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Abstract: Developers of resource-allocation and scheduling algorithms share test datasets
(i.e., benchmarks) to enable others to compare the performance of newly developed algorithms.
However, mostly it is hard to acquire real cloud datasets due to the users’ data confidentiality issues
and policies maintained by Cloud Service Providers (CSP). Accessibility of large-scale test datasets,
depicting the realistic high-performance computing requirements of cloud users, is very limited.
Therefore, the publicly available real cloud dataset will significantly encourage other researchers
to compare and benchmark their applications using an open-source benchmark. To meet these
objectives, the contemporary state of the art has been scrutinized to explore a real workload behavior
in Google cluster traces. Starting from smaller- to moderate-size cloud computing infrastructures,
the dataset generation process is demonstrated using the Monte Carlo simulation method to produce
a Google Cloud Jobs (GoCJ) dataset based on the analysis of Google cluster traces. With this article,
the dataset is made publicly available to enable other researchers in the field to investigate and
benchmark their scheduling and resource-allocation schemes for the cloud. The GoCJ dataset is
archived and available on the Mendeley Data repository.

Dataset: https://data.mendeley.com/datasets/b7bp6xhrcd/1.

Dataset License: CC BY 4.0

Keywords: GoCJ dataset; meta-task dataset; HPC dataset; scientific dataset

1. Summary

Datasets are becoming increasingly more pertinent when executing the performance assessment of
cloud-scheduling, resource-allocation, and load-balancing algorithms used for eagle-eyed examination
of efficiency and performance in a real-world cloud. A minor change in the behavior and nature of
the dataset is reflected in the performance of scheduling and resource-allocation policies. Assessing
the scheduling and allocation policies on cloud infrastructures under a varying load and system
size is a challenging problem. Real cloud workload is hard to acquire for performance analysis and
investigation due to the users’ data confidentiality and policies maintained by Cloud Service Providers
(CSPs). In addition, using real testbeds limits the experiments to the scale of the testbed. Hence, testing
the accuracy performance with real-world datasets is crucial in the field of research, and synthetic data
does not realistically represent an actual dataset [1]. The most appropriate alternative is to make the
investigation in a simulation environment with a load of varying behavior in the cloud environment.
For cloud computing research, it is valuable to formulate and ensure a widespread availability of
realistic datasets that show how resourcefully the cloud addresses the user requirements.
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Distributed computing is comprised of a potentially large number of heterogeneous computing
resources interconnected over recurrent network architecture to meet the computing requirements
of varying high-performance computing (HPC) applications [2]. Cloud computing is a paradigm
of distributed computing promised to deliver on-demand utility computing over the Internet.
The resources are provisioned in the form of Virtual Machines (VMs) deployed within cloud datacenters
consisting of physical host machines. These datacenters are generally over-provisioned to guarantee
high service availability and Quality of Service (QoS) computing [3]. The QoS contracts are formally
negotiated and self-proclaimed in the users’ Service-Level Agreements (SLA) providing confidence
to customers in outsourcing and executing HPC applications in cloud [4,5]. Cloud computing is a
unique platform that offers solutions to small business users of computation-hungry large scientific
applications. The cloud offers dynamically scalable access to the benefits of technology instead
of worrying about involved deployment, building, investment, maintenance, and operation of
physical infrastructure [6]. It is evident that several researchers and even different businesses are
keenly interested in using the cloud infrastructure for executing scientific applications in remote
datacenters [7]. The cloud provides its services in the form of a platform or infrastructure to real-time
deployment, execution, or simulation of different computation-greedy applications i.e., big network
traffic data visualizations [8], multi-threaded learning control mechanisms for neural networks [9],
performance tests on merge sorts, recursive merge sorts for big data processing [10], and parallelization
of modified merge sort algorithms [11] etc. Some parallel applications result in the degradation of
resource use in cloud computing, undesirably affecting the performance of the computing environment.
Thus, adopting an efficient and appropriate scheduling mechanism to achieve required scheduling
objectives becomes a challenging research issue. Parenthetically, researchers need to archive scientific
datasets that exhibit behaviors of realistic cloud workloads to enable other researchers to evaluate the
scheduling mechanisms with desired performances.

