ‘lag’ and the ‘progress’ stages) on the linear scale (Figure 8), and that such two-steps linear trend does 
not really fit the actual data (Figure 9). The ‘progress’ data result thus widely overdispersed with respect to 
the linear fitting. Nevertheless, the effects of the modelled factors are even more clear in the forcedly 
linearized fitting, which explains the improved significances of the ‘temp’ factor for the ‘progress’ stage. As 
previously remarked, the germination progress is not linear through time, even on the linked scale. Also note 
that the model has fitted the germination responses of the ‘lag’ stage to positive predicted values, albeit very 
close to zero (thus that they do not result significantly different from zero; not shown), whereas germination 
values of zero cannot be represented on a probit scale. 

To formally assess the real fitting of the model with time assumed as a linear covariate on the linked scale, 
time can be introduced, in the same model, as both a continuous and a categorical variable (using different 
names), and any additional significant effect of the categorical time variable over the assumedly linear 
continuous time variable can be established using a type I test of fixed effects (chosen with the ‘htype’ option 
in the ‘model’ statement), which performs sequential tests of the effects included in the model (Littell et al., 
2006). If categorical time still has a significant effect after linear continuous time has been considered, then 
linear fitting does not explain the actual trend of the response through time. 

DATA reffile; 
set reffile; 
xtime=time; 
run; 

proc GLIMMIX method=Laplace; 
by stage; 
class plate temp xtime; 
model germ/n = temp time temp*time xtime/ link=probit htype=1; 
random plate(temp); 
run; 

RESULTS (excerpt): 



   Table 38: stage=progress 

Type I Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

temp 2 15 7.73 0.0049 

time 1 151 2390.51 <.0001 

time*temp 2 151 28.93 <.0001 

xtime 8 151 195.98 <.0001 

Type I test of fixed effects (Table 38) shows a highly significant effect of ‘xtime’ (categorical time) after ‘time’ 
(continuous time, modelled as linear on the linked scale) has already been considered, formally 
demonstrating, if Figure 9 was not enough, that germination progress is not linear to time, even on the linked 
scale. A model based on the assumption of linearity of germination progress through time (on the probit 
scale) has, therefore, to be rejected. 

Modelling time as a nonlinear covariate requires a function that, either because of theoretical considerations 
or a good empirical fit, quantitatively describes the germination time-course. For example, this latter can be 
empirically fitted with a spline, that is, a continuous and smooth curvilinear interpolation based on a 
piecewise polynomial. To this aim, a constructed effect, ‘spltime’ is specified to model the germination time-
course. As the shape of the germination time-course is typically different among treatments, this diversity is 
modelled in terms of the interaction between treatment and spline, i.e. ‘temp*spltime’ in the present 
instance. This interaction models separate curvilinear trends for the different temperature levels, whereas 
the ‘temp’ main effect instructs to model a separate intercept for each temperature. An overall ‘spltime’ 
main effect is therefore not needed (likewise to the ‘time’ main effect that was not needed in the previous 
model that assumed germination progress linear to time on the linked scale). The plots previously described 
are requested too. 

DATA reffile; 
set reffile; 
p=probit(germ/n); 
run; 

proc GLIMMIX method=Laplace; 
by stage; 
effect spltime = spline(time); 
class plate temp; 
model germ/n = temp temp*spltime / link=probit; 
random plate(temp); 
output out=gmxout pred=pred; 
run; 

proc SGPLOT data=gmxout; 
loess y=pred x=time / group=temp nomarkers name="fit"; 
scatter y=pred x=time / group=temp; 
keylegend "fit" / title="Temp"; 
run; 

proc SGPLOT data=gmxout; 



loess y=pred x=time / group=temp nomarkers name="fit"; 
scatter y=p x=time / group=temp; 
keylegend "fit" / title="Temp"; 
run; 

RESULTS (excerpts): 

   Table 39: stage=progress 

Model Information 

Data Set WORK.REFFILE 

Response Variable (Events) germ 

Response Variable (Trials) n 

Response Distribution Binomial 

Link Function Probit 

Variance Function Default 

Variance Matrix Not blocked 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Residual 

 

   Table 40: stage=progress 

Optimization Information 

Optimization Technique Dual Quasi-Newton 

Parameters in Optimization 22 

Lower Boundaries 1 

Upper Boundaries 0 

Fixed Effects Not Profiled 

Starting From GLM estimates 

 

   Table 41: stage=progress 

Fit Statistics 

-2 Log Likelihood 804.38 

AIC  (smaller is better) 848.38 

AICC (smaller is better) 854.82 

BIC  (smaller is better) 867.96 

CAIC (smaller is better) 889.96 

HQIC (smaller is better) 851.08 



   Table 42: stage=progress 

Fit Statistics for Conditional 
Distribution 

-2 log L(germ | r. effects) 764.07 

Pearson Chi-Square 59.43 

Pearson Chi-Square / DF 0.33 

 
   Table 43: stage=progress 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

plate(temp) 0.01024 0.004415 

 
   Table 44: stage=progress 

Type III Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

temp 2 159 0.17 0.8449 

spltime*temp 18 159 221.77 <.0001 

 

   Figure 10. 

 

 



   Figure 11. 

 

The spline function allows to fit nonlinear time dependencies in an ANCOVA model. Table 39 shows that, 
whereas previous models used the ‘Containment’ Degrees of Freedom Method, the specification of a 
constructed effect, when an integral approximation is requested, causes the method to shift to ‘Residuals’. 
Twenty-two parameters were optimized in this model (Table 40): one random variance component (which 
has a lower bound of 0), the model intercept, two dummies for temperature, and six spline parameters for 
each of the three temperature levels. Note that, by default, the GLIMMIX spline is a cubic B-spline with three 
equally spaced knots that yields seven design matrix columns, corresponding to the degree of the spline 
(three, for a cubic spline) plus the number of nodes, plus one (the intercept of the spline). As the temperature 
levels are modelled themselves as intercepts, the number of parameters is reduced accordingly. Table 41 
shows that all the fit statistics have improved (i.e., decreased) for this model with respect to the model with 
categorical time (Table 20) but for -2 Log Likelihood, which is not penalized for the number of required 
parameters (31 in that case). The overdispersion parameter is estimated as 0.33 (Table 42), and the variance 
among plates (Table 43) is almost unchanged with respect to the model with categorical time (Table 20). 
Notably, the Tests of Fixed Effects (Table 44) indicate a non-significant effect for ‘temp’ and a highly 
significant effect for ‘temp*spltime’, which means that what the temperature causes in this experiment is 
not a vertical shift of the overall curvilinear trend, but only a change of its shape. This is not in contrast with 
previous findings of a significant ‘temp’ effect, because when time is modelled as a categorical variable, the 
ANOVA table considers a test of significance of the differences between mean response values of the ‘temp’ 
levels (even if modelled in terms of deviations from the intercept of the linear response), which are therefore 
averaged over the discrete time levels (on the linked scale), whereas when time is modelled as a continuous 
variable, the significance test compares mean response values for the ‘temp’ intercepts, that is, for values 
extrapolated at time=0. 

The comparison of the fitting of the model to the linear predictors (BLUPs; Figure 10) with its fitting to the 
actual data (Figure 11), on the linear scale, provides three important hints: (a)- the fit of the actual data to 
the model is very good and, in accordance, the arrangement of the BLUPs is very close to the arrangement 
of the actual data; (b)- the lag-stage responses are still modelled as extremely low, but not zero, values; (c)- 
shrinkage of the BLUPs with respect to the observed data is evident. Shrinkage of BLUPs consists in computing 
estimates of the response variable for a given level of a random factor (i.e., predictors) that are closer to the 
between-subjects mean than the observed values. This occurs because, in the estimation, the difference 
between the observed value and the mean is shrunk (reduced) by an amount that depends on the estimated 



non-systematic error variance components, such as the within-subject error variance across timepoints. 
Removing the erratic variability of the random effect is intended to provide a better evaluation of the 
intrinsic, systematic effect of each subject. In fact, extreme means are attenuated according to the underlying 
variability, thereby reducing the risk of misinterpreting the data because of noisiness and casual outliers 
(Stroup et al., 2018). BLUPs shrinkage explains the very small variance estimated for the plate effect, sharply 
lower than the error variance observed at each timepoint for the original data. It ought to be noted that more 
severe shrinkage is expected when the residual variability is large in comparison to the between-subjects 
variability, and whereas the former is essentially overlapping and confused with the latter in FGP data, it can 
be distinctly estimated in longitudinal experiments. Thus, smaller between-plates variance and, therefore, 
greater shrinkage, are to be expected in longitudinal studies than in FGP tests. 

This model can therefore be considered satisfactory, and significance of the differences between responses 
to temperature at the different timepoints can be assessed. As mentioned above, LS-means cannot be 
automatically computed at the original observation timepoints because, once time has been modelled as a 
continuous variable based on those original timepoints, those same timepoints are then considered as 
discrete instances of a function whose levels are continuous, and the number of time levels at which to 
perform the comparisons is therefore no longer considered to be predefined. In the presence of a continuous 
variable, LS-means for classification variables are automatically estimated assuming an average value of the 
continuous variable. Nonetheless, they can be estimated for any other value of choice of the continuous time 
variable, including the original timepoints. As the continuous time is modelled according to an empirical 
spline function, I recommend not estimating LS-means at any other timepoints but the original ones. Of 
course, estimations must not be performed beyond the range of the originally observed timepoints: the 
chosen ’time=’ in the ‘lsmeans’ statement must be within the modelled range, therefore also excluding the 
lag stage (obviously). 

