
Annex IX: Statistical significance and effect size 

Different GzLMM appear to provide consistent inference and good sensitivity in detecting the significance of 
effects, but how should ‘significance’ be properly understood when making inference? 

P-values indicate the probability of the observed data (or, more exactly, of data at least as extreme, i.e. 
divergent, as those actually observed) assuming the null hypothesis is true (together with other underlying 
assumptions). A P-value is a continuous, or graded, evidence for the falsification (i.e., disproval) of the null 
hypothesis, in the sense that if the null hypothesis were true, we would expect to see sample data like those 
observed, or even more extreme, with probability P (Carver, 1978; Amrhein et al., 2017). Thus, if P is small, 
we would expect to see such a divergence among means, or even greater, only on rare occasions. If we 
observed data with a low P-value, therefore, we are alerted that, assuming the data are right, the null 
hypothesis is suspect. 

Looking at science as a falsification endeavour, we can say that smaller P-values raise more doubt against the 
null hypothesis than larger P-values (Amrhein et al., 2017). Hence, the P-value should be viewed as a 
descriptive statistic about the probability that the sample data are observed in a population characterized by 
the null hypothesis, not like a formal evidence for a dichotomous judgment (Amrhein et al., 2017). As this 
probability is based on the expected distribution of sampling fluctuations when the null hypothesis is true, 
P-values are expected to fluctuate as well when independent tests are conducted on different samples drawn 
from a common population, for example in replicate experiments (Carver, 1978; Halsey et al., 2015). 

Reducing P-values to ‘significant’ and ‘non-significant’ is, thus, a frequent cause for which studies seem 
irreproducible (Amrhein et al., 2017). Significance thresholds (that is, conventional P-values below which 
significance is claimed) were devised to protect researchers from making claims about the relevance of 
effects that instead are just noise, but dichotomous threshold thinking cannot and must not replace informed 
judgment (Amrhein et al., 2017). Most importantly, non-significance cannot be interpreted as demonstrating 
that “there is no effect” (Amrhein et al., 2017); rather, failure to reject the null hypothesis implies only that 
the studied effect, if any, is not large enough to be detected as significant with the sample size employed in 
the described experiment. 

Albeit with all these caveats, it is here still suggested that actual P-values are reported, and significance 
thresholds are adopted to pragmatically summarize the chief findings, for reasons of general understanding 
and clarity. In this paper, ‘significant’ is used with reference to the conventional significance threshold P ≤ 
0.05, which is deemed to be a sensible choice in the context of germination, like in many biological fields, to 
call for finding an effect that is large enough and consistent enough, under the experiment conditions, to 
deserve a public notice. It identifies, in other terms, results that accrue a moderate strength of evidence to 
the disproval of the null hypothesis, providing, however, the null hypothesis has not a very high prior 
probability of being true (Goodman, 2001; Krzywinski and Altman, 2013). No definitive pronouncement can, 
anyway, be made only on the basis of the significance or non-significance of an effect in a single experiment: 
as what is tested is the significance of the divergence of the observed data from the given null hypothesis, 
only consistent divergences across several independent experiments can prove the implausibility of the null 
hypothesis. 

It ought to be noted that, even though not proving the null hypothesis, publishing non-significant results for 
well-devised experiments has statistical value, at least if the scope of the study is conceptually meaningful. 
If, in fact, many experimental trials are done and only those that produce significant results are published, 
statistical significance could be finally found, even for effects that are not real, particularly if small sample 
sizes are used (Amrhein et al., 2017). Moreover, if replicate experiments are performed based on small 
samples, substantial variation in the P-value will be found, thus that replicability of P-values is poor when 
sample size is small (Halsey et al., 2015). On the other hand, statistical significance could be (correctly) found 
for most plausible effects with a sample size that is large enough (Amrhein et al., 2017). However, with very 



large sample sizes, it is possible to obtain statistically significant differences that are of trivial interest in 
reality (Sileshi, 2012). In this sense, quite often a significance test is actually testing whether the sample size 
is large enough (and/or the experimental setup is refined enough) to detect the effect, rather than whether 
the effect exists or not (Amrhein et al., 2017). This still makes a lot of sense if we aim to determine if an effect 
is present that can be detected as ‘significant’ within a sensible experimental setup, including a reasonable 
sample size (Krzywinski and Altman, 2013). 