Some datasets (i.e., Heterogeneous Computing Scheduling Problems (HCSP) Instances [12],
and Task Execution Time Modeling (TETM) [13]) are publicly available for research purposes and
these datasets are based on varying task and machine heterogeneity. However, the compositions of
the job sizes in these datasets are not derived from any real cluster or cloud workload. Furthermore,
there are some publicly available real workload traces (such as Google cluster traces [14], Yahoo cluster
traces [15], Facebook Hadoop workload [16], OpenCloud Hadoop workload [17], Eucalyptus IaaS
cloud Workload [18], and the Grid Workload Archiver TuDelft (GWA-T) traces [19], etc.); however,
most of these require preprocessing and in-depth low-level details to be regenerated and used
for experimentation.

The main contribution of this data descriptor is to introduce a realistic Google Cloud Jobs
(GoCJ) dataset based on Google cloud infrastructure as a benchmark for cloud-scheduling researchers.
This data descriptor is presented to address the research issue of ensuring the public availability of a
realistic dataset that satisfies the need for researchers in performance analysis of cloud infrastructure.
The GoCJ dataset generator is presented in the form of an Excel sheet generator and a Java-based
tool. A sample dataset (with a small number of jobs) based on jobs trend behavior in Google cluster
traces is formulated and provided to the GoCJ dataset generator, which simulates the desired dataset
comprised of any required number of jobs. The proposed GoCJ is used in [20] for performance analysis
of several load-balancing Cloud schedulers. The value and importance of the GoCJ dataset can be
enumerated as follows:

• The GoCJ dataset provides a reflection of real workload behavior as perceived in Google
cluster traces [21–26] and MapReduce logs from the M45 supercomputing cluster, so it has
more significance and usefulness for researchers working in the scheduling of cluster and
cloud-based applications;

• The GoCJ dataset can serve as an alternative to benchmark workload for scheduling and
resource-allocation mechanisms using realistic HPC jobs in cloud computing.
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The rest of the paper is organized as follows. Section 2 discusses some existing datasets in the
research domain, presents the description of the proposed GoCJ dataset, the composition of jobs in
GoCJ dataset and its comparison with the exiting datasets in the literature. The assumption and
approach toward generating the GoCJ dataset, and the complexity of GoCJ generator tool, is presented
in Section 3. The last section concludes the paper and identifies future directions for the GoCJ dataset.

2. Data Description

The GoCJ dataset is provided as a supplementary data in text and Excel file formats in
amalgamation with the two dataset generator files: (1) an Excel worksheet generator, and (2) a
Java tool generator. Each row in the text file describes the size of a specific job in terms of Millions
of Instructions (MI). The Monte Carlo simulation method [2] is employed to generate the dataset
comprised of any required number of jobs. The specification of the GoCJ dataset is presented in Table 1.

Table 1. Description of GoCJ dataset.

Feature Description

Subject area Computer science.

More specific subject area Cloud scheduling.

Type of data

19 Text files comprised of job sizes (in MIs) in the dataset, 01 text file containing
original dataset, and 01 text file comprised of a Java source code for GoCJ
generator to be discussed in Section 3, and 01 Excel file as GoCJ
dataset generator.

How data was acquired
Job-size behavior of Google cluster traces is presented and published in the
literature survey [21–24,26]. The Google cluster traces are also available
[Online] https://github.com/google/cluster-data.

Dataset generation GoCJ dataset is created using Monte Carlo simulation.

Data format Raw, filtered, analyzed.

Data accessibility
The data is available with this data descriptor article. To ensure publicly
accessible availability of GoCJ dataset, the data is also archived and publicly
available in a Mendeley Data repository.

