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Abstract: Foam-related parameters are associated with beer quality and dependent, among others,
on the protein content. This study aimed to develop a machine learning (ML) model to predict
the pattern and presence of 54 proteins. Triplicates of 24 beer samples were analyzed through
proteomics. Furthermore, samples were analyzed using the RoboBEER to evaluate 15 physical
parameters (color, foam, and bubbles), and a portable near-infrared (NIR) device. Proteins were
grouped according to their molecular weight (MW), and a matrix was developed to assess only the
significant correlations (p < 0.05) with the physical parameters. Two ML models were developed
using the NIR (Model 1), and RoboBEER (Model 2) data as inputs to predict the relative quantification
of 54 proteins. Proteins in the 0–20 kDa group were negatively correlated with the maximum volume
of foam (MaxVol; r = −0.57) and total lifetime of foam (TLTF; r = −0.58), while those within 20–40 kDa
had a positive correlation with MaxVol (r = 0.47) and TLTF (r = 0.47). Model 1 was not as accurate
(testing r = 0.68; overall r = 0.89) as Model 2 (testing r = 0.90; overall r = 0.93), which may serve as
a reliable and affordable method to incorporate the relative quantification of important proteins to
explain beer quality.

Keywords: proteomics; artificial neural networks; robotics; artificial intelligence

1. Introduction

Foam is an important attribute to determine beer quality as it is related to its chemical composition
and directly affects the sensory descriptors, such as aroma release, color, and mouthfeel [1,2]. Proteins are
an essential component for foamability and foam stability because they act as surfactant substances,
which are able to reduce the interfacial tension and increase the viscosity and elasticity of the liquid [3,4].
This is due to the hydrophilic and hydrophobic properties of their structure. When proteins unfold at
the bubble interphase, the hydrophobic molecules make contact with the air and the hydrophilic stay
in the liquid phase; this promotes the development of a layer in the interface and increases the stability
of foam [4–6]. Furthermore, proteins, along with polyphenols, are responsible for chill haze formation;
this happens when the beer is cooled at temperatures <0 ◦C and is the result of protein aggregation
and oxidized flavonoids [7,8].

Some of the traditional methods that have been used to assess the beer proteome include gel-free
top-down analysis of intact proteins with high-resolution instruments based on Fourier transform
ion cyclotron resonance and the bottom-up strategies, which identify the peptides after enzymatic
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digest, which is usually performed using trypsin [9]. Other methods that have been used in beer are
two-dimensional (2-D) gel electrophoresis, coupled with mass spectrometry [10,11], high-performance
liquid chromatography (HPLC) [12], enzyme-linked immunosorbent assay (ELISA) [9], matrix-assisted
laser desorption/ionization mass spectrometry (MALDI-TOF MS) [13], and liquid-chromatography
mass-spectroscopy (LC-MS) [14,15]. However, these techniques often require expensive equipment,
consumables for every test, a large laboratory space, personnel with specialized training, and are
often time-consuming.

Emerging techniques derived from artificial intelligence, such as machine learning, robotics,
and computer vision, have been used in the food and beverage industries to overcome most of the
drawbacks of traditional methods to assess different components in food products and beverages.
Some examples of these are the use of a robotic pourer along with computer vision to evaluate 15
physical parameters (color, foam, and bubbles) in beer using a 5-min video [1,16], and the use of
low-cost electronic noses along with machine learning to assess aromas and alcohol content in brewages
as an alternative method to gas chromatography-mass spectrometry [17,18], among others. However,
there are no known publications proposing affordable and rapid methods to assess proteomics or
related parameters using any of the emerging techniques mentioned.

This study aimed to assess the role of relative proteins and their molecular weight pattern for
different beer samples and to construct a machine learning model to predict the relative pattern
quantification of those proteins as well as their effect on foamability and beer quality. To achieve
this, significant correlations (p < 0.05) between the identified proteins grouped by molecular weight
and physical parameters (color, foam, and bubbles) measured using an automatic pourer (RoboBEER;
The University of Melbourne, Melbourne, Vic, Australia) were assessed. Furthermore, all samples
were measured using a near-infrared (NIR) portable device to obtain their chemical fingerprinting in
the 1600–2400 nm range. Two machine learning models were constructed and compared to predict the
relative quantification of 54 proteins identified in the beer samples (i) using the absorbance values of
the chemical fingerprinting as inputs for Model 1, and (ii) using the physical parameters (color, foam,
and bubbles) as inputs for Model 2.

2. Materials and Methods

2.1. Samples Description

A total of 24 beers from various types and countries (Table 1) were used for this study to ensure a
broad range of protein profiles were analyzed. Samples were also selected from three fermentation
types, (i) spontaneous, (ii) bottom, and (iii) top, as these have different foaming characteristics and,
therefore, a distinct chemical composition. Replicate bottles (N = 3) of each beer were analyzed.