Whether an effect appears to be significant or not for germination in a given experiment is the chief question 
in many studies. Although the importance of the effect size (i.e., the magnitude of the variation in the 
response among group means) has been emphasised (Carver, 1978; Sileshi, 2012; Stroup, 2015), estimating 
the exact size of the effect is usually less of concern in the context of germination studies than it is in other 
fields. Most studies, indeed, focus on hypothesis testing, rather than on estimating the effect size (Sileshi, 
2012). This is owing to some trivial reasons. 

First, if the effect size is thought of as being on an interval scale (that is, a difference in the response between 
the levels of a factor), a given size of the effect on the probit scale, where the effect is sized and tested (and 
where it is supposed to act quantitatively, in the linear model), translates into a broadly uneven size on the 
percentage scale, where it is of interest. This means that, in germination studies, the practical relevance of 
the effect depends on the experimental conditions. For example, if a dormancy breaking treatment has an 
effect size of 0.4 probits, this will correspond to an effect of near 15.5% if the treatment is done on seeds 
that are already 50% germinating, whereas it will have an incremental effect of only 2.4% if the seeds are 
instead already 96% germinating (and all viable). 

Second, very often the size of the response to a treatment is dependent onto so many factors, intrinsic and 
extrinsic, that trying to make some general inference about its magnitude outside the tested conditions might 
be questionable. Consider a fungicide: in an experiment representing quite typical conditions, testing seed-
dressing for three seed batches, each with a similar incidence of a given pathogen, shows a consistent 
improvement of germination from 75% to 95%, with a highly significant effect. Can we make the broad claim 
that this treatment generally improves germination by 20%? No way: other genotypes, infected with other 
fungi, at a diverse degree of contamination, under different conditions of aeration, watering and 
substratum/soil, with a diverse ageing of the seeds, will produce very different effect sizes, not only because 
the differing conditions affect the efficacy of the treatment, but also because the different conditions could 
also change the starting level of germination, and this would modify the effect size on the percentage scale, 
assuming it is constant on the linked scale. However, if the fungicide works well in a number of carefully 
performed experimental tests, with effects generally significant, it can be safely claimed to have a protective 
effect on germination (even though they might well vary in size among experiments), maybe better or worse 
than another chemical, this can be tested as well. How much, however, is a tricky question to answer, and 
thus providing an answer is a task usually avoided. At least, it is not possible to claim that the observed effect 
size represents a general inference, in percentage terms. Furthermore, estimates of effect size are highly 
variable among replicate experiments when small samples are utilized (Halsey et al., 2015). 

Greater importance is normally assigned, in germination studies, to the experimental design and setup, and 
to the tested conditions: if they are sensible, conceptually solid, and are based on a reasonable sample size 
(Krzywinski and Altman, 2013), it is tacitly assumed that the results can be useful to determine whether the 
studied effect is ‘significant’, that is, it is large enough, and consistent enough (across replicates), to have a 
low probability of being due to chance alone, so that we might expect it will likely be observed under similar 
conditions. Anyway, ‘significant’, per se, is neither a proof of replicability nor of reliability (Carver, 1978), 
particularly if small samples are used (Halsey et al., 2015): we just have high hopes for this to happen. Reliable 
conclusions on the general value of a finding and its replicability can only be drawn once evidence has been 
accrued from several independent studies (Amrhein et al., 2017). Anyway, using power analysis to 
preliminary evaluate the probability that an experimental design will find the minimum treatment effect 



considered scientifically relevant to be statistically significant (Gbur et al., 2012) is always a laudable 
approach. 

Notwithstanding the above mentioned practical considerations, there are good reasons to ponder the size 
of the effect too, albeit refraining from making generalizations about its inferred quantification. Just because 
it is a percentage, or proportion, the germination response to a given effect has a size that is modelled as 
constant (i.e., linear) on the linked scale, and therefore, on the data scale, it is widest when the effect is 
determined as a change over the middle (i.e., 50 %) of the percentile range, whereas the effect size declines 
towards 0% and 100%. It is important to realize that even the precision of inference declines toward the 
boundaries of the percentile scale even though precision of measurement does not. In fact, since 
measurements are taken on the data scale (and therefore errors take place on the data scale too), an 
equitable, or roughly equitable, measurement, or experimental, error on the data scale greatly expands on 
the linked scale, and statistical significance is assessed on the linked scale. 

