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Abstract: Models based on a power law are prevalent in many areas of study. When regression
analysis is performed on data sets modeled by a power law, the traditional model uses a lead
coefficient. However, the proposed model replaces the lead coefficient with a scaling parameter
and reduces uncertainties in best-fit parameters for data sets with exponents close to 3. This study
extends previous work by testing each model for a range of parameters. Data sets with known values
of scaling parameter and exponent were generated by adding normally distributed random errors
with controlled mean and standard deviations to underlying power laws. These data sets were then
analyzed for both forms of the power law. For the scaling parameter, the proposed model provided
smaller errors in 96/180 cases and smaller uncertainties in 88/180 cases. In most remaining cases,
the traditional model provided smaller errors or uncertainties. Examination of conditions indicates
that the proposed law has potential in select cases, but due to ambiguity in the conditions which favor
one model over the other, an approach similar to the one in this study is encouraged for determining
which model will offer reduced errors and uncertainties in data sets where additional accuracy is
desired.
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1. Introduction

Many quantities have relationships that can be modeled by power laws of the form f (x) = axb [1],
with applications ranging from tests of the Newtonian gravitational force law [2] to the relationship
between energy metabolism and body mass [3]. When parameters are unknown but data sets are
available for variables x and f (x), regression analysis may be performed to determine values for a
and b. One commonly used form of regression analysis is nonlinear least squares (NLLS) analysis,
which uses repeated iterations of an algorithm to find best fit parameters for given data.

Previous studies regarding weight–length relationships in fish ([4], and references therein)
demonstrated that a power law of the form f (x) = ( x

L )
b reduced uncertainties in parameter values,

which were determined with NLLS fitting using the Levenberg–Marquardt algorithm, by replacing the
coefficient a of the traditional model with the scaling parameter L. The previous studies were limited
to exponents with values close to 3, and therefore more research is needed to test the idea in a wider
range of data sets.

To generalize the range of applicability for the proposed model, this study tests the
proposed improved form of the power law, again using the methods of NLLS analysis with the
Levenberg–Marquardt algorithm, with a wider range of exponents, varying numbers of data points,
different methods of selecting values of the independent variable, varying relative errors in the
dependent variable, and different values of the scaling parameter, L (or the equivalent a). Varying these
conditions allows for investigation and discussion of whether the proposed improvement to the
traditional power law is viable in a wider set of circumstances than those shown by the previous study.
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To compare forms of the power law, 180 data sets were fit to both traditional and proposed
models to test the kinds of different conditions above. Relative errors calculated from known good
values of parameters and relative uncertainties were recorded, and are compared for each model
and test. The hypothesis for this study was that the proposed power law would have lower relative
uncertainties and lower relative errors than the traditional power law over the values of b and other
conditions tested.

2. Results

Results regarding relative errors and relative uncertainties from all trials were collected and
combined for both the proposed and traditional models. In approximately 50% of all trials,
the proposed law gave lower relative errors and uncertainties than the traditional law in the coefficient
parameters, as seen in Figure 1. However, the results indicate that favor is shown towards one model
or the other by specific sets of conditions. For instance, Figure 1 indicates that positive powers tended
to favor the proposed power law, while negative powers tended to favor the traditional power law.

Root mean square (RMS) and mean values were also computed for the parameter errors and
uncertainties for all conditions, with root mean square values seen in Figure 2. Neither model was
favored by RMS values across all conditions: the values instead depended on the particular set of
conditions tested. For example, Figure 2 indicates that the proposed model is favored with low added
errors in raw data, which can be seen in the lower RMS value for an error of 5% and the higher RMS
value for an error of 25% for the proposed model in comparison to the traditional model.

Thus, while the percent and RMS metrics for the total 180 trials point to an inconclusive result,
favor is shown towards one model or the other by specific sets of conditions. However, in some
conditions, RMS values differ from the results suggested by percent comparison. One example of this
discrepancy can be seen with b = 4. In this case, percent comparison indicates that the proposed model
is more accurate, as seen in Figure 1, while RMS values indicate that the traditional model produces
lower relative errors, as seen in Figure 2.

