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Abstract: The role of yeast in wine quality is very important. The use of selected autochthonous
yeasts is becoming more and more frequent in enology, not only to obtain a diversification of wines,
but also as a link between the wine and its territory of origin. The objectives of this work were to
test two indigenous yeasts in a cellar on a pilot scale. The yeasts were a strain of Saccharomyces
cerevisiae and a strain of Saccharomyces paradoxus previously isolated in a vineyard in Piedmont (Italy).
Studying the oenological characteristics of S. paradoxus is of particular interest, as it is rarely found
in the cellar–vineyard environment. Molecular biology methods confirmed the predominance of
the strain inoculated in the various fermentation tests. Additionally, products of yeast metabolism,
including volatile compounds, were quantified at the end of the alcoholic fermentation and sensory
profile of wines was tested by a trained panel of tasters. Our results indicated that both strains have
good characteristics to be used as starter in winemaking; S. paradoxus was characterized by a high
production of glycerol and the ability to degrade malic acid, together with a lower production of
ethanol and a low volatile acidity, while S. cerevisiae conferred to the wine a pleasant smell of rose, as
highlighted in the sessions of sensory analysis.

Keywords: wine; indigenous yeasts; alcoholic fermentation; biodiversity; sensory analysis; aro-
matic compounds

1. Introduction

Wine quality depends mainly on the characteristics of the grapes and the diversity
of microorganisms (yeasts and bacteria) present during winemaking. During alcoholic
fermentation (AF) yeasts of the genus Saccharomyces have a predominant role in completing
the fermentation of the grape sugars to ethanol. At the end of the fermentation only
the species best adapted to the high ethanol content, in many instances S. cerevisiae and
S. bayanus, are found [1].

However, it is known that the grape-wine ecological habitat has a much more complex
microbial biodiversity; in fact, wine fermentation is not a ‘single species’ fermentation,
but it is the result of a composite community where the indigenous yeasts also play an
important role in the final wine complexity [2,3].

In this contest, these yeasts, Saccharomyces and non-Saccharomyces, are interesting in
oenology, because together with the soil or the microclimate they represent the territory
of origin of the wine [4]. Actually, their use is growing in response to the ever-increasing
need for wine personalization, which is becoming an important aspect of winemaking [5,6].
Nowadays, wineries are dealing with new challenges due to market demands and climate
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change and the selection and the use as starter of non-conventional yeasts can be beneficial
since they represent an important resource of biodiversity.

S. cerevisiae is one of the most extensively studied yeast species because it is the main
actor of industrial fermentations, such as wine, beer, and bread production [7]. S. paradoxus
is phylogenetically closed related to S. cerevisiae; it is frequently found in association with
oak trees [8–10], but rarely with vineyards. S. paradoxus, being the subject of studies on
ecology and evolution, was the first Saccharomyces yeast to be acknowledged as a non-
domesticated species [11,12]. Majdak et al. [13] and Orlić et al. [14] reported the possibility
of using S. paradoxus strains as starter in fermentation because of their contribution to the
aroma of the wines. Alonso del Real et al. [15] tested one S. paradoxus strain in a mixed
co-culture with one S. cerevisiae but in their results they found that during the fermentation
S. cerevisiae dominated over S. paradoxus. Due to these divergent data, further studies must
be conducted to increase knowledge about the behavior of S. paradoxus in wine.

A very important aspect of quality is determined by the aroma components of the wine:
Varietal aromas (originating from the grapes) and fermentative aromas (originating during
alcoholic and malolactic fermentations). The contribution of yeast fermentation metabolites
to the aromatic profile of wine is well documented [16,17], but yeast can also contribute to
wine aroma by other mechanisms, the de novo biosynthesis of volatile compounds and the
transformation of neutral grape compounds into flavor-active components [18,19].