Consider, for example, an experimental error as small as ±1% throughout the percentile range: though it is 
practically negligible even on the linked scale for effects measured over the middle of the percentile range 
(i.e., over 50%), it expands tremendously on the linked scale if the effect is measured toward the boundaries 
of the percentile range. In fact, a ±1% error around 50% signifies the estimate of the mean ranges from 49% 
to 51%. On the probit scale, this interval corresponds to about 0.05 probits. However, the same ±1% error 
around a mean of 2% signifies that the estimate of that mean ranges from 1% to 3% (roughly, as, at the 
boundaries, the error is restricted to be within the percentile range), which, on the probit scale, corresponds 
to an interval of 0.45 probits. Thus, the same experimental error is nine times higher for the more extreme 
percent mean than for the middle range mean, once reported on the linked scale. As the effect size is 
modelled as constant on the linked scale, it follows that estimating the effect size from data close to the 
boundaries carries much more uncertainty than if it is estimated over the middle of the percentile range; this 
uncertainty reflects on any inference based on such data. Hence, researchers need to be wary of greater 
uncertainty of significance for small effects close to the percentile boundaries. Indeed, an effect size that is 
significant, on the linked scale, can be very small on the data scale if it is estimated near the boundaries of 
the percentile range, and, most importantly, its statistical significance could be more aleatory than if obtained 
as a large percentage difference in the middle of the percentile range. 

Since conclusions based on significance alone might be faulty in borderline conditions, judgments also based 
on the observed effect size (on the original scale) will increase inferential reproducibility (Amrhein et al., 
2017). It is therefore sensible that, even if statistically significant, an effect is also evaluated considering what 
effect size is deemed relevant, on the observation scale, in a given context (Stroup, 2015; Halsey et al., 2015). 
This also enforces to keep a distinction between statistical significance and relevance: a significant effect 
might, ultimately, be of neither theoretical nor practical interest (Sileshi, 2012). It is therefore recommended 
that, in germination studies, the tested conditions are such to ensure that the effect size, if the effect is real, 
can be large enough to be judged as relevant. In this respect, it is here suggested to consider as relevant, for 
germination studies, an effect size that is larger than 15 %. 

Besides, researchers are encouraged to consider the relevance of a given effect in relation to the accuracy of 
all the assumptions implied in their experiment. In this regard, I am particularly concerned with studies based 
on mutants, wherein small, albeit statistically significant, differences in the germination response between 
the mutant and the wild type are claimed to demonstrate a key role of the mutated gene for germination. I 
wonder if any mutation that causes a difference smaller than 40% could merit to be defined as ‘key’. 
Furthermore, the mutation, which, of course, must absolutely be in the same genetic background as the 
control (unless multiple genotypes are contrasted on the two sides), could have an indirect effect rather than 
a direct, real one. For example, if the studied mutation (which should be repeatedly backcrossed into the 
wild-type background, to minimize the risk of multiple mutations and cryptic genetic variation, and to 
maximize the probability that comparisons are made between isogenic, or pseudo-isogenic, wild-type strains; 



Chandler et al., 2013) affects the ripening time of the dispersal unit, but all the genotypes are harvested on 
the same date, a different degree of dormancy can be attained because either the wild type or the mutant 
underwent some dry after-ripening. 

Analogously, diversity of provenience, processing, storage, threshing and sorting can all cause significant 
effects on the germination response that can be confounded with the genetic effect, especially if the effect 
size is small. This is a form of pseudoreplication (Sileshi, 2012). Fluctuations of environmental variables can 
indeed have an effect per se. Suitable controls should therefore always be included. To find out the best 
model system to conduct a study also involves choosing genetic materials and experimental conditions that 
maximize the effect size with respect to possible confounding effects. Statistical analysis is never as important 
as ensuring that the real informational content of the observations is coherent with the biological hypothesis 
under test. Putting it more informally, if the data are not valid for our purpose, no statistical analysis can save 
us from reaching an unsupported inference. 

It ought to be considered that when germination data are analysed with a theoretically-sound model like 
hydrotime (Gianinetti and Cohn, 2007), data close to the boundaries, in addition to those at the boundaries, 
are excluded just because of the stronger imprecision of probit values (which are used for modelling) 
obtained by these data, and this is indeed associated with the precision of observations on the data scale. 
Whatever significant effect can be detected below 1% or above 99%, it is most probably to be ignored. 
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