/*Conditional model with continuous time and integral approximation*/ 
proc GLIMMIX method=Laplace; 
by stage; 
effect spltime = spline(time); 
class plate temp; 
model germ/n = temp temp*spltime / link=probit; 
random plate(temp); 
lsmeans temp / at time=2 ilink adjust=smm; 
lsmeans temp / at time=3 ilink adjust=smm; 
lsmeans temp / at time=3.5 ilink adjust=smm; 
lsmeans temp / at time=4 ilink adjust=smm; 
lsmeans temp / at time=4.5 ilink adjust=smm; 
lsmeans temp / at time=5 ilink adjust=smm; 
lsmeans temp / at time=5.5 ilink adjust=smm; 
lsmeans temp / at time=6 ilink adjust=smm; 
lsmeans temp / at time=6.5 ilink adjust=smm; 
lsmeans temp / at time=7 ilink adjust=smm; 
run; 

RESULTS (excerpts): 

 

 



   Table 45: stage=progress 

Differences of temp Least Squares Means 
Adjustment for Multiple Comparisons: SMM 

temp temp time Estimate 
Standard 

Error DF t Value Pr > |t| Adj P 

20 30 2.00 -0.4275 0.1299 159 -3.29 0.0012 0.0037 

20 40 2.00 -0.8558 0.1239 159 -6.91 <.0001 <.0001 

30 40 2.00 -0.4283 0.1093 159 -3.92 0.0001 0.0004 

 

   Table 46: stage=progress 

Differences of temp Least Squares Means 
Adjustment for Multiple Comparisons: SMM 

temp temp time Estimate 
Standard 

Error DF t Value Pr > |t| Adj P 

20 30 3.00 -0.5457 0.09598 159 -5.69 <.0001 <.0001 

20 40 3.00 -0.5919 0.09638 159 -6.14 <.0001 <.0001 

30 40 3.00 -0.04622 0.09912 159 -0.47 0.6416 0.9536 

 

   Table 47: stage=progress 

Differences of temp Least Squares Means 
Adjustment for Multiple Comparisons: SMM 

temp temp time Estimate 
Standard 

Error DF t Value Pr > |t| Adj P 

20 30 3.50 -0.3114 0.09710 159 -3.21 0.0016 0.0049 

20 40 3.50 -0.2819 0.09621 159 -2.93 0.0039 0.0116 

30 40 3.50 0.02951 0.09968 159 0.30 0.7676 0.9873 

Separately processing data according to the stage causes a large number of tables to be produced for the lag 
stage, wherein the analysis of germination data is borderline, if even possible, and progress of visible 
germination is already known not to take place. These tables are mostly useless, and removing these data 
from the dataset used for the analysis would simplify the output. With the present analysis settings, in fact, 
several LS-means tables are non-sense extrapolations of germination progress from the lag stage. 
Nevertheless, they help reminding that, though these data are not part of the visible germination progress, 
they are indeed data observed from the germination process, and must be recorded to ascertain the actual 
duration of the lag stage and the time at which germination starts. Apart from this caveat, Tables 45-47 show 
the only timepoints at which significant differences were found among temperatures. It appears that the 
inference accomplished with this model is the same as obtained with the MANOVA model (Figures 2-4) and 
the conditional model with categorical time (Table 26). It can be noted that, in the present model, the 
adjustment of probability for multiple tests is performed within each discrete timepoint, not overall. This 
reduces the risk that small stochastic changes in the germination progress curve be identified as significant 



without diminishing the power of the test: whereas an overall (across all discrete timepoints) adjustment for 
multiple contrasts of longitudinal data may be sensible in experiments wherein specific timepoints are 
selected and modelled as categorical levels, in longitudinal germination studies an adjustment of probability 
across the whole set of timepoints is probably unnecessary when the very same replicate plates are observed 
through time and germination is modelled as a continuous function of time (in terms of a spline and/or a 
linear function, or either a non-linear function). In fact, on the one side, replication, non-independence and, 
overall, using a fitted function rather than the discrete original data in the tests, strongly reduce the risk of 
stochastic changes in the germination progress curve, and therefore an adjustment of probability across 
timepoints is much less of concern. On the other side, the power of the analysis could be treacherously 
diminished with an overall adjustment of probability: the means difference at a given timepoint could be 
declared significant or not depending on the number of timepoints. As the duration of the experiment and 
the frequency of observations can be chosen with quite broad freedom by the researcher, the analysis would 
not be consistent if this choice would determine the inference at a given timepoint. In this sense, it could be 
noted that the significance of differences at times 2-3.5 would decline (that is, adjusted probability of 
sameness would increase) if the experiment were further prolonged. In actuality, some timepoints are 
already redundant, as germination appear to have plateaued after about 5 days. So, in this model, an overall 
adjustment od probability is not advised. Adjustments are, indeed, recommended (Stroup et al., 2018) for 
unstructured comparisons (i.e., when several equipollent discrete levels are compared across a single effect), 
but not for structured comparisons (that is, if the contrasted levels are not equipollent). When time is 
modelled as a continuous variable, i.e. with a vectorial structure, adjusting probability for the number of 
timepoints is questionable. If required, anyway, contrasts of multiple means across a continuous variable 
(that is, across different timepoints) can be performed with an ‘estimate’ statement to obtain a family-wise 
adjustment of probabilities, but this is quite cumbersome. 

It might be noticed that even temperature could be modelled as continuous, but, given it only has three 
levels, there is no advantage in modelling it as continuous rather than categorical. Usage of a spline to spare 
parameters for dummy variables can be convenient when the number of levels (L) of the variable is greater 
than seven: the spline requires six parameters in addition to the general intercept, whereas the number of 
dummies is L-1, thus that at least eight levels are needed to make continuous modelling a convenient choice. 

As suggested (Stroup et al., 2018), the Laplace integral approximation is removed in the definitive model to 
consent usage of pseudo-likelihood with Kenward-Roger adjustments, which may be preferred once the best 
model has been selected. 

/*Conditional model with continuous time*/ 
proc GLIMMIX; 
by stage; 
effect spltime = spline(time); 
class plate temp; 
model germ/n = temp temp*spltime / link=probit ddfm=KR2; 
random plate(temp); 
lsmeans temp / at time=2 ilink adjust=smm adjdfe=row; 
lsmeans temp / at time=3 ilink adjust=smm adjdfe=row; 
lsmeans temp / at time=3.5 ilink adjust=smm adjdfe=row; 
lsmeans temp / at time=4 ilink adjust=smm adjdfe=row; 
lsmeans temp / at time=4.5 ilink adjust=smm adjdfe=row; 
lsmeans temp / at time=5 ilink adjust=smm adjdfe=row; 
lsmeans temp / at time=5.5 ilink adjust=smm adjdfe=row; 
lsmeans temp / at time=6 ilink adjust=smm adjdfe=row; 



lsmeans temp / at time=6.5 ilink adjust=smm adjdfe=row; 
lsmeans temp / at time=7 ilink adjust=smm adjdfe=row; 
run; 

RESULTS (excerpts): 

   Table 48: stage=progress 

Fit Statistics 

-2 Res Log Pseudo-Likelihood -164.99 

Generalized Chi-Square 70.37 

Gener. Chi-Square / DF 0.44 

 
   Table 49: stage=progress 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

plate(temp) 0.01285 0.005792 

 
   Table 50: stage=progress 

Type III Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

temp 2 159 0.17 0.8475 

spltime*temp 18 159 224.73 <.0001 

 
   Table 51: stage=progress 

Differences of temp Least Squares Means 
Adjustment for Multiple Comparisons: SMM 

temp temp time Estimate 
Standard 

Error DF t Value Pr > |t| Adj P 

20 30 2.00 -0.4285 0.1333 159 -3.22 0.0016 0.0047 

20 40 2.00 -0.8560 0.1274 141.2 -6.72 <.0001 <.0001 

30 40 2.00 -0.4275 0.1132 88.09 -3.78 0.0003 0.0009 

 

 

 



   Table 52: stage=progress 

Differences of temp Least Squares Means 
Adjustment for Multiple Comparisons: SMM 

temp temp time Estimate 
Standard 

Error DF t Value Pr > |t| Adj P 

20 30 3.00 -0.5448 0.1004 54.62 -5.42 <.0001 <.0001 

20 40 3.00 -0.5910 0.1008 55.44 -5.86 <.0001 <.0001 

30 40 3.00 -0.04622 0.1034 61.37 -0.45 0.6565 0.9586 

 
   Table 53: stage=progress 

Differences of temp Least Squares Means 
Adjustment for Multiple Comparisons: SMM 

temp temp time Estimate 
Standard 

Error DF t Value Pr > |t| Adj P 

20 30 3.50 -0.3107 0.1015 56.83 -3.06 0.0034 0.0100 

20 40 3.50 -0.2802 0.1006 55.03 -2.78 0.0073 0.0218 

30 40 3.50 0.03049 0.1039 62.57 0.29 0.7702 0.9876 

 

Amid the PL-specific fit statistics, the Generalized Chi-Square / DF again provides a rough, but, in this case, 
not so bad (compared to the proper estimate in Table 42), evaluation of overdispersion (Table 48). The 
estimates of the random deviance of the intercept due to plates and its standard error have slightly increased 
(Table 49; compare to Table 43) and should represent better estimates of this effect, likewise to overall F 
tests probabilities (Table 50) and multiple comparisons (Tables 51-53). Inference did not change with respect 
to using the integral approximation with true likelihood. 