Recently, we isolated and characterized the Saccharomyces and non-Saccharomyces
yeasts present in the grapes of a new implantation vineyard of Grignolino in Piedmont
(Italy). Grignolino is a red variety cultivated in Piedmont in the northwest of Italy to
produce three DOC (Denomination of Controlled Origin) wines. Some of the characterized
strains showed good technological basic features such as fermentative vigor and low
volatile acidity, as tested in laboratory fermentations [20].

In this work, the specific enological characteristics of two indigenous strains (S. para-
doxus and S. cerevisiae) isolated in this vineyard were determined by comparing their wine
fermentation performances in a pilot scale in real cellar conditions. Their dominance
was ascertained at the end of alcoholic fermentation (AF) and their impact on the final
wines was investigated by quantifying volatile compounds and by performing sensory
analysis test.

2. Materials and Methods
2.1. Yeast Strains

Saccharomyces cerevisiae and Saccharomyces paradoxus strains were previously isolated
in a Grignolino Vineyard in Nord Italy [20]. They are included in the Microbial Culture
Collection of Oenological and Viticultural Environment (CREA-CMVE) of the Center with
the references: S. cerevisiae (ISE1567) and S. paradoxus (ISE1618). A yeast pre-inoculum,
previously grown in YEPG broth, was prepared in commercial grape juice (Bravo, Rauch,
Austria) and then inoculated (5 × 106 cells/mL) in Grignolino must. Each strain was tested
in triplicate.

2.2. Vinification

The trials were run during the 2018 vintage. Homogeneous samples of Grignolino
grapes were harvested in crates. Grapes were divided into six homogeneous lots of 130 kg
each, containing equally distributed grapes of each row of the vineyard. After destemming
and crushing, 80 mg/kg of potassium metabisulfite was added to all six trials.

AF was carried out at a temperature of 24–25 ◦C. In the first four days of fermentation,
a pump down was carried out in the morning and a pumping over of about 20% of the
volume in the evening. From the fifth day onwards, two pump-overs in the air for half the
volume were done twice a day. Racking off was carried out after 20 days of maceration.
At the end of AF, approximately 70 L of wine was obtained in each fermentation. Wine
fermented with S. paradoxus is termed SpW, and the one with S. cerevisiae ScW.
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2.3. Yeast Dominance Analysis

At the end of fermentation, yeasts were isolated by dilution and spreading on WL
(Wallerstein Laboratory) agar. After growth, 24 colonies from each sample were randomly
collected from plates. Dominance analysis was performed by microsatellite multiplex PCR
(MM-PCR) to distinguish S. cerevisiae strains [21].

MM-PCR data were managed using Bionumerics software (Applied Maths, Belgium).
The band pattern profile obtained on the colonies isolated at the end of fermentation was
compared with the profile of the inoculated strain.

Since microsatellite loci amplification is not possible in S. paradoxus, the species was
assessed by amplifying the D1–D2 domain with primers NL1–NL4 [22] and sequencing.
For this, the NS1⁄ITS2 primer pair was used to amplify the ITS1 region of the 18S rDNA;
PCR products were digested with MspI, and separated by electrophoresis [8]. Gels were
processed using Bionumerics software as above.

2.4. Chemical Analysis

Density, volatile acidity, titratable acidity, and ethanol content were analysed accord-
ing to the methods of the OIV (International Organisation of Vine and Wine). Residual
sugar and glycerol were quantified using an HPLC with a refractometric detector using
the following conditions: Rezex RCM-Monosaccharide column (300 × 7.8 mm, 8 µm,
Phenomenex, Torrance, CA, USA), water as eluent with a flow of 0.35 mL/min, column
temperature 85 ◦C, and injection volume 20 µL. Organic acids were quantified by HPLC
Agilent 1100 as described [23], and YAN (Yeast Assimilable Nitrogen) was determined by
formol titration [24].