Related research article

The presented dataset has been used in a research article [20]: “Resource-Aware
Load-Balancing Algorithm (RALBA): a computation-aware load-balancing
scheduler for cloud computing” (Hussain et al. 2018). The dataset is used to
evaluate the RALBA and other eight scheduling heuristics in cloud computing
in terms of resource use and makespan of the system.

Related dataset

- Heterogeneous Computing Scheduling Problem (HCSP) instances [12],
- Task Execution Time Modeling (TETM) [13],
- Yahoo cluster traces [15],
- Facebook Hadoop Workload [16],
- OpenCloud Hadoop workload [17],
- Eucalyptus IaaS cloud Workload [18],
- GWA-T traces [19].

The GoCJ dataset, stored in a Mendeley Data repository, is comprised of 21 text files. Each dataset
file is named as “GoCJ_Dataset_XXX.txt”, where XXX is the number of jobs in the file i.e.,
“GoCJ_Dataset_100.txt” has the sizes of 100 jobs. Each text file consists of a set of rows, where
each row has a numeric value presenting the size of a job in terms of MI. Job completion time for GoCJ
dataset follows a long-tailed distribution (with 90% of the jobs completing on average within 1.6 min).
The longest-executing job witnessed in the dataset lasts up to 15 min (i.e., 6% of the jobs execute for
less than 5 min and 4% of the jobs execute for 15 min). The average size of a job in the GoCJ dataset is
5 min. Figure 1 displays ratios and sizes of jobs distribution in GoCJ dataset in terms of percentage
and MIs, respectively.

https://github.com/google/cluster-data
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Figure 1. The composition of the GoCJ dataset.

Some existing datasets (i.e., HCSP, TETM, and GWA-T instances) are discussed and compared
with the GoCJ dataset. The HCSP instances and TETM dataset are used in research work [24–26].
However, HCSP and TETM datasets are not based on compute-traces of any real Grid or Cloud
system. On the other hand, GWA-T traces are based on distributed datacenters of Bitbrains and relates
to a research work in [27]. Similarly, GWA-T traces exhibit the performance metrics of VMs in the
datacenters instead of jobs behavior. The comparison of existing datasets with the proposed GoCJ
dataset is presented in Table 2.

Table 2. Comparison of the proposed and existing Cloud datasets.

Dataset Repository Main Features and Limitation Potential Users

HCSP
instances [12]

HCSP
website [12]

HCSP instances is a standardized
benchmark-based on a range-based method to
produce Expected Time to Compute (ETC)
matrices with a variation of heterogeneity in the
tasks to be executed and machines in the system.
Likewise, small size HCSP instances (up to 1024
tasks and 32 machines) are provided to direct
download, while for the larger instances a
generator program along with the seeds used for
the random number generator (execute the
generator program using the correspondent
seeds to replicate the instances) is provided.

Research community in
heterogeneous

computing systems

TETM
instances [13]

Not available;
instead a method

for dataset
creation is

available in [13]

To simulate a heterogeneous computing
environment, a coefficient-of-variation-based
technique to produce ETC matrices with a
variation of heterogeneity in the tasks to be
executed, and computing machines in the
distributed system is presented. The model is
capable of generating the dataset to evaluate the
performance of scheduling heuristics. It
generates a dataset reflecting the required task
and machine heterogeneity; however, the TETM
dataset does not reflect the realistic workload
behavior i.e., the workload behavior on Google
cluster traces or real compute Cloud etc. Similar
to GoCJ, any number of tasks can be created with
the TETM method.

Researchers in a
distributed

heterogeneous
computing environment
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Table 2. Cont.

GWA-T
traces [19]

The Grid
Workloads

Archive [19]

The dataset contains the performance metrics of
1750 VMs from distributed datacenters of
Bitbrains, which is a service provider of hosting
and business computation. The clients of
Bitbrains are many major banks, credit card
operators, and insurers etc. GWA-T traces focus
on performance metrics of VMs; however, the
GoCJ exhibits the jobs sizes and behaviors in a
workload.