Although both conditional models, with time either as a categorical or continuous variable, are satisfactory, 
in longitudinal studies, within-subject covariance parameters are more properly dealt with by modelling fixed 
effects errors by means of the R-side covariance matrix (Littell et al., 2006). Indeed, in generalized linear 
(mixed) models, modelling of longitudinal correlation can be achieved either indirectly, with a G-side random 
factor that considers the sharing of the same random effect level for responses from the same subject (i.e., 
plate), or directly, with an R-side covariance structure (Littell et al., 2006). These two modelling approaches 
can lead to different inferences because the random block effects are modelled on the linked scale whereas 
the effects of residuals are modelled on the data scale, unless data are analysed using a linearized pseudo 
variable, as in pseudo-likelihood (Littell et al., 2006). The two approaches tend therefore to provide closer 
inferences when pseudo-likelihood is used. Nevertheless, whereas the G matrix is typically used to model the 
variance of the between-subjects factors, for germination data, the covariance structure of the repeated 
measures, or within-subjects, model is more easily modelled with the R matrix. 

Statistical analysis of germination data is typically quasi-marginal rather than conditional (that is, modelling 
of data correlation ought to be processed in terms of R matrix, not G matrix), because inference about the 
seed population, not the average plate, is of interest. Although an integral approximation, like the Laplace 
method, is required for overdispersion diagnostics and covariance parameters testing, such methods require 



conditional independence without R-side overdispersion or covariance structure. In addition, the integral 
approximation prevents the usage of specific degrees of freedom adjustments that are important to compute 
unbiased significance of effects as well as confidence intervals (Stroup et al., 2018). These opposing 
requirements suggest that a conditional model with integral approximation should be initially tested to 
ascertain eventual overdispersion and the significance of random effects, but the marginal model that best 
reflects the experimental design ought to be ultimately used (Stroup et al., 2018). The model has therefore 
to be restructured in terms of R-side modelling. Thus, however, the Laplace integral approximation cannot 
be maintained. 

To take into account the serial correlation (non-independency) among repeated measurements on the same 
plate, a ‘random residual’ statement is introduced to model the R-side correlation structure, in place of the 
previous ‘random’ statement. This, therefore, is a marginal model that models covariation (correlation, 
indeed, is just a standardized covariance) between residuals. If a proper subject factor is specified 
(‘plate(temp)’, in this case), the ‘residual’ keyword, in fact, elicits the modelling of the R matrix, that is, the 
matrix of the variance/covariance structure of the residuals (of the fixed effects). In a ‘random residual’ 
statement, the ‘subject’ option identifies the factor on which repeated measures are taken. 

Some further changes are however needed to accomplish with the requirements of R-side error modelling. 
As some covariance structures assume correlation among contiguous data, the order of the data becomes 
relevant even when time is modelled as a categorical variable. By default, the SAS software sorts the levels 
of classification variables according to an alphanumeric order that, as shown in Table 10, is not the same as 
if the variable were numerically ordered. If the dataset already is ordered according to increasing time, then 
adding the ‘order=data’ option will do the job (otherwise, a more specific syntax can be used to make time 
an explicit ordering variable within a ‘random’ statement that anyway includes a ‘residual’ keyword, but this 
alternative solution is not described here). 

As previously mentioned, the default covariance structure is ‘variance components’, which only considers a 
Gaussian error variance for each random effect subject, that is, for ‘plate(temp)’ in this case. A better 
covariance structure could then be considered, starting from a very general one, with the lower constraints 
and therefore the larger number of parameters, because the significance of R-side effects can be better 
evaluated by stepwise restricting the covariance structure (Littell et al., 2006). Thus, an unstructured 
covariance matrix can be introduced in the ‘random residual’ statement to ascertain whether the model can 
be improved. A completely general (unstructured) covariance matrix, parameterized in terms of variances 
and correlations, can be used to assess the widest effect of an R-side covariance structure.  

Furthermore, it needs to be noticed that numerical convergence during the optimization of a model can 
sometimes be more easily achieved if the optimization technique makes use of a Hessian matrix, like the 
Newton-Raphson (‘newrap’) or Newton-Raphson with ridging (‘nrridg’) optimization techniques, which are 
more reliable than other techniques, i.e. the convergence criterion is satisfied with higher probability, but 
can require a longer processing time. The default optimization technique (in the presence of random factors), 
the Dual Quasi-Newton, is faster, but sometimes does not ensure convergence; whereas the ‘nrridg’ is better 
for binary data fitted with a pseudo-likelihood estimation method. The optimization technique can become 
relevant during the optimization of a repeated measures model because germination progress is not linear 
through time, even on the linked scale, and the covariance structure of the residuals, i.e. the parametrization 
of the R matrix, is nonlinear as well. Thus, model fitting may require a more reliable nonlinear optimization 
method, selected by means of the ‘nloptions’ statement (which may be generally advantageous for improving 
optimization convergence in marginal and quasi-marginal models for germination progress). 

For completeness, time is first modelled as a categorical variable. All this considered, we can apply the 
following model: 



proc GLIMMIX order=data; 
by stage; 
class plate temp time; 
model germ/n = temp time temp*time / link=probit; 
random residual / subject=plate(temp) type=unr; 
nloptions tech=nrridg; 
run; 

This model does not converge to a solution for the stage=lag means, but it does for the germination progress 
stage. 

RESULTS (excerpts): 

   Table 54: stage=progress 

Model Information 

Data Set WORK.REFFILE 

Response Variable (Events) germ 

Response Variable (Trials) n 

Response Distribution Binomial 

Link Function Probit 

Variance Function Default 

Variance Matrix Blocked By plate(temp) 

Estimation Technique Residual PL 

Degrees of Freedom Method Between-Within 

 
   Table 55: stage=progress 

Class Level Information 

Class Levels Values 

plate 6 1 2 3 4 5 6 

temp 3 20 30 40 

time 10 2 3 3.5 4 4.5 5 5.5 6 6.5 7 

 

   Table 56: stage=progress 

Dimensions 

R-side Cov. Parameters 55 

Columns in X 44 

Columns in Z per Subject 0 

Subjects (Blocks in V) 18 

Max Obs per Subject 10 



   Table 57: stage=progress 

Optimization Information 

Optimization Technique Newton-Raphson with Ridging 

Parameters in Optimization 55 

Lower Boundaries 55 

Upper Boundaries 45 

Fixed Effects Profiled 

Starting From Data 

 
   Table 58: stage=progress 

Fit Statistics 

-2 Res Log Pseudo-Likelihood -228.04 

Generalized Chi-Square 150.00 

Gener. Chi-Square / DF 1.00 

 
   Table 59: stage=progress 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 
Standard 

Error 

Var(1) plate(temp) 0.2840 0.1037 

Var(2) plate(temp) 1.3833 0.5104 

Var(3) plate(temp) 1.1207 0.3649 

Var(4) plate(temp) 0.8413 0.3164 

Var(5) plate(temp) 0.9807 0.3581 

Var(6) plate(temp) 0.8000 0.2931 

Var(7) plate(temp) 0.4775 0.1500 

Var(8) plate(temp) 0.7745 0.2841 

Var(9) plate(temp) 0.7745 0.2841 

Var(10) plate(temp) 0.8321 0.3039 

Corr(2,1) plate(temp) 0.2313 0.2115 

Corr(3,1) plate(temp) 2.71E-35 . 

Corr(3,2) plate(temp) 0.4056 0.1847 

Corr(4,1) plate(temp) 1.24E-34 . 

Corr(4,2) plate(temp) 2.31E-33 . 

Corr(4,3) plate(temp) 0.2266 0.1664 



Covariance Parameter Estimates 

Cov Parm Subject Estimate 
Standard 

Error 

Corr(5,1) plate(temp) 3.25E-33 . 

Corr(5,2) plate(temp) -184E-34 . 

Corr(5,3) plate(temp) 1.37E-33 . 

Corr(5,4) plate(temp) 0.9212 0.06150 

Corr(6,1) plate(temp) 1.24E-24 . 

Corr(6,2) plate(temp) 5.02E-24 . 

Corr(6,3) plate(temp) -77E-25 . 

Corr(6,4) plate(temp) -144E-25 . 

Corr(6,5) plate(temp) 0.000833 0.01359 

Corr(7,1) plate(temp) -679E-25 . 

Corr(7,2) plate(temp) -966E-25 . 

Corr(7,3) plate(temp) -819E-25 . 

Corr(7,4) plate(temp) 1.92E-22 . 

Corr(7,5) plate(temp) 7.67E-23 . 

Corr(7,6) plate(temp) 0.8807 0.08780 

Corr(8,1) plate(temp) 1.44E-21 . 

Corr(8,2) plate(temp) -441E-23 . 

Corr(8,3) plate(temp) -502E-24 . 

Corr(8,4) plate(temp) 1.59E-21 . 

Corr(8,5) plate(temp) 3.54E-15 . 

Corr(8,6) plate(temp) -2.97E-9 . 

Corr(8,7) plate(temp) 0.4522 0.1677 

Corr(9,1) plate(temp) -536E-12 . 

Corr(9,2) plate(temp) -2.57E-8 . 

Corr(9,3) plate(temp) 9.173E-9 . 

Corr(9,4) plate(temp) 1.023E-7 . 

Corr(9,5) plate(temp) -2.2E-7 . 

