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Abstract: This study explores the potential benefits of spices (cinnamon and ginger) on Roselle an‑
thocyanins within a sweetened Roselle beverage matrix. Anthocyanins and other related properties
of the beverage (colour, antioxidant capacity, total phenolics, and pH) were observed from the start
and monitored for 30 days at accelerated storage conditions (40 ◦C). The sweeteners at the amounts
used (80 g/L granulated sugar and 0.32 g/L Stevia Reb A) did not have a significant effect on the
initial anthocyanin content in the beverage and did not significantly impact degradation. Upon the
addition of spices to the sweetened beverage, ginger (1 g/L) did not result in significant changes,
initially or during storage. However, following the addition of cinnamon (1 g/L) to the beverages
(unsweetened and sweetened), an initial increase in the total phenolic and FRAP antioxidant activity
in the Roselle beverages was observed; furthermore, it reduced the degradation of anthocyanins and
improved colour stability during storage. This effect is postulated to be due to a co‑pigmentation
reaction or the acylation of anthocyanins with a complex formed from the reaction of glucose with
the phenolic compounds contained in cinnamon.

Keywords: Roselle beverage; anthocyanin; stability; spices; Stevia rebaudioside A

1. Introduction
Roselle extracts, the base ingredient in Roselle beverages, are rich in polyphenolic com‑

pounds. Polyphenolic compounds are bioactive compounds consisting of aromatic rings at‑
tached to one or more hydroxyl groups [1]. Roselle polyphenols consist of flavonoids includ‑
ing anthocyanins, protocatechuic acid, quercetin [2], gossypetin, hibiscetrin [3], hibiscetine,
and sabdaretine, phytosterols [3], eugenol alongside some suspected compounds, such as
gossypin, gossytrin, rutin, isoquercitrin, kaempferol 3‑rhamnoglucoside, kaempferol 3‑gluco
side, cannabiscitrin, and myricetin [4]. However, anthocyanins are the most interesting of
all the polyphenols in Roselle extracts; mainly including delphinidin 3‑O‑sambubioside and
cyanidin 3‑sambubioside [5,6]. Although some other studies have also reported delphinidin
3‑glucosides and cyanidin 3‑glucosides as minor anthocyanins [7]. In general, anthocyanins
are bioactive compounds that provide both the medicinal and sensory properties associated
with a plant [1]. The content of anthocyanins in Roselle was reported to be in the range of
1.5–2.5 g/100 g dry weight [6,7]. However, it is well known that anthocyanins are unstable
and typically degrade with increased water activity, changes in pH, temperature, oxygen,
and light [8].

Although sugar is primarily added to beverages to improve palatability [9], it may
also function as a stabilising agent for Roselle anthocyanins. The aglycone form, antho‑
cyanidin, which consists of a hydroxyl flavyliumbase structure, becomesmore stablewhen
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linked to sugars, usually glucose [1]. However, a high concentration of sugar is expected
to control water activity and, consequently, prevent the hydration of the flavylium ring,
which would lead to the deterioration of the anthocyanin. Kopjar and Piližota [10] demon‑
strated that sugars such as glucose and trehalose (at 10% of formula) provide stabilising
effects on anthocyanins.

The potential health benefits of the Roselle beverage, for instance, its antidiabetic
properties [11,12], could be hindered with the inclusion of sucrose (henceforth referred
to as sugar) in the beverage. Although there are several low‑calorie intensity sweeteners
available to replace sugar, only Stevia glycosides currently satisfy consumer clean label
demands and have been approved for use across continents including the EU and North
America. One particularly pertinent study was carried out by Woźniak, Marszałek, and
Skąpska [13] on model buffer solutions, in which it was observed that 0.05–0.2 mg/L ste‑
viol glycosides (stevioside and rebaudioside A) had no effect on the degradation of an‑
thocyanins upon storage, whereas 50–200 g L−1 sugars (glucose, fructose, and sucrose) in‑
creased the stability of anthocyanins (cyanidin‑3‑glucoside and pelargonidin‑3‑glucoside).
Notwithstanding, further investigations on stabilising the potential of both sugar and Ste‑
via Reb A on anthocyanins in more typical beverage systems are necessary.