Users of Grid
computing/distributed

datacenters

Facebook
Hadoop

workload [16]

GitHub Data
repository [16]

The workload is based on Hadoop traces on 600
machine cluster on Facebook spans over 6
months duration from May 2009 to October 2009
containing 1 million jobs. The jobs in the
workload are recorded with submit time and
inter-job_submit_gap parameters.

Heterogeneous
computing/cluster
computing systems

GoCJ [27] Mendeley
Data [27]

The GoCJ dataset is based on jobs size behaviors
witnessed in the analysis of the Google cluster
traces of 29 days, and the MapReduce logs from
the M45 supercomputing cluster of 10 months.
Hence, the GoCJ dataset is an alternative to the
real workload on a Cloud. Two dataset
generators (i.e., one Excel sheet and the other is
the Java generator program) are provided to
produce the GoCJ dataset comprised of any
number of Cloud jobs.

Research community in
cloud computing/

heterogeneous
computing systems

3. Methods

In this section, the data acquisition for original dataset, and the process of generating the GoCJ
dataset, is described in detail. In addition, the complexity of and data distribution in GoCJ dataset is
also presented.

3.1. Data Acquisition for Original Dataset

The Monte Carlo simulation method is used to generate the GoCJ dataset. A sample original
dataset is formulated based on workload behavior in Google cluster traces, which is input into the
Monte Carlo simulation. The composition of jobs in the simulated GoCJ dataset is generated based on
the job sizes in the original dataset.

The contemporary state of the art has been scrutinized to explore a real workload behavior in
Google cluster traces [21–24,26] and MapReduce logs from the M45 supercomputing cluster [25].
Liu and Cho analyzed large-scale Google cluster traces of 29-days to examine the machine properties,
workload behavior and resource use [21]. The analysis affirms that the majority of the jobs execute for
fairly a short duration of fewer than 15 min, while a few jobs execute over 300 min. The median length
of a job in Google cluster traces is witnessed as approximately 3 min. Furthermore, it establishes the fact
that approximately two-thirds of the jobs execute for less than 5 min and approximately 20% of the jobs
execute for less than one minute. It is found that most jobs in Google cluster traces are shorter length.
The shorter jobs are generally used for test runs on Google cluster [21]. Likewise, the MapReduce logs
of the M45 supercomputing cluster presented in [7] is also scrutinized. The MapReduce logs for the
duration of 10 months (i.e., Hadoop logs from 25 April 2008, to 24 April 2009, except logs from 12 Nov
2008, to 18 Jan 2009) have been released by the Yahoo. It is shown that most of jobs (i.e., 95% of the jobs)
complete the execution within 20 min, and approximately 4% of jobs take up to 30 min [7] to execute.

Based on the analysis of [21–26], a GoCJ realistic data set is generated using the bootstrapped
Monte Carlo (MC) simulation method [28]. Instead of Random Number Generation (RNG), the original
dataset is repeatedly sampled by selecting one of the data points from the original dataset in
bootstrapping [28]. A list of 50 different-size jobs (i.e., presented in Table 3) are identified and
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input into MC bootstrapping as the original dataset. Each job size in the dataset is treated with equal
probability in repeated sampling by bootstrapping. The average power of machine in the distributed
computing environment for finding job sizes is assumed as 1000 Million Instructions Per Second
(MIPS). The majority of the smaller jobs in Google-like realistic dataset (i.e., 90% of jobs) execute for
up to 1.6 min. However, the longest-executing jobs in the GoCJ dataset execute for up to 15 min
(i.e., 900,000 MIs/1000 MIPS = 900 s = 15 min). The sizes of jobs in the GoCJ dataset is presented
in terms of MIs instead of ETC as used in other available datasets [12,13]. The job size is calculated
from the ETC of the job, using the following relationship, where JobMI presents the size of job in MIs,
MachineMIPS is the power of computing machine in MIPS, and ETC is the expected time to complete a
job in seconds [20]. The job size can be calculated using Equation (1).