2.5. Sensory Analysis

The wine sensory descriptive analysis (sensory profile) was conducted by a trained
panel (6 males and 7 females) following a methodology deriving from the ISO norms [25]—
similarly to other procedures [26,27]—using ISO (3591-1977) approved glasses in an ISO
(8589-2007) tasting room.

In all the sensory sessions, 4 wines were served (50 mL) in a randomized order and
identified with a three-digit code. All the wines were tasted in a preliminary tasting session
to define the odor descriptors with the help of a predefined odor list [28]. The choice of
descriptors was made on the identification frequencies. The second-level descriptors (fresh
herbaceous, dry herbaceous, and balsamic/resinous) were chosen when their frequency of
identification was higher than 39 (13 assessors × 6 wines/2), and the third level descrip-
tors (e.g., rose, geranium flower, pepper, cloves, raspberry, cherry and jam/marmalade)
when their frequency was higher than 19.5 (13 assessors × 6 wines/4). The taste and
mouth-feel attributes evaluated were acidity, bitterness, astringency, body (structure) and
taste-olfactory persistence. The chosen attributes were confirmed by presenting to the
panel appropriate standards, and measured twice in the wines in two different tasting ses-
sions. Qualitative and quantitative sensory analyses were performed by FIZZ (Biosystems,
Couternon, France). The intensity of the wine sensory attributes measures was acquired in
two repetitions using a non-structured scale (0–100).

The sensory profile of each wine obtained from the average of the two-tasting session
of each of the 3 wines produced with the same yeast is represented with radar diagrams.
The quantitative sensory results (sensory profiles) were processed with ANOVA and
Tukey’s test (p = 95%).

2.6. Free Volatile Compounds Analysis

The volatile compounds were extracted by solid-phase extraction (SPE) as follows:
30 mL wine was diluted threefold with water and 300 µL and added with 1-heptanol
(51.43 mg/L) as internal standard; samples were loaded onto a 1 g C18-EC cartridge
(Biotage AB, Uppsala, Sweden), extracted with 5 mL dichloromethane and concentrated
to 100 µL under a weak nitrogen flow. After the addition of 1-pentanol and stirring, the
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aqueous phase was extracted with dichloromethane and concentrated to 100 µL as before.
The GC-MS analysis was performed with an Agilent 7890 Series gas chromatograph with
an Agilent 5975 N Mass Selective Detector. The chromatographic conditions were: Helium
carrier gas with a flow of 1 mL/min; the sample (1 µL) was injected in splitless mode
on a Zebron ZB-WAX column (60 m × 0.25 mm, 0.25 µm, Phenomenex, Torrance, CA,
USA); the source and the transfer line were kept at 230 ◦C and the injector at 250 ◦C [29].
Data were acquired in TIC mode (Total Ion Current) and processed with the ChemStation
software (Agilent Technologies, Santa Clara, CA, USA). The identifications were achieved
by comparing the retention times with those of pure reference compounds (when available),
or comparing the LRI (linear retention index) to those reported in the literature. All high
purity standards were purchased from Sigma–Aldrich (Milan, Italy).

2.7. Statistical Analysis

ANOVA, Tukey’s test (p = 95%) and PCA were performed using XLSTAT (Addin-
soft, France).

3. Results and Discussion
3.1. Enological Characteristics of S. paradoxus and S. cerevisiae Strains

To overcome any inhomogeneity during ripening of the grapes that could result
in differences in acidity, alcohol, color or polyphenol content of wines, the initial grape
mass was collected and randomized distributed in boxes. The musts had the following
mean chemical parameters: Brix 23.44◦; titrable acidity (expressed as tartaric acid) 6.4 g/L;
pH 3.49; YAN 287.7 mg/L.

Microbiological and biomolecular analyses were performed to evaluate the dominance
of the yeasts at the end of fermentation. In S. cerevisiae wines, microsatellite analysis showed
that the inoculated S. cerevisiae strain dominated the fermentations (Figure 1).
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Figure 1. Electrophoretic profile obtained by MM-PCR of 16 colonies of S. cerevisiae strains showing the same profile of the
inoculated strain (Lane 17). Lanes M: Molecular marker 100 bp.