Despite inconsistencies between results from different comparison methods, some sets of
conditions still seem to favor one model over the other when examining individual trials. As seen in
Figure 3, the set of conditions with positive exponents, relative errors of 0.05, and the scaling parameter
value L = 5 converged well for the proposed model, demonstrating that a more conclusive result may
be found for certain sets of conditions.

Figure 1. Percent of trials where the proposed model produced lower relative errors in parameter L,
arranged by condition.
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Figure 2. Root mean square values of relative errors in parameters L and Leq for the proposed model
and the traditional model, arranged by condition.

In agreement with the previous study [4], the relative uncertainties and errors of the exponent
parameter b were comparable for the traditional and proposed models, with each law producing very
close mean and RMS values for b, as seen in Figure 4. Due to this, it can be seen that the difference in
accuracy and precision between models is confined to the coefficient or scaling parameter.

Additionally, in 152/180 trials, the relative uncertainty and relative error values were each lower
for the functional form of the power law, which implies that in 84% of all trials, these values were in
agreement regarding which law was more accurate. Due to this correlation between relative errors
and uncertainties, only the results for relative errors are shown.

Figure 3. Relative uncertainties in parameters L and Leq for both the proposed and traditional models,
ranging over the set of trials with conditions: b = 0.25, 1.5, and 4, L = 5, and a relative error input of 0.05.
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Figure 4. Mean and root mean square (RMS) values for relative uncertainties and relative errors of the
parameter b over both the proposed and traditional models.

3. Applications

The scaling power law model from the previous study [4] has been applied to data gathered
from two species of trout in a Colorado reservoir [5], where it assisted in demonstrating that the trout
were in poor health. Other potential applications of the proposed scaling version of the power law
model include further ecological applications, but also have consequences in a wider array of fields,
such as physics and chemistry. Three illustrative examples for potential applications were analyzed to
demonstrate the implications of this study: Robert Boyle’s original dataset, two modern data sets for
Kepler’s third law, and an ecological dataset for Kleiber’s law.

3.1. Robert Boyle’s Original Dataset

In his work A Defense of the Doctrine Touching the Spring and Weight of Air [6], Robert Boyle gave a
data table from one of his experiments in support of his proposition that the volume and pressure of a
gas are inversely proportional. This law, commonly known as Boyle’s Law today, takes the form of a
power law, namely P ∝ V−1.

Boyle’s data was fit with NLLS regression to both the traditional and proposed models.
Known good values for L and a were, to the experimenter’s knowledge, unavailable for this
dataset, and so relative uncertainties were the only source of comparison between the two models.
The traditional model gave lower relative uncertainties for the fit, and, due to the correlation between
uncertainties and errors, this means the traditional model would likely be the better choice for analysis
of this dataset. The graph with Boyle’s data fit to the proposed model is shown in Figure 5.
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Figure 5. Robert Boyle’s (1662) original power law data and best fits.

3.2. Kepler’s Third Law in Original and Modern Data Sets

In 1619, Johannes Kepler used data gathered by Tycho Brahe to support what is now referred
to as his third law. As expressed by a power relation, this law takes the form P ∝ a

3
2 , where P is the

period and a is the semi-major axis of an orbit. The historical data regarded the periods and orbits of
the planets in the solar system, and modern data has been gathered for the same planets. Data sets [7]
were fit with NLLS regression to both the traditional and proposed models. The known-good value
for L was determined to be 1 for planetary measurements. As seen in Figure 6, the proposed power
law produced both lower relative errors and relative uncertainties in Brahe’s dataset. For the modern
dataset, which is plotted in Figure 7, the traditional power law gave smaller relative uncertainties,
while the proposed power law produced lower relative errors.

Figure 6. Tycho Brahe’s (1619) data in support of Kepler’s third law in the then-known solar system.
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Figure 7. Modern data for Kepler’s third law in the solar system.