JobMI = MachineMIPS × ETCSecond (1)

The converse of Equation (1) is to determine the ETC of a job, which is presented [20] as:

ETCSecond =
JobMI

MachineMIPS
(2)

The job sizes in HCSP instances, GWA-T traces, ETM datasets, Facebook Hadoop workload [16],
and Yahoo cluster traces [15] are presented in terms of ETC. On the other hand, the composition
of the original dataset is presented in Table 3 (which is derived using Equation (1)). Fifty different
job sizes are identified based on the analysis of Google cluster traces with an equal probability of
occurrences in the desired GoCJ dataset. Using Equation (1) by considering the computing power of
machine as 1000 MIPS and the ETC of jobs (derived from workload behavior studied in Google cloud
infrastructure [21–24,26]), the original dataset is created and presented in Table 3.

Table 3. Sizes of jobs in original dataset for GoCJ (in MIs).

Small Medium Large Extra-Large Huge

15,000, 27,500,
40,000, 45,000,
47,000, 49,000,
51,000, 53,000,

55,000

59,000, 61,000,
63,000, 65,000,
67,000, 71,000,
73,000, 75,000,
77,000, 79,000,
81,000, 83,000,
85,000, 87,000,
89,000, 91,000,
93,000, 95,000,
97,000, 99,000

101,000, 103,000,
105,000, 107,000,
109,000, 111,000,
113,000, 115,000,
117,000, 119,000,
121,000, 123,000,
125,000, 127,000,
129,000, 135,000

150,000, 525,000
525,000,
712,500,
900,000

3.2. Reproduction of GoCJ Realistic Dataset

The dataset is generated by bootstrapped MC simulation using an Excel worksheet (as shown
in Figure 2). The original dataset is input in column C from cell C1 through C50, highlighted with
a yellow background in Figure 2. The individual probability of occurrence of each job is placed in
the corresponding row of column A (i.e., from cell A1 through A50). Congruently, the cumulative
probability of each job is placed in column B from cell B1 through B50. Therefore, a data table (i.e., from
cell B1 through C50) is generated where each job size in column C is referenced by a cumulative
probability in column B. As presented in column I in the worksheet, uniform RNG is used to generate
a random number among the indices of job sizes in the data table. Now, a built-in function VLOOKUP
in Excel is used to create the GoCJ dataset based on the original dataset provided in column C.
The VLOOKUP function inputs the generated random number (i.e., in the corresponding row of
column E), and the data table (i.e., from cells B1 through C50). Then, VLOOKUP searches for the
entry in the data table based on the input random number (i.e., search in cumulative probabilities
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in column B) and returns the corresponding job-size entry to store it in column F, highlighted with
a green background as shown in Figure 2. The VLOOKUP-based formula used to find a job size is
as follows:

F1 = VLOOKUP (E1, $B$1:$C$50, 2) (3)

The GoCJ dataset with the specified number of jobs can be created by extending the formulas in
cells E1 and F1 by copy/paste to the row equal to the desired number of jobs in the dataset.

One Excel file, named “GoCJ_Dataset_Monte_Carlo.xlsx”, is also placed along with the text
files in the dataset. This Excel file can be used to generate a GoCJ dataset comprised of the
desired number of jobs. A new dataset can be generated by copying any of the worksheets in the
“GoCJ_Dataset_Monte_Carlo.xlsx” Excel file, and then extending the formulas in column E and F by
copy/paste, as discussed.
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3.3. GoCJ Dataset Generator Tool