In addition to sweeteners, a more complex beverage system would contain natural
flavours, such as juices or fruits, vegetables, and spice extracts, which due to their phe‑
nolic compositions, may further affect anthocyanin stability. Of these natural flavourings,
spices are the least studied in beverages, although spices are in use in contemporary ready‑
to‑drink sweetened beverages, such as ginger ale, ginger beer, root beer, lassi, spiced el‑
derberry infusions, mulled wine, chicha morada (Peruvian) alongside a range of herbal
or spicy infusions, which are available internationally. Moreover, two very recent stud‑
ies [14,15] explored the use of spices (i.e., basil and ginger) to improve the antioxidant prop‑
erties of Roselle beverages. Indeed, Abidoye and co‑workers [14] successfully increased
antioxidant activity when using basil (5–15% of the mixture).

Two spices have been selected for this study due to their popularity in the bever‑
age industry and their congruency with Roselle beverages, namely, Cinnamomum zey‑
lanicum (cinnamon) and Zingiber officinale (ginger). Both spices have good antioxidant
activity [16,17] although cinnamon has about four times the activity of ginger [18]. Never‑
theless, limited information exists on the effects of either of these spices on anthocyanins.

The objectives of this present study are to firstly investigate the effect of cinnamon
and ginger on anthocyanin and related properties of sweetened Roselle beverages during
storage and secondly, the possible interactions between the spices, sweeteners, and antho‑
cyanins during the storage of the Roselle beverages.

2. Materials and Methods
2.1. Beverage Preparations

Five grams of commercial air‑dried Roselle (Just Ingredients, Wotton‑Under‑Edge,
UK) was steeped in 1 litre of water at 90 ◦C for 25 min in a Duran flask and shaken
(86 rev/min) in a water bath (Grant OLS 200). The extract was filtered under a vacuum
with Whatman filter paper (No. 4), then, cooled on ice. The extract was divided into three
portions and one portion was left unsweetened (control), while the other portions were
sweetened with either white granulated sugar (80 g/L) or Stevia rebaudioside A (0.32 g/L;
80% purity—Cargill, UK), henceforth, referred to as ‘stevia’. Each of the three extracts was
further split into three portions and flavoured with ground dried spice powder: 1 g/L cin‑
namon and 1 g/L ginger (Just Ingredients, UK), leaving one portion without spice. These
were refrigerated overnight (18 h) and filtered as above. The resulting 9 products were
stored at 40 ◦C for 30 days, with the analysis carried out on aliquots every day for the first
5 days; 2–3 days for the next 10 days; and from then on, every 5 days until day 30.
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2.2. Real‑Time Storage
Real‑time storage studies were carried out prior to this experimental work. Some of

the results are detailed in a related study by Omoarukhe [19]. In relation to this study, con‑
trol (unsweetened) and sweetened (with sugar and stevia) Roselle beverages were stored
at room temperature (21 ◦C) for 90 days and analysed every 10 days until day 30, and then
monthly until 90 days. A summary of the kinetic data from the initial real‑time study on
the changes in anthocyanin profiles for sweetened and unsweetened Roselle beverages is
provided in Section 3.1.

2.3. Chemical Kinetics
The natural logarithms of the concentration of total monomeric anthocyanins were

plotted against time (in days) to confirm adherence to the first‑order kinetics (Equation (5)).
A linear trendwas obtained for almost all samples (R2 rangewas 0.977–0.991) and the linear
equation was used to obtain the reaction rate constant (k).

Ln
Ao

A
= kt (1)

where Ao is the initial concentration and A the concentration at a given time.
The half‑life (t1/2), which is the time taken for anthocyanins to reach half their ini‑

tial value, was determined by applying Equation (6), derived from the first‑order reaction
equation (Equation (5)):

t 1
2
=

ln2
k

(2)

The equivalent days of real‑time storage for the accelerated storage were obtained by
comparing the rate of reactions between the real‑time storage and the accelerated storage
in this current study, for each parameter. Assuming the initial concentration (Ao) and the
final concentration (Ae) remain unchanged for real‑time and accelerated conditions, then,
the first order equation could be re‑written as:

Ln
(

Ao

Ae

)
= kts = kata (3)

where ts is the real‑time shelf life; k is the rate constant in real time; ta is the accelerated
shelf life; and ka is the accelerated rate constant. Therefore, for 1 day of accelerated study,
the real storage time equivalent for the relevant parameters can be calculated as:

ts =
ka

k
(4)

2.4. Accelerated Storage
The conditions: 40 ◦C for 30 days were selected for this study. Aliquots of Roselle

beverages from Section 2.1 were stored under accelerated conditions at 40 ◦C for 30 days
in a stability cabinet (Sanyo Gallenkamp, Loughborough, UK).