Corr(9,6) plate(temp) 4.304E-7 . 

Corr(9,7) plate(temp) 6.578E-8 . 

Corr(9,8) plate(temp) 0.003389 0.01766 

Corr(10,1) plate(temp) 3.887E-6 . 

Corr(10,2) plate(temp) -0.00002 . 

Corr(10,3) plate(temp) -7.69E-7 . 



Covariance Parameter Estimates 

Cov Parm Subject Estimate 
Standard 

Error 

Corr(10,4) plate(temp) 9.719E-6 . 

Corr(10,5) plate(temp) -0.00003 . 

Corr(10,6) plate(temp) -0.00008 . 

Corr(10,7) plate(temp) -9.06E-6 . 

Corr(10,8) plate(temp) -0.00003 . 

Corr(10,9) plate(temp) 0.9819 0.009321 

 
   Table 60: stage=progress 

Type III Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

temp 2 15 22.13 <.0001 

time 9 135 983.84 <.0001 

temp*time 18 135 8.79 <.0001 

Table 54 shows that the Variance matrix is blocked by (i.e., subdivided in equal) blocks, one for each of the 
identified subjects (i.e., plates). As the residuals are modelled as an R-side random factor, the Residual 
Pseudo-Likelihood (REPL) is now used as estimation technique. Besides, the Between-Within method to 
calculate the degrees of freedom is automatically introduced because the residuals (on which the R-side 
random effects are modelled) are processed according to the presence of subjects: it implies that the residual 
degrees of freedom are divided into between-subjects and within-subject portions. In this way, a fixed effect 
whose levels change among observations taken on a given subject (that is, whose levels change within the 
subject), and modelled according to a structured covariance, is assigned within-subject degrees of freedom, 
otherwise it is assigned the between-subjects degrees of freedom. As an unstructured covariance was used 
here, all fixed effects are assigned the between-subjects degrees of freedom to provide for a better small-
sample approximation. Time, though a categorical variable, is properly ordered (Table 55). Because of the 
unstructured covariance matrix, there are 55 R-side parameters and 44 columns in the X matrix (the matrix 
for the fixed effects), corresponding to a column for the intercept, three columns for the levels of the ‘temp’ 
effect, ten for the ‘time’ effect, and 30 columns for their interaction (Table 56). There are no columns in the 
Z matrix (the matrix for G-side random effects) for this model because the random effects are residual-type 
(R-side) only. Subjects (Blocks in V, where the V matrix includes all the random effects, both on the G-side 
and R-side) are 18 (six plates for each temperature), and the maximum number of observations per subject 
is 10 (one per every timepoint of the progress stage). The Newton-Raphson with ridging optimization 
technique is used, as requested, instead of the default Dual Quasi-Newton method (Table 57). The number 
of parameters in optimization is 55, and, as seen above, they are all covariance parameters because a residual 
likelihood technique is used to compute the objective function, so that the fixed effects are ‘Profiled’, that is, 
the parameters in the covariance matrix are optimized according to a likelihood function based on an 
iteratively-updated “profile” of fixed-effects parameters. Notice that the “profile” is initially obtained from 
the data by transposing them onto the linked scale and estimating the fixed-effects parameters with a linear 
mixed model, which utilizes, in subsequent fittings, the estimates of the parameters in the covariance matrix 



as obtained by the optimization of the likelihood function, in a doubly iterative process based on the 
progressive adjustment of the response pseudo-data according to the updated estimates of random effects. 
A lower boundary constraint is established for every covariance parameter (namely, zero for variances and -
1 for autocorrelation parameters) and an upper boundary constraint of +1 is set for estimates of correlations. 
It follows that ten variance components are optimized for the random effects, one for each timepoint in the 
progress stage, as well as 45 autocorrelation parameters, one for every pair of timepoints (i.e., 10·9/2). 
Presently, the -2 Residual Log Pseudo-Likelihood (Table 58) is the only usable fit statistic in the context of 
pseudo-likelihood. Note that, anyway, it is often not possible to properly compare values of this fit parameter 
across different statistical models, not even if one model is contained in the other in terms of fixed and/or 
random effects. This is because the pseudo-likelihood is based on pseudo-data iteratively updated according 
to the estimates of the random effects parameters, and it cannot be compared to a pseudo-likelihood statistic 
obtained for another model from pseudo-data that have most probably diverged (it would correspond to 
compare model fits corresponding to both different models and different datasets: the two differences are 
confounded). Only models that differ for the structure of correlation alone, and not for the variance structure 
(which modifies the BLUPs and therefore the pseudo-data), produce the same pseudo-data and can then be 
compared. For this reason, all the models’ factors should be initially evaluated with a true likelihood, by 
means of an integral approximation in the presence of G-side random effects, and only thereafter the 
marginal model can be evaluated. Even the Generalized Chi-Square / DF is a measure of the residual 
variability in the marginal distribution of the data, and it provides only a rough estimate of overdispersion in 
this context: a value of 1 suggests there is no overwhelming overdispersion, and, indeed, we know that the 
present data, and therefore probably the modelled predictors, are underdispersed (Table 21). In fact, as the 
binomial distribution does not have a residual dispersion parameter but rather its variance is directly 
dependent upon the mean, the Generalized Chi-Square / DF ratio represents an estimate of the proportion 
of variance present in the data with respect to that explained by the model (i.e., an estimate of the 
multiplicative scale parameter), and therefore it can be used only as a rough indicator of overdispersion. 
Table 59 lists (in an ordinally coded sequence) the estimated variance/covariance parameters in the R matrix. 
The ten estimated variances are R-side normalized ‘working’ variances not amenable to interpretation 
(Stroup et al., 2018) and not comparable outside the same table. They indicate some possible difference in 
the variability among plates across timepoints. Noticeably, the correlation estimates are positive and non-
null for contiguous observations only (note, however, that these are R-side ‘working’ correlations not real 
correlations between data; Stroup et al., 2018). Missing standard errors were on boundary where they are 
essentially equal to zero. All the fixed factors resulted highly significant (Table 60). 

Given the considerations above, correlation can be modelled as much stronger for adjacent observations. 
The covariance structure can therefore be sharply simplified, saving degrees of freedom (and computation 
time): the high number of R-side parameters (55) could be reduced to 19 (10 variances, one for each 
observation time of the progress curve, plus 9 autocorrelation parameters, one for each subsequent pair of 
sequentially adjacent times) for an UNR(2) banded correlation structure without losing any fit of the model. 
The first-order ante-dependence structure, ANTE(1), requires the same 19 R-side parameters and is 
commonly used when time spacing between observations is not equal and the correlation structure changes 
over time (Littell et al., 2006; Stroup et al., 2018). As the exact covariance structure of the data is not known, 
however, it is recommended that marginal models utilize an ‘empirical’ procedure, or sandwich estimator, 
which is more robust to misspecifications of the covariance structure; the MBN correction is advised, 
specifically for small experiments (Stroup et al., 2018). The ‘empirical’ option is the preferred alternative to 
the use of Kenward-Roger degrees of freedom in R-side modelling (Stroup et al., 2018). This kind of models 
(characterized by estimating the R-side structure with a robust “sandwich” covariance estimator) was 
originally known as Generalized Estimating Equations (GEE), and is typically applied to longitudinal/clustered 
data analysis when the focus is on estimating the average response to changing one or more factor levels 
over the population rather than the effect on the average individual. 



/*Marginal model with categorical time*/ 
proc GLIMMIX order=data empirical=mbn; 
by stage; 
class plate temp time; 
model germ/n = temp time temp*time / link=probit; 
random residual / subject=plate(temp) type=ante(1); 
nloptions tech=nrridg; 
lsmeans temp*time / cl ilink plot=meanplot slice=time slicediff=time adjust=smm; 
run; 

RESULTS (excerpts): 

   Table 61: stage=progress 

Optimization Information 

Optimization Technique Newton-Raphson with Ridging 

Parameters in Optimization 19 

Lower Boundaries 19 

Upper Boundaries 9 

Fixed Effects Profiled 

Starting From Data 

 

   Table 62: stage=progress 

Fit Statistics 

-2 Res Log Pseudo-Likelihood -322.96 

Generalized Chi-Square 110.38 

Gener. Chi-Square / DF 0.74 

 

   Table 63: stage=progress 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 
Standard 

Error 

Var(1) plate(temp) 0.2806 0.1016 

Var(2) plate(temp) 1.3037 0.4837 

Var(3) plate(temp) 1.1029 0.4914 

Var(4) plate(temp) 0.8705 0.6514 

Var(5) plate(temp) 0.5803 0.3780 

Var(6) plate(temp) 0.3341 0.1081 

Var(7) plate(temp) 0.3086 0.08045 

Var(8) plate(temp) 0.2625 . 

Var(9) plate(temp) 0.2739 0.01112 



Covariance Parameter Estimates 

Cov Parm Subject Estimate 
Standard 

Error 

Var(10) plate(temp) 0.5785 0.3046 

Rho(1) plate(temp) 0.08797 0.2556 

Rho(2) plate(temp) 0.2585 0.2697 

Rho(3) plate(temp) 0.4884 0.4213 

Rho(4) plate(temp) 0.6520 0.2212 

Rho(5) plate(temp) 0.6903 0.3801 

Rho(6) plate(temp) 0.8356 0.08860 

Rho(7) plate(temp) 0.8207 0.4857 

Rho(8) plate(temp) 0.9950 0.002717 

Rho(9) plate(temp) 0.7254 . 