Table 1. Beer samples analyzed, and their labels utilized for the analyses.

Beer Style Country Fermentation Label

Abbey Ale Belgium Top L
India Pale Ale Australia Top WIP

Blonde Ale Australia Top WB
Porter Poland Top Z
Kolsch Australia Top P

Red Ale USA Top RT
Steam Ale Australia Top SA
Aged Ale Scotland Top IG

Sparkling Ale Australia Top CS
Saison Australia Top LS

Pale Lager Mexico Bottom C
Pale Lager Mexico Bottom XX
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Table 1. Cont.

Beer Style Country Fermentation Label

Vienna Lager USA Bottom BL
Pale Lager Netherlands Bottom H
Pale Lager Czech Republic Bottom BC

German Pilsner Czech Republic Bottom PU
Lambic Cassis Belgium Spontaneous LC

Lambic Framboise Belgium Spontaneous LF
Lambic Gueuze Belgium Spontaneous LG
Lambic Kriek Belgium Spontaneous LK
Lambic Kriek Belgium Spontaneous OK

Lambic Gueuze Belgium Spontaneous OG
Lambic Gueuze Belgium Spontaneous OT

Wild Saison Australia Spontaneous LW

2.2. Proteomics Description

2.2.1. Sample Preparation

Samples were prepared as detailed by Kerr et al. [19]. To desalt proteins by precipitation, 50 µL of
each sample was added to 1 mL of 1:1 methanol/acetone and incubated at −20 ◦C for 16 h. Precipitated
proteins were centrifuged at room temperature at 18,000 rcf for 10 min, the supernatant was discarded,
and proteins resuspended in 100 µL of 100 mM ammonium acetate, 10 mM dithiothreitol (DTT),
and 1 µg trypsin (Proteomics grade, Sigma-Aldrich, St. Louis, MO, USA). Proteins were digested by
incubation at 37 ◦C for 16 h. Trypsin was added at equal amounts to all samples to allow normalization
of the relative protein abundance. SWATH-MS was implemented as described below, using triplicates
to reduce retention time variation and improve data quality.

2.2.2. Mass Spectrometry

Peptides were desalted with C18 ZipTips (Millipore) and analyzed by liquid
chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) using a
Prominence nanoLC system (Shimadzu Corporation, Kyoto, Japan) and TripleTof 5600 instrument with
a Nanospray III interface (SCIEX, Mulgrave, Victoria, Australia) essentially as previously described by
Xu et al. [20]. Approximately, 2 µg or 0.4 µg of desalted peptides, as estimated by the ZipTip binding
capacity, were injected for data-dependent acquisition (DDA) or data-independent acquisition (DIA),
respectively. LC parameters were identical for DDA and DIA, and LC-MS/MS was performed essentially
as previously described by Zacchi and Schulz [21]. Peptides were separated on a VYDAC EVEREST
reversed-phase C18 HPLC column (300 Å pore size, 5 µm particle size, 150 µm i.d. × 150 mm) at a flow
rate of 1 µL/min with buffer A (1% acetonitrile and 0.1% formic acid) and buffer B (80% acetonitrile
with 0.1% formic acid) using a gradient of 10–60% buffer B over 48 min, for a total run time of 70 min
per sample. Gas and voltage settings were adjusted as required. For DDA analyses, an MS TOF scan
from m/z of 350–1800 was performed for 0.5 s followed by DDA of MS/MS in high sensitivity mode
with automated CE selection of the top 20 peptides from m/z of 100–1800 for 0.05 s per spectrum and
dynamic exclusion of peptides for 5 s after 2 selections. Identical LC conditions were used for DIA
SWATH, with an MS-TOF scan from an m/z of 350–1800 for 0.05 s followed by high-sensitivity DIA
of MS/MS from m/z of 100–1800 with 26 m/z isolation windows with 1 m/z window overlap each for
0.1 s across an m/z range of 400–1250. The collision energy was automatically assigned by the Analyst
software (SCIEX, Mulgrave, Victoria, Australia) based on the m/z window ranges.
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2.2.3. Proteomics Data Analysis

Peptides and proteins were identified using ProteinPilot 5.1 (SCIEX, Mulgrave, Victoria, Australia),
searching against all eukaryotic proteins in UniProtKB (downloaded 14 June 2018; 557485 total entries),
with settings: sample type, identification; instrument, TripleTof 5600; species, none; ID focus, biological
modifications; enzyme, trypsin; search effort, thorough ID. The results from ProteinPilot were used
as an ion library to measure the abundance of peptides and proteins using PeakView 2.1 (SCIEX,
Mulgrave, Victoria, Australia), with settings: shared peptides, allowed; peptide confidence threshold,
99%; false discovery rate, 1%; XIC extraction window, 6 min; XIC width, 75 ppm. PeakView output
was reformatted with a Python script (Python Software Foundation, Wilmington, DE, USA) that also
applied a peptide FDR cut-off of 1% to remove low-quality ion measurements for that peptide from each
sample (https://github.com/bschulzlab/reformatMS). For protein-centric analyses, protein abundances
were normalized to the sum of all protein intensities in a sample, as previously described [22].