Data for the moons of Jupiter has also been gathered in recent years [8]. This dataset was also fit
with NLLS regression, with datapoints and best fit curves shown in Figure 8. The proposed law not
only produced lower relative uncertainties in both the scaling parameter and exponent for this dataset,
but also output a higher R2 value and had a visible distinction between the curves. These differences
were not typical for this study, with R2 values of the traditional and proposed models being comparable
and the respective curves being not easily distinguishable for most data sets.

Figure 8. Kepler’s third law in Jupiter’s moons with data and best fits.
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3.3. Kleiber’s Law in Avian Species

An organism’s basal metabolic rate (BMR) has been shown to be proportional to a power of its
mass. This is known as Kleiber’s law and takes the form BMR ∝ M

3
4 , and has been applied to a variety

of avian species [9]. This avian dataset, with a total of 533 data points, was fit with NLLS regression
to both the traditional and proposed models. Known-good values for L (or a) were unavailable,
so relative uncertainties were the only source of comparison between the two models. As seen in
Figure 9, the proposed power law has a smaller relative uncertainty for the scaling parameter.

Figure 9. Avian basal metabolic rate data and best fits.

4. Discussion

The hypothesis that the proposed model, f (x) = ( x
L )

b, would provide lower relative uncertainties
and lower relative errors for all conditions compared to the traditional power law over the
values of b and the other conditions tested was not supported for all data sets in the numerical
experiment, with only 96/180 cases having lower errors and 88/180 cases having lower uncertainties.
While uncertainty and error values were found to be different for each model in the coefficient
parameters, the models provided values consistent with each other for the exponents.

Despite the lack of support for the hypothesis in all tests, this study demonstrates that the
proposed law may still provide reduced uncertainties and errors in specific sets of conditions, such as
non-negative exponents and certain L values. However, additional testing with an altered hypothesis
must be done in order to fully determine the exact nature and impact of this set of conditions.
For example, the value of L = 0.5 favored the traditional model with positive exponents and the
proposed model with negative exponents, which was contrary to the results for the rest of the values
of L. This apparent discrepancy indicates that further testing will be needed with a larger spectrum of
values for coefficient parameters.

Due to the inconclusive nature of the results, it is recommended that an experimental approach
similar to the methods described in this study be used to determine which power law model offers the
least uncertainties and errors for data where accuracy is of high importance. Such an experiment could
be done relatively quickly by generating imitation data sets with conditions similar to the data being
fit, and then by comparing the uncertainties and errors output from each model for the artificial data
sets. If the results are consistent for the data sets, then the model which the small experiment favors



Data 2017, 2, 31 8 of 10

will most likely be the better candidate for the actual dataset. Alternatively, the raw experimental
data could be fit to both models, with only the uncertainties compared. Because of the previously
mentioned correlation between relative errors and relative uncertainties, such an analysis would tend
to point to the better model for the data.

In addition to more specific testing with additional power law parameters, the methods of this
study have the potential to be applied to a wider array of functions by replacing various coefficient
parameters with scaling parameters. Polynomials might prove to be a ready next step, due to the fact
that they are a sum of terms with fixed positive integer powers. Other possibilities to reduce fitting
uncertainties by replacing lead coefficients with scaling parameters include Gaussian, exponential,
logarithmic, and trigonometric functions. Extension of the methods of the study to functions such
as these would not only provide a more general numerical basis for the proposed model, but could
also increase the range of applicability of scaling parameter models to an even wider variety of
scientific fields.

While this experiment did not support the proposed model for all cases, the results from a
previous study [4] were tested in a wider variety of conditions. This study has paved the way for more
specific investigations, and also demonstrated an experimental approach to be used for determining
the best model before a more conclusive set of conditions is established.

As demonstrated with the application of the original investigation to fisheries research [5], there is
potential for the proposed model in cases where it proves to provide more accurate results than the
traditional model. Due to the widespread occurrence of power laws in empirical data, finding the
most accurate model is an issue of importance across many fields, ranging from ecology to physics.
When the conditions where one model is observed to consistently outperform the other are determined,
the better model can then be chosen for most anticipated exponents and data sets, allowing for greater
confidence in the parameters resulting from fitting empirical data.