2.5. Analysis of Samples
2.5.1. Chemical Tests
Total Monomeric Anthocyanin

Totalmonomeric anthocyaninswere determinedusing the pHdifferentialmethod [20];
the extract was mixed individually with pH 1.0 or 4.5 pH buffer solutions in a ratio of 1:4
and left for 20 min. The absorbance of the test portions at pH 1.0 and 4.5 was determined
spectrophotometrically (AmershamPharmacia BiotechUltrospec 1100 proUV spectropho‑
tometer) at 520 nm and 700 nm, respectively. Anthocyanin pigment concentrations were
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expressed in cyanidin‑3‑glucoside (C3G) equivalents. Calculations were carried out using
the following equation:
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3
)

/(E × 1) (5)

where A = (A520nm − A700nm)pH 1.0 − (A520nm − A700nm)pH 4.5;MW (molecular weight) =
449.2 g/mol for cyanidin‑3‑glucoside; DF = dilution factor; 1 = pathlength in cm; ε = 26,000
molar extinction coefficients in L×mol−1 × cm−1 for cyanidin‑3‑glucoside, and 103 = factor
for conversion from g to mg, and cm.

Total Phenolic Content
Folin–Ciocalteu (FC) colorimetry was used to determine the total phenolic contents

in the extracts. Extract/standard (0.2 mL) was added to 6.0 mL of distilled water in 10 mL
volumetric flasks, after which 0.5 mL Folin–Ciocalteu reagent (Sigma‑Aldrich, Darmstadt,
Germany) was added and mixed. After 1 min and before 8 min, 1.5 mL of 20% sodium
carbonate (Fisher Scientific, UK) solution was also added, and the volume was adjusted to
10 mL with water. The colour generated after 2 h was read at 760 nm using an Amersham
Pharmacia Biotech Ultrospec 1100 pro UV spectrophotometer. Gallic acid (Sigma‑Aldrich,
Darmstadt, Germany) standards, with concentrations ranging from0.05 to 1 g/L,were used
to generate standard plots and an equation for the calculation of the total phenolic concen‑
tration in each extract. The results were expressed in milligrams of gallic acid equivalent
per litre (mg GAE/L)

Antioxidant Capacity
Antioxidant capacity was measured using the ferric reducing antioxidant power

(FRAP) assay, originally proposed by [21], althoughwith somemodifications. Thismethod
was selected for its rapidity and reproducibility, which were essential to this study. The
FRAP reagentwas prepared bymixing acetate buffer, 2,4,6‑Tri(2‑pyridyl)‑s‑triazine (TPTZ)
solution, and ferric chloride solutions in a 10:1:1 ratio. Extracts and standards (10 µL) were
measured in microcentrifuge tubes. FRAP reagent (300 µL) was added to the content of
the microcentrifuge tubes and vortexed. The content of each tube (100 µL) was transferred
to a Nunc 96‑well plate. Absorbance was measured immediately (3–5 min from plating)
in a GENios TECAN plate‑reader at 595 nm. Ascorbic acid (Sigma‑Aldrich, Darmstadt,
Germany) standards with concentrations ranging from 10 to 1000 µmol/L were used to
generate standard plots (R2 ≥ 0.99) and an equation was used to calculate the antioxi‑
dant capacity of extracts as compared to ascorbic acid concentrations. The results were
expressed in grams of ascorbic acid equivalent per litre (g AAE/L).

2.5.2. Physical Tests
The colour was measured using a CT‑1100 ColorQUEST HunterLab taking measure‑

ments for transmittance. Standard black plates were used for calibration. The L*, a*, and
b* readings were obtained and used to calculate the chroma and hue angles using the fol‑
lowing equations:

Hue angle (o) =

(
b∗

a∗

)
(6)

Chroma =
[
(a∗)2 + (b∗)2

] 1
2 (7)

The hue angle and chroma were used on a CIE 1979 L* a* b* colorimetric system dia‑
gram to identify the colour and monitor any changes. Chroma was presented in absolute
values ranging from 0 to 100, while the unit for the hue angle was degrees (ranging from
0 to 360).