 

   Table 64: stage=progress 

Type III Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

temp 2 15 3.38 0.0613 

time 9 135 420.23 <.0001 

temp*time 18 135 3.70 <.0001 

 

   Figure 12: stage=progress 

 



   Table 65: stage=progress 

Tests of Effect Slices for temp*time 
Sliced By time 

time 
Num 

DF 
Den 
DF F Value Pr > F 

2 2 135 61.61 <.0001 

3 2 135 15.89 <.0001 

3.5 2 135 3.95 0.0216 

4 2 135 0.58 0.5598 

4.5 2 135 0.95 0.3875 

5 2 135 1.46 0.2354 

5.5 2 135 1.20 0.3051 

6 2 135 1.10 0.3347 

6.5 2 135 1.09 0.3380 

7 2 135 0.95 0.3888 

 

   Table 66: stage=progress 

Simple Effect Comparisons of temp*time Least Squares Means By time 
Adjustment for Multiple Comparisons: SMM 

Simple 
Effect 
Level temp temp Estimate 

Standard 
Error DF t Value Pr > |t| Adj P Alpha Lower Upper 

Adj 
Lower 

Adj 
Upper 

time 2 20 30 -0.4211 0.07156 135 -5.88 <.0001 <.0001 0.05 -0.5626 -0.2796 -0.5940 -0.2482 

time 2 20 40 -0.8476 0.07719 135 -10.98 <.0001 <.0001 0.05 -1.0003 -0.6950 -1.0341 -0.6611 

time 2 30 40 -0.4265 0.06257 135 -6.82 <.0001 <.0001 0.05 -0.5503 -0.3028 -0.5777 -0.2753 

time 3 20 30 -0.5400 0.1178 135 -4.58 <.0001 <.0001 0.05 -0.7730 -0.3070 -0.8247 -0.2553 

time 3 20 40 -0.5901 0.1141 135 -5.17 <.0001 <.0001 0.05 -0.8158 -0.3645 -0.8658 -0.3144 

time 3 30 40 -0.05013 0.1143 135 -0.44 0.6617 0.9609 0.05 -0.2762 0.1759 -0.3264 0.2261 

time 3.5 20 30 -0.3310 0.1368 135 -2.42 0.0168 0.0495 0.05 -0.6015 -0.06055 -0.6615 -0.00052 

time 3.5 20 40 -0.2907 0.1156 135 -2.52 0.0131 0.0386 0.05 -0.5193 -0.06215 -0.5700 -0.01142 

time 3.5 30 40 0.04030 0.1217 135 0.33 0.7410 0.9824 0.05 -0.2004 0.2810 -0.2538 0.3344 

time 4 20 30 -0.1565 0.1451 135 -1.08 0.2828 0.6293 0.05 -0.4434 0.1305 -0.5071 0.1942 

time 4 20 40 -0.08405 0.1306 135 -0.64 0.5211 0.8892 0.05 -0.3424 0.1743 -0.3998 0.2317 

time 4 30 40 0.07242 0.1189 135 0.61 0.5435 0.9041 0.05 -0.1627 0.3076 -0.2149 0.3597 

time 4.5 20 30 -0.1452 0.1378 135 -1.05 0.2937 0.6459 0.05 -0.4177 0.1272 -0.4782 0.1877 

time 4.5 20 40 0.01006 0.1148 135 0.09 0.9303 0.9997 0.05 -0.2170 0.2371 -0.2674 0.2875 

time 4.5 30 40 0.1553 0.1152 135 1.35 0.1800 0.4469 0.05 -0.07259 0.3832 -0.1232 0.4337 

time 5 20 30 -0.1783 0.1241 135 -1.44 0.1530 0.3908 0.05 -0.4237 0.06709 -0.4782 0.1216 



Simple Effect Comparisons of temp*time Least Squares Means By time 
Adjustment for Multiple Comparisons: SMM 

Simple 
Effect 
Level temp temp Estimate 

Standard 
Error DF t Value Pr > |t| Adj P Alpha Lower Upper 

Adj 
Lower 

Adj 
Upper 

time 5 20 40 -0.02278 0.1104 135 -0.21 0.8368 0.9956 0.05 -0.2411 0.1955 -0.2895 0.2440 

time 5 30 40 0.1555 0.1003 135 1.55 0.1234 0.3250 0.05 -0.04286 0.3539 -0.08689 0.3980 

time 5.5 20 30 -0.1555 0.1264 135 -1.23 0.2205 0.5245 0.05 -0.4054 0.09436 -0.4609 0.1498 

time 5.5 20 40 -0.01168 0.1135 135 -0.10 0.9182 0.9994 0.05 -0.2362 0.2129 -0.2861 0.2627 

time 5.5 30 40 0.1439 0.09994 135 1.44 0.1523 0.3893 0.05 -0.05379 0.3415 -0.09766 0.3854 

time 6 20 30 -0.1587 0.1235 135 -1.28 0.2011 0.4884 0.05 -0.4029 0.08561 -0.4571 0.1398 

time 6 20 40 -0.04879 0.1143 135 -0.43 0.6702 0.9638 0.05 -0.2749 0.1773 -0.3250 0.2275 

time 6 30 40 0.1099 0.08788 135 1.25 0.2134 0.5114 0.05 -0.06393 0.2837 -0.1025 0.3223 

time 6.5 20 30 -0.1587 0.1239 135 -1.28 0.2024 0.4909 0.05 -0.4036 0.08632 -0.4580 0.1407 

time 6.5 20 40 -0.04879 0.1147 135 -0.43 0.6712 0.9641 0.05 -0.2756 0.1780 -0.3259 0.2283 

time 6.5 30 40 0.1099 0.08840 135 1.24 0.2161 0.5164 0.05 -0.06496 0.2847 -0.1038 0.3235 

time 7 20 30 -0.1738 0.1293 135 -1.34 0.1812 0.4494 0.05 -0.4296 0.08198 -0.4864 0.1388 

time 7 20 40 -0.08785 0.1328 135 -0.66 0.5093 0.8809 0.05 -0.3504 0.1747 -0.4087 0.2330 

time 7 30 40 0.08598 0.1073 135 0.80 0.4246 0.8081 0.05 -0.1263 0.2983 -0.1734 0.3454 

As said, this marginal model requires 19 R-side parameters for the progress stage: 10 variances and 9 
autocorrelation parameters (Table 61). The -2 Residual Log Pseudo-Likelihood (Table 62) would suggest a 
better fit than the unstructured model, but the estimated random variances are not the same (Table 63) and 
therefore the pseudo-data do not correspond, thus the two fit statistics cannot be compared. In the same 
table it can be noted that the correlation between adjacent observations increases as the germination 
progress reaches a plateau (remind, however, that these are working correlations). In fact, during the 
germination surge, adjacent germination data largely differ, whereas they are very close at the plateau. The 
F tests indicate a highly significant effect for time and the temperature x time interaction, whereas the 
temperature effect is just above the 0.05 threshold (Table 64). The plot of the estimated least-square means 
and their confidence interval with 95% limits on the linked scale (Figure 12) is very similar to that obtained 
with the conditional model with categorical time (Figure 5). Analogously, differences among temperatures 
are significant at days 2-3.5 (Table 65), and multiple comparisons at each timepoint (Table 66) indicate a 
different effect for each of the three temperatures at 2 days, but only for 20 °C with respect to the other two 
temperatures at days 3-3.5, like inferred by previous models. 

It ought to be noted that, even though the first-order ante-dependence structure, ANTE(1), is appropriate 
for the present model, the R-side variance/covariance structure could even be modelled with a first-order 
autoregressive structure, AR(1). AR(1) is, indeed, the most commonly covariance structure used in 
longitudinal studies, because, like ANTE(1), the correlation of the repeated measurements is assumed to 
decrease for observations that are farther away in time (Littell et al., 2006). However, AR(1), like several other 
time-series covariance structures, assumes equal time intervals, which ANTE(1) does not require (Littell et 
al., 2006). In fact, in AR(1) and similar simpler covariance structures, the correlation between adjacent within-
subject errors is modelled as constant throughout time, that is, a single autocorrelation parameter is 
considered between adjacent observations throughout the germination time-course. The reason for this 
assumption is that changes in the data are supposed to be constant through time so that a single contiguous 



correlation holds throughout the whole process. However, constant changes mean linearity of the response 
vs. time on the linked scale, which, we have seen, does not hold true for the germination time-course. In fact, 
as seen, correlation tends to increase through time because of plateauing. Nevertheless, in germination 
studies, a varying time interval is often adopted in the form of shorter time spacings in correspondence of 
faster changes in germination, thus that the shorter time spacings, partially compensate for larger changes 
in the response (this was not properly done in the original experiment from which these data were obtained, 
though). In this sense, AR(1) and similar covariance structures might still be sensible even in presence of this 
kind of uneven time spacing. The empirical MBN estimator helps increasing the robustness of this approach. 
Note that, in modelling the covariance structure of the residuals, the data are considered as ordered 
according to a categorical longitudinal variable (which is not made explicit, in this instance) even if time were 
modelled as continuous, because continuous effects are not allowed in R-side random effects, but for spatial 
covariance structures. Thus, considering time as continuous would not solve the problem of unequal time 
spacing. 