Alternatively to the Excel sheet generator, an automated dataset generator program is provided
using Java programming. The algorithm is presented as Algorithm 1, which presents the formal
algorithm for creating a dataset as discussed in Section 3.1. The GoCJ generator performs the necessary
initialization (lines 1–4). cPer variable presents the cumulative percentage of probability for each job
in the original dataset to occur in the simulated dataset, jobSize is the size of the job to occur in the
simulated dataset, and jList is the list of jobs finally produced in the simulated dataset. Afterward,
the original dataset from a text file named “Original_Dataset” is read and resided in bufferReader
(in lines 5–6). Line 5 reads all the job sizes in the original dataset derived from the Google cluster
traces. A while-loop is used to copy the sample job sizes from bufferReader to fill the dataTable.
The dataTable contains the job sizes in original dataset along with its cumulative probability (i.e., lines
7–10 of Algorithm 1). Line 9 maps the cumulative probability of each job in the dataTable. The second
while-loop is used to produce the GoCJ dataset with the desired number of jobs. The job size produced
in each iteration of the loop (i.e., lines 12–15) is stored in a job list (i.e., jList variable). The source code
of the given algorithm in Java program is available on Mendeley along with the GoCJ dataset files and
provided with the supplementary files as well.

Algorithm 1: GoCJ Generator

Input: num — desired number of jobs in dataset,
Original_DataSet — file of original dataset sample
Output: jList — list of job sizes in the desired dataset

1 cP er = 0
2 jobSize = 0
3 jList = N ull
4 dataT able < cP er, jobSize ≥ N ull
5 fileReader = readFile(Original_DataSet)
6 buf f erReader = read(f ileReader)
7 while buf f erReader is Not Empty do
8 jobSize = long.parseLong(bufferRedear.readLine())
9 dataT able.add(cPer,jobSize)
10 cP er = cP er + 2
11 a=1
12 while num ≥ a do
13 rand = Random.nextInt(100)
14 jList.add((rand Mod 2)?dataT able.get(rand): getJobSize(rand))
15 a++
16 return jList

3.4. Data Distribution and Complexity of GoCJ Generator

To scrutinize the complexity and efficiency of the GoCJ generator, N number of desired jobs
are considered in the GoCJ dataset. As mentioned in Section 3, the average computing power of a
machine that is used to generate job sizes in the original dataset is 1000 MIPS. Algorithm 1 inputs
two parameters; first num is desired number of jobs in the simulated dataset and second is the
Original_Dataset with a fixed number of jobs (i.e., 50 jobs). Therefore, the first while-loop in Algorithm
1 iterates for a fixed number of times (i.e., equal to the number of job sizes in the original dataset).
On the other hand, the second while-loop iterates till N that is the desired number of jobs in the
simulated dataset. The computational complexity of GoCJ generator is linear or O(N) depending only
on the desired number of jobs in the simulated dataset. Due to the linear complexity of GoCJ generator,
it will not create any overhead even for a dataset creation with a large number (N) of jobs.
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To test the compliance of the data distribution trend in the original dataset to the simulated
dataset produced by the GoCJ generator, the covariance statistical test is performed. The average
data distribution of 19 GoCJ dataset files is determined and its covariance with the original dataset
is calculated to find the correlation of data distribution. The covariance of the original dataset to the
average simulated dataset is 2.49, demonstrating that both the original and simulated datasets are
positively dependent. Furthermore, the ratios of job-size distribution are also presented in Figure 3 to
highlight the job distribution trends in original and simulated datasets.
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Figure 3. Ratios of jobs distribution in the GoCJ dataset.