The pHwas measured using a pHmeter (Mettier‑Toledo SevenEasy) calibrated using
buffer solutions 4.0 and 7.0 (Sigma‑Aldrich, Darmstadt, Germany).
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2.6. Statistics
Three batches of Roselle were prepared, and each batch was analysed in triplicate.

Statistical analyses were carried out using linear mixed models for repeated measures on
SPSS Statistical Software (IBM, Chicago, IL, USA, Version 24) to compare groups based on
sweeteners (n = 2) and spice flavour (n = 2). In addition, ANOVA and Tukey’s tests were
used to compare means using SPSS. Results with p < 0.05 (95% confidence level) were con‑
sidered significantly different. A summary of the statistical analysis between treatments is
shown in Appendix A (Tables A1–A3). Three‑way ANOVA (XLSTAT version 2017.1) was
used to determine the effect of the day (n = 2), sweetener (n = 2), and spice type (n = 3) on
properties of interest for the beverages (n = 9). Results with p < 0.05 (95% confidence level)
were considered significantly different.

3. Results and Discussions
3.1. Anthocyanins
3.1.1. Kinetics of Anthocyanins Degradation

Storage of the Roselle beverages at room temperature (21 ◦C) for 90 days resulted in
anthocyanin degradation, which followed a first‑order rate of reaction (Figure 1). Scatter
plots of the anthocyanin degradation over the 90‑day storage period are shown in Figure 1,
while the kinetic data for the Roselle anthocyanin degradation are shown in Table 1.
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Figure 1. Anthocyanin degradation in Roselle beverages over 90 days of storage at 21 ◦C.

Table 1. Summary of kinetic data on anthocyanins from a 90‑day real‑time study with unsweetened
and sweetened Roselle beverages.

Beverage Rate Constant (Day−1) ± SD Coefficient of Determination
(R2) ± SD Half‑Life t1/2 (Days) ± SD

Control (unsweetened) 0.0181 ± 0.0039 a 0.9774 ± 0.0325 39 ± 7 a

Sugar‑sweetened 0.0240 ± 0.0048 a 0.9830 ± 0.0226 30 ± 7 a

Stevia sweetened 0.0208 ± 0.0025 a 0.9908 ± 0.0043 34 ± 4 a

Different superscript letters are used to designate values that are statistically significant (p < 0.05).

The rate constant of the anthocyanins in the unsweetened beverage (control) was
lower than in the beverages containing sugar and Stevia (Table 1). However, the apparent
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differences in the stability of the Roselle anthocyanins using both sweeteners are statisti‑
cally insignificant (p > 0.05). This indicates that sweeteners (and especially promising, the
Stevia option) can be usedwithout concern for the immediate and storage quality attributes
(especially anthocyanins) of Roselle beverages.

3.1.2. Accelerated Study on Anthocyanins
Using the data in Tables 1 and 2 and applying Equation (4), it was found that one day

under accelerated conditions (at 40 ◦C) was equivalent to approximately six days under
real‑time conditions (room temperature, 21 ◦C) for the control beverage and 5 days for the
sweetened beverages without spices.

Table 2. Total anthocyanin kinetics data for unsweetened (control), sweetened, and spice‑flavoured
Roselle beverages (n = 9) stored under accelerated conditions (40 ◦C) for 30 days.

Sample
Initial Total

Anthocyanin * (mg
C3GE/L)

Rate Constant (Day−1) Coefficient of Linear
Correlation (R2)

Half‑Life t1/2 (Days)

Control 34 ± 4 a 0.1022 0.9811 7 b

Unswt_cinnamon 31 ± 4 a 0.0532 0.9652 13 a

Unswt_ginger 32 ± 4 a 0.1095 0.9622 6 b

Sugar_no spice 34 ± 8 a 0.1295 0.9775 5 b

Sugar_cinnamon 35 ± 9 a 0.0334 0.8132 21 a

Sugar_ginger 34 ± 8 a 0.1479 0.9303 5 b

Stevia_no spice 35 ± 9 a 0.106 0.9773 7 b

Stevia_cinnamon 33 ± 9 a 0.0575 0.9153 12 a

Stevia_ginger 33 ± 10 a 0.1073 0.9373 6 b

* Total anthocyanin measured in cyanidin 3‑glucoside equivalent. Standard deviation follows the ± sign. Differ‑
ent superscript letters are used to designate values that are statistically significant (p < 0.05).