As expected, no amplification was achieved in S. paradoxus wine isolated colonies by
MM-PCR because this method is S. cerevisiae species-specific; thus, ARDRA analysis was
conducted, confirming that they belonged to the S. paradoxus species (Figure 2).
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Figure 2. Electrophoretic profile obtained by ARDRA analysis enzymatic digestion with MspI of
the colonies isolated in wine inoculated with S. paradoxus. M: Molecular marker 100 bp; lanes 1–13:
colonies isolated; Lane Sp+: S. paradoxus positive control; Lane Sc+: S. cerevisiae positive control.

The progress of alcoholic fermentation (13 days) in the different trials was similar.
At the end of the AF, significant differences (p ≤ 0.05) in glycerol (6.70 vs 8.62 g/L) and
malic acid (3.27 vs 2.50 g/L) content between S. cerevisiae and S. paradoxus were recorded
(Table 1).

Table 1. Chemical parameters of the wines at the end of the alcoholic fermentation.

SpW ScW

Density 20/20 0.99456 0.99368
Ethanol % v/v 12.73 13.29

Residual sugars g/L ≤1 ≤1
Titratable acidity g/L 6.32 6.35
Volatile acidity g/L 0.19 0.25

Malic acid g/L 2.50 a 3.27 b

pH 3.54 3.52
Glycerol g/L 8.62 a 6.70 b

Results are the average of three independent fermentations; titratable acidity was expressed as tartaric acid.
Volatile acidity was expressed as acetic acid. SpW: S. paradoxus wines; ScW: S. cerevisiae wines. Different letters “a”
and “b” mean statistical differences at ANOVA and Tukey’s test (p = 95%).

Remarkably, the S. paradoxus strain production of glycerol, a very important compound
for wine quality that provides sweetness and fullness [30], was high, thereby confirming
previous data indicating that S. paradoxus produces a higher amount of glycerol than
S. cerevisiae [31]. The observed ability of S. paradoxus to degrade malic acid is an interesting
property in fermentation of musts with a high acidity; several studies demonstrated that
fermentations with this species lead to a degradation of malic acid [10,32,33]; therefore, our
results are in agreement with these previous works. In particular, Bovo et al. [32] affirmed
that S. paradoxus strains were able to degrade high amounts of malic acid in ripe grape
must, i.e., high glucose and low malic acid concentration.

No significant differences (p ≤ 0.05) were found for the other parameters analyzed,
even though the quantity of ethanol produced was slightly lower in the fermentations
of S. paradoxus (x = 12.73 g/L) than in those of S. cerevisiae (x = 13.29 g/L). This result
agrees with Orlic et al. [31] who reported that S. paradoxus always produced lower ethanol
concentrations than S. cerevisiae.

It is important to note that this lower ethanol production was not accompanied by
a higher volatile acidity. At the same time, as mentioned before, glycerol content shows
significantly higher values in S. paradoxus than in S. cerevisiae fermentations. These data lead
to hypothesize that in the S. paradoxus strain a carbon flow balance shifted towards glycerol



Beverages 2021, 7, 30 6 of 10

to a greater extent than S. cerevisiae, thus showing interesting technological prospects for
natural reduction of alcohol content in wines [32,33].

3.2. Free Volatile Compounds and Sensory Profile of the Wines

Grignolino variety is cultivated in Piedmont, northwest Italy, to produce DOC wines
that are generally described as dry and slightly tannic, with a moderately bitter taste and a
persistent aftertaste. In a previous study [34] carried out on a suitable number (n = 36) of
commercial Grignolino wines, the olfactory descriptors were violet-rose, geranium, pepper,
raspberry, straw-hay. These attributes were also present in this study, even though the odor
complexity was higher, which could be due to various reasons (grape quality, evolution of
grape growing and winemaking techniques, different yeasts).