Another statistical measure that displays the data distribution based on five-number summary
(i.e., minimum, first quartile, median, third quartile and maximum) is boxplot visualization.
The five-number summary for original datasets and ten sample datasets produced using GoCJ
generated is determined. To reflect the job-size trends in the original and simulated dataset, a boxplot
visualization is shown in Figure 4. The boxplot presents the median of job sizes in the original, and
ten simulated GoCJ datasets which are 92,000, 91,000, 87,000, 89,000, 95,000, 93,000, 93,000, 93,000,
91,000, 93,000, and 93,000 MIs, respectively. These job sizes belong to the medium job sizes as shown in
Figure 1 and Table 3. However, the minimum and maximum job sizes in both original and simulated
GoCJ datasets are same as 15,000 and 900,000 MIs, respectively. Similarly, the first quartile and third
quartile of original and simulated GoCJ datasets belongs to a category of medium- and large-size
jobs as presented in Figure 1. Thus, the boxplot visualization proves that the data distribution in the
simulated GoCJ datasets complies with the data distribution in the original dataset in the same manner.
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4. User Notes

It is very hard to acquire real cloud datasets due to user data confidentiality and policies
maintained by CSPs. This restricts the performance analysis to the scale of the real dataset and
making diversified empirical examination impossible as per varying requirements of the researchers.
Thus, realizing the need for a varying size realistic dataset, the GoCJ dataset is generated based on
the real jobs trend in Google cluster traces. A very comprehensive analysis of the Google cluster
traces [21–24] is conducted and presented in the form of GoCJ dataset. An original dataset based on
this analysis is derived depicting the jobs behavior in real Google cluster. Then, MC bootstrapping is
used to generate the GoCJ dataset based on this original dataset (i.e., dataset comprised of 50 different
fix-sized jobs) as a seed to the GoCJ workload generator. Two GoCJ dataset generators (i.e., Excel
worksheet and Java tool generators) are presented so that a researcher can easily create a GoCJ dataset
comprised of any desired number of jobs. The job sizes in GoCJ are presented in terms of MIs, where
the same is presented in the HCSP, TETM, and GWA-T instances as ETC. However, the conversion
of the GoCJ to an ETC-based dataset is also presented and explained. The proposed GoCJ dataset
can be used by the cloud research community for cloud scheduling, resource-allocation policies, and
benchmark-based performance analysis. GoCJ dataset is also used in the performance analysis of a
resource-aware load-balancing technique as a benchmark in cloud infrastructure [20].

However, the GoCJ dataset is based on the jobs trend observed in one specific real cloud
infrastructure (i.e., Google cluster traces). As a future direction of this data descriptor, the GoCJ
dataset can be enhanced with a generalized original dataset (to be input into the MC simulation)
based on a diversified analysis of different multiple real cloud infrastructure (i.e., Google cluster traces,
Facebook Hadoop workload, Yahoo cluster traces, etc.). In addition, the GoCJ can be equipped with
SLA- and deadline-based jobs parameters based on a comprehensive literature review that would be
useful in the performance analysis of SLA-aware and constraints-oriented resource-allocation and
scheduling policies in cloud.

Supplementary Materials: The following 21 text files and one Excel file are available online at https://data.
mendeley.com/datasets/b7bp6xhrcd/1. Names of 21 Text files: GoCJ_Dataset_100.txt, GoCJ_Dataset_150.txt,
GoCJ_Dataset_200.txt, GoCJ_Dataset_250.txt, GoCJ_Dataset_300.txt, GoCJ_Dataset_350.txt, GoCJ_Dataset_400.txt,
GoCJ_Dataset_450.txt, GoCJ_Dataset_500.txt, GoCJ_Dataset_550.txt, GoCJ_Dataset_600.txt, GoCJ_Dataset_650.txt,
GoCJ_Dataset_700.txt, GoCJ_Dataset_750.txt, GoCJ_Dataset_800.txt, GoCJ_Dataset_850.txt, GoCJ_Dataset_900.txt,
GoCJ_Dataset_950.txt, GoCJ_Dataset_1000.txt, Original_DataSet.txt, GoCJ Java Generator.txt. Name of 01 Excel file:
GoCJ_Dataset_Monte_Carlo.txt.

Author Contributions: A.H. conceived the study, scrutinized the existing literature, developed the tools employed
for the dataset generation, and written the initial draft of the paper. M.A. contributed to the analysis of results,
revising the paper, and overall supervision of the work.
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