As shown in Table 2, the initial anthocyanin content was not significantly altered by
the inclusion of either sweetener or spice (p > 0.05).

Over the period of accelerated storage, the sweeteners did not impact the stability of
the anthocyanins. Consequently, there were no significant differences in the reaction rates
or half‑lives of the spice‑free beverages (Table 2). This validates the results from the real‑
time storage study. However, it varies from the results obtained by Tsai et al. [5], where
using 20–60% sugar produced a decrease in the degradation of anthocyanins with increas‑
ing sugar content and, correspondingly, increased the half‑lives of the anthocyanins. How‑
ever, it must be noted that the sugar concentrations were much higher in that study (i.e.,
20% versus the 8% used in this study); thus, the observed changes are potentially due to
the dilution or reduction in water activity rather than any reactions with the anthocyanins.

The inclusion of cinnamon in the beverages displayed a stabilising effect on the antho‑
cyanins over the storage period. This effect was significant (p < 0.001), even in the absence
of sweeteners (t1/2 increased from 7 to 13 days). However, in combination with sugar, the
effect was quite pronounced. Moreover, the rate of anthocyanin degradation was reduced
(Table 1) and the half‑life significantly increased up to 21 days in the cinnamon–sugar com‑
bination.

Several compounds contained in the cinnamon extract may be responsible for this
beneficial effect on the anthocyanins. They include catechin, protocatechuic acid, proan‑
thocyanidins, and cinnamaldehyde. Several studies have reported the ability of these com‑
pounds and their reaction products to stabilise anthocyanins through co‑pigmentation re‑
actions [8]. Cinnamaldehyde is slowly oxidised to form cinnamic acid, while studies have
shown that anthocyanins are more stable when acylated with cinnamic acid [22]. It is not
clear what the mechanism for the stability of the total anthocyanins is and particularly the
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role of the sugar, which seems to complement stability. However, considering the increase
in total phenolic content in sugar‑sweetened beverages, phenolics contained in cinnamon
are potentially reacting with the reducing sugars. Several studies revealed better stabilis‑
ing effects of glucose on anthocyanin compared to sucrose or fructose and demonstrated
a co‑pigmentation reaction between glucose and chlorogenic acid [10,23]. Perhaps in this
current study, the reaction is between glucose and any of the above‑listed phenolic com‑
pounds introduced with the inclusion of cinnamon.

Conversely, ginger did not positively impact the anthocyanin stability of the bever‑
ages, which is particularly highlighted in Table 2, where the half‑lives of all treatments
containing ginger were lower than the control.

3.2. Total Phenolic Content
The addition of sweeteners resulted in no significant changes (p = 0.06) to the initial

total phenolic content of the Roselle beverages (Figure 2). Furthermore, the addition of
sweeteners did not significantly affect the degradation of the phenolic compounds during
their storage. Alternatively, the addition of spices to the sweetened beverages contributed
to an initial rise in the total phenolic content of the beverages, although it was not statisti‑
cally significant.
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ages (with sugar or Stevia Reb A) andwith or without spice (cinnamon or ginger) on days 0 and 30 of
the accelerated storage at 40 ◦C. Each bar/point represents mean values ± SD. Symbols a–d denote
the level of differences between treatments.

With the initial additions of only sugar and Stevia (onDay 0), no significant increase in
total phenolic contentwas observed. However, following the 30 days of accelerated storage
at 40 ◦C, the total phenolic content of the sugar‑sweetened Roselle beverages significantly
increased. However, this result wasmost likely due to sucrose hydrolysing in the presence
of acids to produce reducing sugars, which are known to interferewith the Folin–Ciocalteu
reagent. Thus, after correcting for this error, there were no significant effects from the
spices on the stability of the total phenolic content in the sugar‑sweetened beverages. Sim‑
ilarly, Stevia did not alter the stability of the phenolic content during the storage period.
This finding is in contrast to conclusions presented by Perez‑Ramirez, Castano‑Tostado,
Leon, Rocha‑Guzman, and Reynoso‑Camacho [24], who observed improved stability on
specific phenolic compounds, including gallic acid, quercetin, and rosmarinic acid after
the addition of Stevia (97% purity; 14–15 g/L), although the Stevia quantities used in that
study were much higher than this present study (only 0.32 g/L of Stevia Reb A was used).