5. Materials and Methods

Values for conditions that were varied are as follows: exponents took on values of b = −2, −1,
0.25, 1.5, and 4; selected values of L were 0.5, 5, and 50; the numbers of data points used were 10, 100,
and 1000; methods for determining x values were a constant step size with added jitter and random
values, with all values in the same interval; and relative errors in f (x) values were set to be 0.05
and 0.25.

A total of 180 data sets were analyzed to cover all parameter combinations described previously.
Any given value of a condition was tested alongside all possible combinations of values for other
conditions once to ensure testing of the hypothesis over a number of parameter values and conditions
representative of a common range of experimental conditions. From the data collected, relative errors
and uncertainties were then computed. Uncertainties in each parameter value were returned by the
fitting algorithm in SciDAVis (version 1.D013), a regression analysis program vetted for accuracy in
a previous study [4], having been computed by standard methods. The operation of the SciDavis
Levenberg–Marquardt NLLS code was validated by comparing a number of test cases with other
versions of the same algorithm, including the one built into gnuplot and custom code written by one
of the authors (MC). Relative uncertainties in the parameters are simply the ratio of uncertainty to best
fit parameter value.

To compare the proposed law to the traditional model, relative uncertainties and errors were
additionally computed for a parameter Leq, which is related to a by the equation Leq = ( 1

a )
1
b .

The relative error for Leq is determined by the formula relative error o f a
|b| due to error propagation [10],

and a similar formula is used to determine relative uncertainty. The resulting values were then
recorded. After these computations, relative uncertainties and errors of Leq for the traditional model
were compared with relative uncertainties and errors of L from the proposed model.

Most data sets—with the exception of a few case studies gathered from experimental
data—were produced using a Microsoft Excel 2013 spreadsheet, which accepted inputs for values of



Data 2017, 2, 31 9 of 10

L, b, relative error in f (x), relative jitter in x values, a value for the step amount for a constant step
size, a minimum value for x, and maximum values for x. The last four inputs were held constant
throughout all trials, with the former three holding values of 0.1 and the last having a value of 100.

Two additional columns were created before establishing the data set values. A column of random
noise (Each time random noise is used in this study, it was an approximation to a true random number
generated with the RAND() spreadsheet call.) was generated with a call to NORMSINV(RAND())
for each data point. This call generated noise with a mean of zero and a standard deviation of 1.
Additionally, a column of only whole numbers counting from 0 to 1001 was created, which served as a
row number index for the x, f (x), and f (x) + noise values.

After all inputs are established, the spreadsheet computed values for each x for either a constant
step size, constant step size with jitter, or a random value in an interval, depending on the sheet
being used. Only the constant step size with jitter and random x value in an interval were used for
experimentation. The constant step size tab computed each x value by taking the minimum x value and
adding the step amount multiplied by the x value’s corresponding row number index. The constant
step size with jitter tab used the same method as the constant step size except with the addition of a
jitter term, which was determined by multiplying the corresponding noise value with the step amount
and the relative jitter value. The random x value in an interval tab computed each value of x by taking
the minimum x value and adding a random number from 0 to 1 multiplied by the maximum x value.

The spreadsheet then calculated values for f (x) and f (x) + noise by first evaluating f (x) = ( x
L )

b

at every value of x. To produce a relative error in each data point with a root mean square value equal
to the desired relative error, the corresponding noise value was multiplied by the desired relative error
and f (x) before being added to the f (x) to produce the f (x) + noise for the data set.

The spreadsheet-generated data sets (x, f (x) + noise) were then copied into SciDAVis. Data was
then analyzed via the Levenberg–Marquardt non-linear least squares algorithm to determine best
fit parameters for each model. Both parameter values and uncertainties were recorded in a separate
spreadsheet for further analysis.
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