Regarding the organoleptic characteristics of the under-study wines, the sensory
profiles obtained with the two yeasts (Figure 3) were different only for the odor attribute
rose, which was significantly higher in the ScW wines (ANOVA and Tukey’s test, p = 95%).
Raspberry odor, cherry and dry herbaceous were also slightly higher in these wines, but all
wines were very similar for taste and mouth-feel attributes.

Beverages 2021, 7, x FOR PEER REVIEW 6 of 10 
 

 

lead to hypothesize that in the S. paradoxus strain a carbon flow balance shifted towards 
glycerol to a greater extent than S. cerevisiae, thus showing interesting technological pro-
spects for natural reduction of alcohol content in wines [32,33]. 

3.2. Free Volatile Compounds and Sensory Profile of the Wines 
Grignolino variety is cultivated in Piedmont, northwest Italy, to produce DOC wines 

that are generally described as dry and slightly tannic, with a moderately bitter taste and 
a persistent aftertaste. In a previous study [34] carried out on a suitable number (n = 36) 
of commercial Grignolino wines, the olfactory descriptors were violet-rose, geranium, 
pepper, raspberry, straw-hay. These attributes were also present in this study, even 
though the odor complexity was higher, which could be due to various reasons (grape 
quality, evolution of grape growing and winemaking techniques, different yeasts). 

Regarding the organoleptic characteristics of the under-study wines, the sensory pro-
files obtained with the two yeasts (Figure 3) were different only for the odor attribute rose, 
which was significantly higher in the ScW wines (ANOVA and Tukey’s test, p = 95%). 
Raspberry odor, cherry and dry herbaceous were also slightly higher in these wines, but 
all wines were very similar for taste and mouth-feel attributes. 

 
Figure 3. Sensory profile of Grignolino wines obtained by the two autochthonous strains. Different 
letters indicate significant statistical differences with ANOVA and Tukey’s test (p = 95%). (ScWs: 
Average profile of wines produced with S. cerevisiae; SpWs: Average profile of wines produced 
with S. paradoxus). 

Analysis of the aromatic compounds of wines at the end of the alcoholic fermentation 
(Table 2) showed no statistical differences in alcohols and fermentation esters between the 
two yeasts, but statistical differences in the concentration of terpene compounds were rec-
orded, which can explain the sensory difference for the descriptor “rose”. Terpenes are 
characterized by floral, muscatel or fruity aromas, and their concentrations in grapes and 
wines depend on various factors, including cultivar, region, wine-making techniques and 
yeasts.  

Table 2. Volatile compounds in the wines at the end of the alcoholic fermentation (μg/L). 

 SpW ScW 
Alcohols   

Isoamylalcohol 12,261 ± 1447 13,140 ± 2888 
Cis-3-hexenol 73 ± 6 57 ± 21 

1- hexanol 1359 ± 66 1402 ± 298 
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Analysis of the aromatic compounds of wines at the end of the alcoholic fermentation
(Table 2) showed no statistical differences in alcohols and fermentation esters between
the two yeasts, but statistical differences in the concentration of terpene compounds were
recorded, which can explain the sensory difference for the descriptor “rose”. Terpenes
are characterized by floral, muscatel or fruity aromas, and their concentrations in grapes
and wines depend on various factors, including cultivar, region, wine-making techniques
and yeasts.
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Table 2. Volatile compounds in the wines at the end of the alcoholic fermentation (µg/L).