With the addition of cinnamon to the control and sweetened bases, the corresponding
observed increase in total phenolic content was because of the additive effect of the pheno‑
lic compounds in the spices. Cinnamon increased the initial total phenolic content more
than ginger because it contains over 10 times more phenolics than ginger [25].
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3.3. FRAP Activity
The initial FRAP activity did not significantly change (p = 0.944) with the addition

of either the sweeteners or spices (Figure 3). However, there was a significant increase
(p < 0.039) in initial antioxidant activity when cinnamon was added to the unsweetened or
sweetened Roselle beverages. Over the storage period, the antioxidant activity decreased
for all treatments (with or without spices). Across the sweetened and unsweetened Roselle
beverages, cinnamon reduced the degradation of antioxidant activity, which corresponded
to the stabilisation effect on the anthocyanins (Table 2). Moreover, this effect was sig‑
nificant in the sugar‑sweetened beverages (Figure 3), where adding cinnamon led to the
least antioxidant activity loss. Alternatively, the addition of ginger to the sweetened or
unsweetened Roselle beverages had no obvious effect on the antioxidant activity. The find‑
ings in the Stevia‑sweetened beverages are similar to previous findings by Korir, Wachira,
Wanyoko, Ngure, andKhalid [26], where adding 3 g/L of Stevia did not improve the antiox‑
idant capacity of black tea. However, the results in the literature are contradictory for the
addition of sugar. Indeed, when 30 g/L of sugar was added to the black tea the antioxidant
activity was reduced [26]. Conversely, the FRAP antioxidant activity of mulberry extract
increased with the addition of sugar (20–60%), although this was alongside the presence of
heating according to Tsai et al. [5]. In the study by Korir et al. [26] the mechanism of the re‑
duction in antioxidant capacity was postulated to be because of glucose–gallic complexes.
In the study by Tsai et al. [5], the increase in FRAP antioxidant activity was attributed to
products of the Maillard reaction, which have been verified in other studies to be effective
antioxidants [27].
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Figure 3. Percentage loss in FRAP antioxidant activity in the Roselle beverages between days 0 and
30 of the accelerated storage at 40 ◦C. Each bar/point represents mean values + SD. Symbols a and b
denote the level of differences between treatments.

Furthermore, the sugar–cinnamon combination, which induced the highest protec‑
tive effect on FRAP activity, corresponds to the highest protective effect on anthocyanins
with the same combination (Table 2). This finding agrees with those by Tsai et al. [28] on
model Roselle beverages, in which the monomeric anthocyanins positively correlate with
the FRAP activity (coefficient 0.97).

3.4. Colour
The chroma of the Roselle beverages decreased with an increase in storage time

(Figure 4a). The sweetener type did not affect the initial colour of the Roselle beverages
and there was no subsequent effect on the stability of the colour during storage. Although
there was no initial effect of the spices on the chroma of the beverage, the inclusion of cin‑
namon in the unsweetened and sweetened beverages led to a decrease in the chroma over
the storage period, particularly within 15 days. Eventually, the chroma in all the Roselle
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beverages on day 30 of the accelerated study was the same, except in those where sugar
was used in combination with the cinnamon. For the latter, there was a significant effect
of colour chroma (Figure 4a), which is likely linked to the improved stability of the antho‑
cyanins in the beverages containing the sugar–cinnamon combination. For all beverage
iterations, the correlation between the total anthocyanin content and chroma was high (R2
value = 0.97 ± 0.02; R = 0.99).
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Figure 4. (a) Chroma profile of the unsweetened or sweetened Roselle beverages (with sugar or
Stevia Reb A) andwith or without spice (cinnamon or ginger) on days 0, 15, and 30 of the accelerated
storage at 40 ◦C. (b) Hue angle profile of the unsweetened or sweetened Roselle beverages (with
sugar or Stevia Reb A) and with or without spice (cinnamon or ginger) on days 0, 15, and 30 of the
accelerated storage at 40 ◦C. Each bar/point represents mean values + SD. Symbols a–h denote the
level of differences between treatments.