In addition, it should be noted that when in the ‘random residual’ statements an unstructured covariance is 
specified, it accounts for both within-subjects as well as for between-subjects variances and covariances, 
whereas the AR(1) covariance structure only accounts for the within-subjects covariances (Littell et al., 2006). 
Thus, a ‘random residual’ statement specifying an unstructured-type covariance must not be accompanied 
by a separate ‘random’ statement to keep into account the between-subjects variance of the effect used as 
‘subject’ in the ‘repeated’ statement; whereas such a separate ‘random’ statement, modelling a G-type 
random effect, is instead appropriate for the R-side AR(1) covariance structure (Littell et al., 2006). Such a G-
type statement is advised against for the ANTE(1) covariance structure, because it can give convergence 
problems (Stroup et al., 2018). The simultaneous presence of G-side and R-side modelling leads to a quasi-
marginal structure (Stroup et al., 2018) that includes the random intercept effect for the subjects together 
with an AR(1) structure of the residuals, and it can be therefore termed AR(1)+RE (Littell et al., 2006). 
Furthermore, when the AR(1) covariance structure is used, it could be advisable to add a ‘group=’ option that 
specifies the parameters of the covariance structure be varied according to the ‘group’ effect. This effect 
ought to be specified as the fixed factor other than time, if there is only one, or as the highest interaction 
between fixed factors apart from time. In this way, unequal variances and different correlations are modelled 
(both as R-side working scale parameters; Gbur et al., 2012) for the levels of the other fixed factor, or for the 
highest interaction between fixed factors apart from time, so that if they strongly affect the germination 
response, the R-side variance/covariance structure can better suit the different germination progress curves. 
Whether an ANTE(1) or AR(1)(with groups)+RE structure has to be used, depends on how much the progress 
curves differ in the experiment. If they are not very much diverse, like for the present data, the former 
structure is preferable, since it better suits the overall shape of the similar germination curves. If, on the 
other hand, the progress curves are of widely different shapes, like when seed samples with diverse 
dormancy intensities are compared, the latter structure can be more suitable because of better flexibility 
with respect to the widely different time-courses. 

Finally, it needs to be noticed that the ‘empirical’ option requires that the data are grouped by subjects in 
every ‘random’ or ‘random residual’ statement, and that the specified ‘subject=’ effects are the same, or 
contain each other, across statements. Hence, in the ‘random’ statement, it must be made explicit that the 
between-plates effect is modelled in terms of random deviations from the general intercept. The following 
model is then fitted: 

/*Quasi-marginal model with categorical time*/ 
proc GLIMMIX order=data empirical=mbn; 
by stage; 
class plate temp time; 
model germ/n = temp time temp*time / link=probit; 



random intercept / subject=plate(temp); 
random residual / subject=plate(temp) type=ar(1) group=temp; 
nloptions tech=nrridg; 
lsmeans temp*time / cl ilink plot=meanplot slice=time slicediff=time adjust=smm; 
covtest diagR; 
run; 

Note that the ‘covtest’ statement is used here to test independence of residuals by constraining off-diagonal 
elements in the R matrix to zero and thereby reducing the R-side covariance structure to the diagonal form. 
As the G-side structure is not modified, this test indicates whether modelling a correlation among errors of 
the repeated measures (i.e., considering conditional dependence of among-plates variances through time) 
improves the fit even if the effect of plates is already considered in terms of random deviations from the 
general intercept. This can be done since the pseudo-likelihoods with and without the correlation parameters 
are computed using the same pseudo-data, because all the variances are unmodified across the two models. 

RESULTS (excerpts): 

   Table 67: stage=progress 

Model Information 

Data Set WORK.REFFILE 

Response Variable (Events) germ 

Response Variable (Trials) n 

Response Distribution Binomial 

Link Function Probit 

Variance Function Default 

Variance Matrix Blocked By plate(temp) 

Estimation Technique Residual PL 

Degrees of Freedom Method Containment 

Fixed Effects SE Adjustment Sandwich - MBN(df,r=1,d=2) 

 

   Table 68: stage=progress 

Dimensions 

G-side Cov. Parameters 1 

R-side Cov. Parameters 6 

Columns in X 44 

Columns in Z per Subject 1 

Subjects (Blocks in V) 18 

Max Obs per Subject 10 

   Table 69: stage=progress 



Optimization Information 

Optimization Technique Newton-Raphson with Ridging 

Parameters in Optimization 7 

Lower Boundaries 7 

Upper Boundaries 3 

Fixed Effects Profiled 

Starting From Data 

 

   Table 70: stage=progress 

Fit Statistics 

-2 Res Log Pseudo-Likelihood -193.92 

Generalized Chi-Square 150.00 

Gener. Chi-Square / DF 1.00 

 

   Table 71: stage=progress 

Covariance Parameter Estimates 

Cov Parm Subject Group Estimate 
Standard 

Error 

Intercept plate(temp)  0.004386 0.004202 

Variance plate(temp) temp 20 1.1791 0.5069 

AR(1) plate(temp) temp 20 0.8355 0.07488 

Variance plate(temp) temp 30 0.6192 0.2296 

AR(1) plate(temp) temp 30 0.7039 0.1116 

Variance plate(temp) temp 40 0.3533 0.1110 

AR(1) plate(temp) temp 40 0.4732 0.1694 

 

   Table 72: stage=progress 

Type III Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

temp 2 15 2.42 0.1227 

time 9 135 342.16 <.0001 

temp*time 18 135 3.03 0.0001 



 

   Figure 13: stage=progress 

 

 

   Table 73: stage=progress 

Tests of Effect Slices for temp*time 
Sliced By time 

time 
Num 

DF 
Den 
DF F Value Pr > F 

2 2 135 29.69 <.0001 

3 2 135 15.98 <.0001 

3.5 2 135 3.72 0.0267 

4 2 135 0.53 0.5899 

4.5 2 135 0.83 0.4390 

5 2 135 1.04 0.3568 

5.5 2 135 0.84 0.4335 

6 2 135 0.70 0.4986 

6.5 2 135 0.70 0.4989 

7 2 135 0.71 0.4926 

 

 

 

 



   Table 74: stage=progress 

Simple Effect Comparisons of temp*time Least Squares Means By time 
Adjustment for Multiple Comparisons: SMM 

Simple 
Effect 
Level temp temp Estimate 

Standard 
Error DF t Value Pr > |t| Adj P Alpha Lower Upper 

Adj 
Lower 

Adj 
Upper 

time 2 20 30 -0.4315 0.1222 135 -3.53 0.0006 0.0017 0.05 -0.6731 -0.1898 -0.7267 -0.1362 

time 2 20 40 -0.8625 0.1202 135 -7.17 <.0001 <.0001 0.05 -1.1003 -0.6247 -1.1531 -0.5719 

time 2 30 40 -0.4311 0.08551 135 -5.04 <.0001 <.0001 0.05 -0.6002 -0.2620 -0.6377 -0.2244 

time 3 20 30 -0.5431 0.1188 135 -4.57 <.0001 <.0001 0.05 -0.7780 -0.3081 -0.8302 -0.2559 

time 3 20 40 -0.5965 0.1121 135 -5.32 <.0001 <.0001 0.05 -0.8181 -0.3749 -0.8673 -0.3257 

time 3 30 40 -0.05347 0.1081 135 -0.49 0.6217 0.9453 0.05 -0.2673 0.1603 -0.3147 0.2078 

time 3.5 20 30 -0.3334 0.1413 135 -2.36 0.0197 0.0578 0.05 -0.6129 -0.05400 -0.6749 0.008014 

time 3.5 20 40 -0.2950 0.1173 135 -2.51 0.0131 0.0387 0.05 -0.5271 -0.06294 -0.5786 -0.01143 

time 3.5 30 40 0.03844 0.1173 135 0.33 0.7437 0.9830 0.05 -0.1935 0.2704 -0.2450 0.3219 

time 4 20 30 -0.1590 0.1548 135 -1.03 0.3064 0.6645 0.05 -0.4652 0.1472 -0.5332 0.2152 

time 4 20 40 -0.08848 0.1377 135 -0.64 0.5215 0.8895 0.05 -0.3607 0.1838 -0.4211 0.2442 

time 4 30 40 0.07051 0.1182 135 0.60 0.5517 0.9091 0.05 -0.1632 0.3042 -0.2151 0.3561 

time 4.5 20 30 -0.1479 0.1553 135 -0.95 0.3427 0.7143 0.05 -0.4551 0.1593 -0.5233 0.2275 

time 4.5 20 40 0.006176 0.1309 135 0.05 0.9624 0.9999 0.05 -0.2527 0.2650 -0.3101 0.3225 

time 4.5 30 40 0.1541 0.1226 135 1.26 0.2109 0.5068 0.05 -0.08832 0.3965 -0.1421 0.4503 

time 5 20 30 -0.1810 0.1514 135 -1.20 0.2339 0.5485 0.05 -0.4804 0.1184 -0.5469 0.1848 

time 5 20 40 -0.02653 0.1346 135 -0.20 0.8441 0.9962 0.05 -0.2927 0.2397 -0.3518 0.2988 

time 5 30 40 0.1545 0.1178 135 1.31 0.1919 0.4705 0.05 -0.07847 0.3875 -0.1302 0.4392 

time 5.5 20 30 -0.1578 0.1543 135 -1.02 0.3081 0.6669 0.05 -0.4629 0.1473 -0.5306 0.2150 

time 5.5 20 40 -0.01487 0.1383 135 -0.11 0.9145 0.9994 0.05 -0.2883 0.2586 -0.3490 0.3192 