SpW ScW

Alcohols
Isoamylalcohol 12,261 ± 1447 13,140 ± 2888
Cis-3-hexenol 73 ± 6 57 ± 21

1- hexanol 1359 ± 66 1402 ± 298
benzylalcohol 7 ± 2 7 ± 1

2 phenylethanol 14,337 ± 1000 17,465 ± 5000
total alcohol 28,037 32,071

Esters
ethylhexanoate 279 ± 60 185 ± 31
isoamilacetatate 406 ± 151 418 ± 27

ethyllactate 1284 ± 118 585 ± 42
ethyloctanoate 267 ± 62 177 ± 13
ethylhexanoate 271 ± 46 185 ± 31
ethyldecanoate 55 ± 20 37 ± 4

diethylsuccinate 1187 ± 360 1351 ± 293
ethylpalmitate 12 ± 1 16 ± 4

total esters 3761 2954

Acids
isovaleric acid 150 ± 11 99 ± 24
octanoic acid 1869 ± 242 1559 ± 342
decanoic acid 444 ± 172 377 ± 57

lauric acid 37 ± 13 29 ± 4
total acids 2500 2064

Aldehydes ketones
benzaldehyde 6 ± 2 8 ± 2
butyrolactone 36 ± 20 40 ± 27

methoxyacetophenone 0 248 ± 95
vanillin 0 14 ± 1

β−damascenone 11 ± 5 8 ± 1
total Aldehydes Ketones 53 a 318 b

Terpenic compounds
linalool 0 a 16 ± 2 b

cis-linalooloxide 4 ± 1 5 ± 1
citronellol 14 ± 0 24 ± 2
HO trienol 0 7 ± 5

alpha terpineol 10 ± 1 11 ± 2
geranic acid 40 ± 13 43 ± 4
Total terpenes 68 a 106 b

Different letters “a” and “b” indicate significant statistical differences with ANOVA and Tukey’s test (p = 95%).

In this study, particularly significant was the difference between the linalool content in
both strains, as linalool (16 µg/L) was only present in the S. cerevisiae fermentation (Table 2).
The ability of S. cerevisiae yeast to synthesize terpenes has already been reported [35,36]. The
threshold level for linalool in wine is 50 µg/L, but it can be detected in lower concentrations
(10–20 µg/L) when similar aroma-based chemicals are also present [37]. The individual
terpenes quantified in this study are not present at levels close to their sensory limits, but
they should nevertheless contribute collectively to the floral aspect of the wine aroma
descriptor. Rose aroma contribution should collectively include linalool, citronellol and
HO-trienol, which are aromatic compounds characterized by floral notes, and the sum of
these terpenes supports the difference perceived by the panel in the sensory analysis.

Significant differences were also found in aldehyde and ketone compounds, the total
amount of these compounds was higher in ScW than in SpW, in particular for vanillin and
for methoxyacetophenone. These compounds increase wine complexity, conferring vanilla,
nutty and floral notes.
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In general, wines obtained in this study have good enological properties and distinc-
tive characteristics; this is also shown by PCA analysis (Figure 4): Wines obtained by S.
cerevisiae have higher malic acid, total aldehydes and ketones and ethanol; S. paradoxus
wines are mainly characterized by a higher content of glycerol.
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4. Conclusions

In conclusion, both indigenous S. cerevisiae and S. paradoxus strains isolated from
vineyard possess oenological properties of interest for the wine industry. S. paradoxus
is characterized by a high production of glycerol and the ability to degrade malic acid.
This, together with a lower production of ethanol and a low volatile acidity, makes this S.
paradoxus strain a very interesting starter from an oenological point of view, in particular
for the production of low alcohol content wines. On the other hand, the strain of S. cerevisiae
gives the wine a pleasant smell of rose, as highlighted in the sessions of sensory analysis.
Grignolino is a neutral variety with a very low content of terpene compounds, and thus, in
these kinds of varieties, the role of yeast in the production of aromatic compounds is even
more important.

Further studies should be conducted to better investigate the use of S. paradoxus,
in particular its use in mixed cultures with S. cerevisiae or other yeast species, or in se-
quential inoculation, in order to obtain specific results in terms of ethanol content and
glycerol production.
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