The colour hue angle (Figure 4b) was less correlated (negatively) to the total antho‑
cyanins for all the beverage iterations (R2 value = 0.67± 0.05; R =−0.82). In addition, there
was no effect of the sweetener on the hue angle, although the type of spice added did have
an effect. All beverages containing cinnamon had a lower hue angle (redder) throughout
storage. The sugar–cinnamon beverage with the lowest hue angle at day 30 in the acceler‑
ated storage group maintained the reddest colour, thus, linking well with the anthocyanin
data. Whereas, the hue angle of the other beverages increased, tending towards a more
yellow colour.
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Overall, the sugar–cinnamon correlation resulted in the highest stability of colour
(chroma), which agrees with the highest anthocyanin protective effect found for this bever‑
age combination. This agreeswith the findings byTsai et al. [28], who found thatmonomeric
anthocyanins in a model Roselle beverage were mainly responsible for the red colour and
were positively correlated with the colour density (R 0.872).

3.5. pH
Formost of the Roselle beverages, the pH values did not change significantly through‑

out the storage period, as shown in Figure 5. The addition of sweeteners or spices did not
significantly alter the initial pH values. For all beverages, the pH was reduced by day 15,
yet was increased by day 30. This suggests changes occurring in the constituents of the phe‑
nolic compounds during storage. The pH did not correlate with any of the other measured
parameters.
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4. Conclusions
As little as 1 g/L cinnamon added to a Roselle beverage (especially one that had

been sugar‑sweetened) showed some promising results as a stabilising ingredient for an‑
thocyanins, antioxidant activity, and for the Roselle beverage colour. Although replac‑
ing sugar (80 g/L) with Stevia Reb A (Stevia, 0.32 g/L) did not have similar stabilising ef‑
fects upon reactionwith cinnamon, the Stevia–cinnamon combination still showed promis‑
ing results for anthocyanin and colour stability. It may be helpful to investigate a dose‑
response effect upon combining cinnamon and different types, or higher quantities of Ste‑
via, to maximize this potential. Although ginger (1 g/L) did not perform as well as cinna‑
mon in the Roselle beverages, it may be helpful to investigate higher concentrations of this
spice to eliminate the possibility that low concentrations contributed to the lack of results.

The mechanisms of interactions between these spices, sweeteners, and anthocyanins
also need further exploration. Other congruent spices (such as basil, cloves, etc.), which are
typically (or can be) used in Roselle beverages should be investigated, particularly for their
anthocyanin stability potential. The effect of cinnamon on other anthocyanin beverage
matrices should be verified in the interest of clean‑label beverage quality stabilities.
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Appendix A

Table A1. Type III Tests of Fixed Effects for Total Phenolics Content (from SPSS).

Source Numerator df Denominator df F Sig.

Intercept 1 278.822 25,178.241 0.000

sweetener 2 278.822 39.277 0.000

spice 2 278.822 164.626 0.000

sweetener *
spice 4 277.706 5.134 0.001

Day 12 39.903 2.296 0.025

sweetener * Day 24 39.903 1.739 0.060

Day * spice 24 39.903 0.529 0.950
Dependent Variable: TP. “*” to indicate a combination of treatments.

Table A2. Type III Tests of Fixed Effects for Total Anthocyanins (from SPSS).

Source Numerator df Denominator df F Sig.

Intercept 1 173.482 4535.259 0.000

sweetener 2 173.482 1.048 0.353

spice 2 173.482 37.617 0.000

sweetener *
spice 4 166.017 13.917 0.000

Day 12 55.728 149.595 0.000

sweetener * Day 24 55.728 0.765 0.761

Day * spice 24 55.728 2.316 0.005
Dependent Variable: AnCy.

Table A3. Type III Tests of Fixed Effects for Antioxidant Capacity (FRAP, from SPSS).

Source Numerator df Denominator df F Sig.

Intercept 1 226.260 10,547.282 0.000

sweetener 2 226.260 15.606 0.000

spice 2 226.260 61.105 0.000
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Table A3. Cont.

Source Numerator df Denominator df F Sig.

sweetener *
spice 4 235.015 2.564 0.039

Day 12 39.798 13.519 0.000

sweetener * Day 24 39.798 0.374 0.994

Day * spice 24 39.798 0.540 0.944
Dependent Variable: AnOX.
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