time 5.5 30 40 0.1430 0.1183 135 1.21 0.2290 0.5398 0.05 -0.09100 0.3769 -0.1429 0.4289 

time 6 20 30 -0.1602 0.1537 135 -1.04 0.2990 0.6538 0.05 -0.4641 0.1437 -0.5316 0.2112 

time 6 20 40 -0.05116 0.1407 135 -0.36 0.7167 0.9770 0.05 -0.3293 0.2270 -0.3911 0.2888 

time 6 30 40 0.1091 0.1107 135 0.99 0.3262 0.6924 0.05 -0.1098 0.3279 -0.1584 0.3765 

time 6.5 20 30 -0.1600 0.1538 135 -1.04 0.3000 0.6552 0.05 -0.4641 0.1441 -0.5316 0.2116 

time 6.5 20 40 -0.05078 0.1408 135 -0.36 0.7188 0.9775 0.05 -0.3291 0.2276 -0.3909 0.2894 

time 6.5 30 40 0.1092 0.1107 135 0.99 0.3256 0.6916 0.05 -0.1097 0.3281 -0.1583 0.3767 

time 7 20 30 -0.1747 0.1507 135 -1.16 0.2484 0.5735 0.05 -0.4728 0.1234 -0.5390 0.1895 

time 7 20 40 -0.09015 0.1486 135 -0.61 0.5452 0.9051 0.05 -0.3841 0.2038 -0.4494 0.2691 

time 7 30 40 0.08458 0.1165 135 0.73 0.4689 0.8491 0.05 -0.1457 0.3149 -0.1969 0.3660 

 

 



   Table 75: stage=progress 

Tests of Covariance Parameters 
Based on the Residual Pseudo-Likelihood 

Label DF 
-2 Res Log 

P-Like ChiSq Pr > ChiSq Note 

Conditional Independence 3 -139.87 54.05 <.0001 DF 

DF: P-value based on a chi-square with DF degrees of freedom. 

 

The quasi-marginal model reverts to applying the ‘Containment’ Degrees of Freedom Method, but a 
Sandwich - MBN adjustment of Fixed Effects standard errors is now utilized (Table 67). The variance among 
plates (i.e., the random intercept effect) is computed as G-side variance/covariance parameter and it 
represents a column in the Z matrix for each of the 18 subjects (i.e., plates), whereas there are six R-side 
variance/covariance parameters (Table 68), namely one within-subject variance and one correlation for each 
temperature level. There are therefore seven parameters in optimization: the G-side between-subjects 
(among plates) variance, and three within-subjects variances with three within-subjects autocorrelation 
parameters on the R-side (Table 69). No large overdispersion is apparent, as expected (Table 70). Although 
the -2 Residual Log Pseudo-Likelihood cannot be compared between the marginal model with ANTE(1) 
structure and the current quasi-marginal model because random variances are modelled differently, thus 
that pseudo-data are diverse too, the overly lower value obtained with the former model (Table 62) with 
respect to the latter is in agreement with theoretical considerations suggesting that these data are better 
fitted by a covariance structure that allows the autocorrelation parameters to depend on the particular time 
period considered, rather than assuming a single overall autocorrelation parameter, owing to non-linearity 
of germination progression even on the linked scale. This, however, quite probably holds true because the 
germination time-courses at the three temperatures are very similar, thus that they can be modelled with a 
unique set of covariance parameters. Were the germination time-courses very different, a unique set of 
covariance parameters would presumably be unsatisfactory, and the quasi-marginal model with a different 
AR(1) correlation for each time-course could be more sensible. A marginal model with ANTE(1) structure with 
a diverse set of parameters for each time-course would, on the other hand, easily incur in 
overparameterization. In GzLMM, estimation convergence is a common practical issue, and non-convergence 
can result when there are fewer observations than parameters in the model that is being fit (Gbur et al., 
2012). This is especially an issue for models with many covariance parameters, and it can be solved by fitting 
a simpler model (Gbur et al., 2012). It is therefore important to identify the simplest covariance model that 
adequately accounts for the correlation structure in the data (Gbur et al., 2012). 

Table 71 shows that, in this model, the variance among plates is small and maybe non-significant (at least, it 
is numerically close to its standard error), while within-subjects variances and correlations (called AR(1) in 
the output table) seem to differ among temperature levels (remind that R-side parameters are ‘working’, not 
real, values; Stroup et al., 2018). A non-significant effect (assuming a significance threshold P = 0.05) is found 
for temperature (Table 72). The LS-means are similar to those of the previous models (Figure 13). As 
consistently inferred, significant differences are found at days 2-3.5 (Table 73), with every temperature level 
differing at day 2, 20 °C differing from the two other levels at day 3, but only from 40 °C at day 3.5, though 
the difference with 30 °C is almost significant (Table 74). As said, this model appears less suit to the present 
data, but it ought to be of greater value when the germination time-courses are strongly different. The test 
for conditional independence (Table 75) confirms that considering the correlation among errors of the 
repeated measures improves the fit even if the effect of plates is already considered in terms of random 
intercepts. Moreover, whereas conditional independence is highly significant, the estimated standard error 



of the intercept variance, i.e. the among plate variance, is almost of the same size as the variance itself, 
suggesting it is probably not significant, but this cannot be tested exactly. As plates are physical elements of 
the experimental design, their effect is retained anyway (Stroup et al., 2018), though it is small (a value 
0.004386 probits, from Table 71, corresponds to a standard deviation of 2.6 % around 50 % on the percentile 
scale). A predominant effect of conditional dependence with respect to random intercepts is confirmed even 
by a quasi-marginal model with ANTE(1) structure of residuals, which, though sometimes is computationally 
problematic (Stroup et al., 2018), converges to a reasonable solution in this instance (not shown). 

Regarding the variability among plates, it should be noticed that, though it is low in the presently described 
experiment using neatly results from replicate plates of practically uniform seeds, it was much wider in the 
experiment described in Annex II, wherein seeds were infected with a fungus, thus that the germination 
response was consequent to the interaction of the fungus with the seeds. These biological interactions are 
subject to large stochastic fluctuations that result into stronger heterogeneity among plates, that is, a wider 
between-plates random effect. Differently from R-side working variances, G-side variances, modelled as 
constant on the linked scale, can be used to obtain an idea of the magnitude of variability among plates in 
percentage terms by naïvely computing the value that corresponds to a maximum standard deviation around 
50 %, as previously mentioned. For example, a G-side between-plates variance of 0.2978 (Table 12 in Annex 
II) on the probit scale corresponds to a maximum standard deviation of about 21 % around a mean of 50 % 
on the percentile scale. This is a much larger variability, which can be expected when an important source of 
heterogeneity is present. In addition, as previously mentioned, greater shrinkage of BLUPs in longitudinal 
data also contributes to lowering the modelled random factor variance with respect to FGP tests. 

As final improvement, a marginal model (given it better suits the present data than a quasi-marginal model) 
with time as continuous variable can be evaluated: 

/*Marginal model with continuous time*/ 
proc GLIMMIX empirical=mbn; 
by stage; 
effect spltime = spline(time); 
class plate temp; 
model germ/n = temp temp*spltime / link=probit; 
random residual / subject=plate(temp) type=ante(1); 
nloptions tech=newrap; 
lsmeans temp / at time=2 ilink adjust=smm; 
lsmeans temp / at time=3 ilink adjust=smm; 
lsmeans temp / at time=3.5 ilink adjust=smm; 
lsmeans temp / at time=4 ilink adjust=smm; 
lsmeans temp / at time=4.5 ilink adjust=smm; 
lsmeans temp / at time=5 ilink adjust=smm; 
lsmeans temp / at time=5.5 ilink adjust=smm; 
lsmeans temp / at time=6 ilink adjust=smm; 
lsmeans temp / at time=6.5 ilink adjust=smm; 
lsmeans temp / at time=7 ilink adjust=smm; 
run; 

The ‘order=data’ option is no longer necessary since time is now considered a numerical variable. Given this 
is a marginal model, it is processed with REPL and ‘containment’ ddf with MBN correction, like the marginal 
model with categorical time. However, the ‘newrap’ optimization technique is used because the algorithm 
using the Newton-Raphson method with line search seems to achieve easier convergence for this covariance 



structure in presence of continuous time. Whether to use ‘nrridge’ or ‘newrap’ is sometimes a matter of 
trying, though ‘newrap’ occasionally works better in the absence of G-side random factors. 

RESULTS (excerpts): 

   Table 76: stage=progress 

Optimization Information 

Optimization Technique Newton-Raphson 

Parameters in Optimization 19 

Lower Boundaries 19 

Upper Boundaries 9 

Fixed Effects Profiled 

Starting From Data 

 

   Table 77: stage=progress 

Fit Statistics 

-2 Res Log Pseudo-Likelihood -640.18 

Generalized Chi-Square 159.00 

Gener. Chi-Square / DF 1.00 

 

   Table 78: stage=progress 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 
Standard 

Error 

Var(1) plate(temp) 0.2827 0.1031 

Var(2) plate(temp) 1.3349 0.4739 

Var(3) plate(temp) 1.3715 0.4624 

Var(4) plate(temp) 1.0159 0.3103 

Var(5) plate(temp) 0.9402 0.2828 

Var(6) plate(temp) 0.4941 0.1361 

Var(7) plate(temp) 0.5203 0.1446 

Var(8) plate(temp) 0.4135 0.1095 

Var(9) plate(temp) 0.4135 0.1095 

Var(10) plate(temp) 0.4574 0.1208 

Rho(1) plate(temp) 0.1664 0.2473 

Rho(2) plate(temp) 0.4799 0.1989 



Covariance Parameter Estimates 

Cov Parm Subject Estimate 
Standard 

Error 

Rho(3) plate(temp) 0.7832 0.08769 

Rho(4) plate(temp) 0.9435 0.02831 

Rho(5) plate(temp) 0.8457 0.06812 

Rho(6) plate(temp) 0.9773 0.01083 

Rho(7) plate(temp) 0.9310 0.02992 

Rho(8) plate(temp) 1.0000 . 

Rho(9) plate(temp) 0.9647 0.01548 

 

   Table 79: stage=progress 

Type III Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

temp 2 15 1.06 0.3717 

spltime*temp 18 90 259.88 <.0001 

 

   Table 80: stage=progress 

temp Least Squares Means 

temp time Estimate 
Standard 

Error DF t Value Pr > |t| Mean 

Standard 
Error 
Mean 

20 2.00 -1.7308 0.05813 15 -29.77 <.0001 0.04175 0.005186 

30 2.00 -1.3075 0.03825 15 -34.18 <.0001 0.09552 0.006491 

40 2.00 -0.8800 0.04741 15 -18.56 <.0001 0.1894 0.01284 

 

   Table 81: stage=progress 

Differences of temp Least Squares Means 
Adjustment for Multiple Comparisons: SMM 

temp temp time Estimate 
Standard 

Error DF t Value Pr > |t| Adj P 

20 30 2.00 -0.4233 0.06959 15 -6.08 <.0001 <.0001 

20 40 2.00 -0.8508 0.07501 15 -11.34 <.0001 <.0001 

30 40 2.00 -0.4275 0.06091 15 -7.02 <.0001 <.0001 



   Table 82: stage=progress 

temp Least Squares Means 

temp time Estimate 
Standard 

Error DF t Value Pr > |t| Mean 

Standard 
Error 
Mean 

20 3.00 0.1988 0.07993 15 2.49 0.0252 0.5788 0.03126 

30 3.00 0.7657 0.08365 15 9.15 <.0001 0.7781 0.02489 

40 3.00 0.8340 0.07622 15 10.94 <.0001 0.7979 0.02148 

 

   Table 83: stage=progress 

Differences of temp Least Squares Means 
Adjustment for Multiple Comparisons: SMM 

temp temp time Estimate 
Standard 

Error DF t Value Pr > |t| Adj P 

20 30 3.00 -0.5669 0.1157 15 -4.90 0.0002 0.0006 

20 40 3.00 -0.6353 0.1104 15 -5.75 <.0001 0.0001 

30 40 3.00 -0.06838 0.1132 15 -0.60 0.5547 0.9047 

 

   Table 84: stage=progress 

temp Least Squares Means 

temp time Estimate 
Standard 

Error DF t Value Pr > |t| Mean 

Standard 
Error 
Mean 

20 3.50 0.9058 0.08848 15 10.24 <.0001 0.8175 0.02342 

30 3.50 1.2303 0.07941 15 15.49 <.0001 0.8907 0.01486 

40 3.50 1.2801 0.06415 15 19.96 <.0001 0.8998 0.01128 

 

   Table 85: stage=progress 

Differences of temp Least Squares Means 
Adjustment for Multiple Comparisons: SMM 

temp temp time Estimate 
Standard 

Error DF t Value Pr > |t| Adj P 

20 30 3.50 -0.3245 0.1189 15 -2.73 0.0155 0.0444 

20 40 3.50 -0.3744 0.1093 15 -3.43 0.0038 0.0110 

30 40 3.50 -0.04983 0.1021 15 -0.49 0.6325 0.9461 

 



As previously seen, the marginal model with ANTE(1) variance/covariance structure requires 19 R-side 
parameters for the progress stage: 10 variances and 9 autocorrelation parameters (Table 76). The twenty-
one parameters for fixed effects included in the optimization of the corresponding conditional model (Table 
40) were not optimized by pseudo-likelihood in this model because they were profiled, that is, estimated 
with a linear mixed model onto the linked scale and thereafter used as pseudo-data for the pseudo-likelihood 
optimization. The -2 Residual Log Pseudo-Likelihood (Table 77) would suggest a better fit than the 
unstructured model (see Table 58), but the estimated random variances are not the same (compare Tables 
78 and 59) and therefore the pseudo-data do not correspond, thus that the two fit statistics cannot be 
properly compared (though such a drop in this fit statistic, associated to very close estimations of the means, 
might hint to a real improvement). In the same tables, an increase of (working) correlation between adjacent 
observations is observed as the germination progress reaches a plateau. In fact, during the germination 
surge, adjacent germination data largely differ, whereas they are very close at the plateau. Notice that, in 
the R-side approach, off-diagonal terms of the R matrix act as working covariances embedded in the variance 
function, thus that these parameters do not have interpretations per se, but do account for serial correlation 
(Gbur et al., 2012). On the other hand, in the G-side approach, serial correlation embeds in the linear 
predictor and is assumed to follow a Gaussian random distribution (Gbur et al., 2012). 

Like found for the conditional model with continuous time, the F tests (Table 79) indicate a highly significant 
effect for ‘temp*spltime’ but a non-significant effect for ‘temp’, which means that the different temperatures 
cause a change of the shape of the curvilinear trend and not a vertical shift of the spline. As noticed before, 
this is not in contrast with previous findings of a significant ‘temp’ effect when time is considered categorical, 
because when time is modelled as a continuous variable, the meaning of the fixed effects is changed. Like 
consistently found in all the well-suited models, differences among temperatures are significant at days 2-
3.5, with estimated means close to those obtained with previous models. Multiple comparisons at each 
discrete timepoint indicate a different effect for each of the three temperatures at 2 days, but only for 20 °C 
with respect to the other two temperatures at days 3-3.5 (Tables 80-85), as inferred by the other well-suited 
models. Thus, essentially identical conclusions can be drowned from either analysis for this data set wherein 
100 seeds are tested per each cluster/treatment/time combination. This is a noticeable accomplishment, as 
the limited number of Bernoulli trials normally utilized in germination studies could otherwise be expected 
to amplify discrepancies between the G-side and R-side approaches, though standard errors tend to be much 
more affected than the estimates (Gbur et al., 2012). 

It may be worth mentioning that even in the case of a quasi-marginal model with AR(1) structure and 
continuous time, estimates would be similar to those obtained with categorical time (not shown). 

As plates are nested within treatments, the effect of their interaction with such fixed factor is included in the 
estimate of their effect (Quinn and Keough, 2002). Nevertheless, as longitudinal studies correspond to partly 
nested experimental designs (Quinn and Keough, 2002), a plate x time interaction effect could be envisaged 
that could be managed with a random coefficients model (Littell et al., 2006) having both a random intercept 
and a random slope through time for each plate. However, if uniform and healthy seed samples are tested, 
plates are not heterogeneous subjects, like genetically diverse individuals or materially different places, 
rather they are quite uniform, almost alike to true replicates. Thus, it is not envisioned that they can introduce 
subject-specific effects that can affect the response of the single plate through time; that is, random slopes 
are expected to differ only negligibly, thereby representing a zero-variance component estimate that leads 
to boundary estimation troubles (Gbur et al., 2012). As seen, indeed, plates diversity, as measured in terms 
of deviations from the common intercept, is small, and through-time effects associated with individual plates 
are stochastic fluctuations. Furthermore, apart from the default ‘variance components’ structure, the plate 
x time interaction effect is already embedded into more complex covariance structures. Modelling of this 
interaction effect is therefore entrusted to the longitudinal variance/covariance structure. 



Finally, it needs to be noticed that even though a thorough evaluation of the best variance/covariance 
structure would require testing several structures on the G-side with Laplace approximation and then 
choosing the best structure based on the smaller value of the AICC goodness-of-fit statistic (Gbur et al., 2012), 
this can be somewhat troublesome to apply to germination studies because of the hierarchical structure 
typical of their experimental designs, wherein plates represent subjects nested within treatment 
combinations, i.e. random effects within a fixed-effects framework, rather than being complete blocks over 
which fixed effects are replicated. Computational problems can, in fact, arise because nesting corresponds 
to an entirely unbalanced interaction (that is, the diverse treatments are applied onto different plates) and 
the nested plate effect is thereby completely confounded with its plate x treatment interaction (Quinn and 
Keough, 2002). As this interaction is embedded into covariance structure while the plate effect is modelled 
in terms of intercepts on the G-side, whereas on the R-side it isn’t (at least, for ANTE(1) and AR(1) structures), 
this can cause some redundancy that leads to zero-variance estimates and therefore boundary estimation 
troubles when modelling on the G-side alone. Boundary estimation within the same matrix can ensue in 
assigning all the significance to either one or the other effect (usually to the interaction effect, which is 
evaluated first in type III ANOVA), especially when these effects are partially overlapping, and the interaction 
effect is very small or even negligible. This causes troubles when modelling the covariance structure of 
longitudinal data on the G-side alone. Small, partially overlapping effects of the plate random factor and of 
errors through time (wherein the plate x treatment interaction is embedded) are better managed by 
separately modelling them on distinct, dedicated matrices (chiefly because the G-side effect is evaluated 
prior to the R-side one, particularly in pseudo-likelihood). Thus, marginal and quasi-marginal models can 
provide a more robust convergence, at least for this kind of data and if the common ANTE(1) or AR(1) 
structures are utilized. 
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