2.3. Physical Parameters (Color, Foam, and Bubbles)—RoboBEER

The beer samples were evaluated with an automatic pourer (RoboBEER) to get the physical
parameters (color, foam, and bubbles). This robot is able to automatically and constantly pour
80 ± 10 mL of the sample while being recorded for 5 min using a smartphone camera. Furthermore, it is
integrated with an ethanol gas MQ3 (Henan Hanwei Electronics Co., Ltd., Zhengzhou, China) and
carbon dioxide (CO2; MG811; Henan Hanwei Electronics Co., Ltd., China) sensors that record values in
real-time during the pouring and video recording, as well as an infrared temperature sensor MLX90614
(Melxis NV, Ieper, Belgium) to make sure all the beers are evaluated at similar conditions. Furthermore,
the videos were analyzed with computer vision algorithms developed in Matlab® R2019b (Mathworks
Inc., Natick, MA, USA) to obtain the maximum volume of foam (MaxVol), lifetime of foam (LTF), total
lifetime of foam (TLTF), foam drainage (FDrain), color in both CIELab and RGB scales, and bubble size
distribution grouped as small (SmBubb), medium (MedBubb), and large (LgBubb). A more detailed
description of the technique may be obtained in the papers published by Gonzalez Viejo et al. [1,23–25].

2.4. Near-Infrared Analysis

A portable NIR device microPHAZIR™ (RX Analyzer; Thermo Fisher Scientific, Waltham, MA,
USA) was used to evaluate the samples. This device can read the NIR spectra within the 1600–2400 nm
range, recording a value every 7–9 nm. A Whatman® filter paper (Whatman plc. Maidstone, UK;
qualitative grade 3, 7.0 cm) was submerged in each of the beer samples (20–23 ◦C) to be measured
by placing a white background in the top to avoid signal noise from the environment. Then, a dry
filter paper was read to subtract the values from the sample results and eliminate the cellulose present
in the paper. Three readings from each bottle of each sample were recorded and averaged to reduce
variability. This method was validated by Gonzalez Viejo et al. [6].

2.5. Statistical Analysis

An ANOVA was conducted for the protein values to assess significant differences (p < 0.05) between
samples using XLSTAT software (Addinsoft Inc. New York, NY, USA). Furthermore, a correlation
matrix was developed using an algorithm developed in Matlab® R2019b to assess the significant
correlations (p < 0.05) between the physical parameters (color, foam, and bubbles) and the identified
proteins categorized into five groups based on their molecular weight (MW; 0–20 kDa, 20–40 kDa,
40–60 kDa, 60–80 kDa and >80 kDa).

Two artificial neural network (ANN) regression models were constructed using a Matlab®

R2019b code to test in a loop 17 different training algorithms. The best models based on the best
performance, correlation coefficients, and no signs of overfitting were obtained using the Bayesian
regularization algorithm. Model 1 consisted of using the absorbance values obtained with NIR
within the 1600–2400 nm spectra as inputs, while Model 2 was constructed with the 15 physical

https://github.com/bschulzlab/reformatMS
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parameters (color, foam, and bubbles); both models were used to predict the relative quantification
of 54 proteins found in the beer samples (Table 2). For both models, samples were divided using a
random data division (dividerand) algorithm as 70% for the training stage, and 30% for testing using a
performance algorithm based on mean squared error (MSE). As shown in Supplementary Material
(Figure S1), the models consisted of a feedforward network with two layers, a tan-sigmoid and a linear
transfer function for the hidden and output layers, respectively. Furthermore, a trimming exercise was
performed using 3, 5, and 10 neurons to assess the best performance, with 10 being the most accurate
and with no overfitting.

Table 2. Names of the 54 proteins used to develop the artificial neural network model.

Protein MW
(kDa) Protein Name

NLTP1_HORVU 12.3 Non-specific lipid-transfer protein 1 (LTP 1)
IAAE_HORVU 16.1 Trypsin inhibitor CMe

NLTP2_HORVU 10.4 Probable non-specific lipid-transfer protein (LTP)
HOG3_HORVU 33.1 Gamma-hordein-3
AVLA3_WHEAT 19.3 Avenin-like a3
IAAD_HORVU 18.5 Alpha-amylase/trypsin inhibitor CMd
GLT3_WHEAT 70.9 Glutenin subunit 12
G3P1_YEAST 35.8 Glyceraldehyde-3-phosphate dehydrogenase 1 (GAPDH 1)

IAAA_HORVU 15.5 Alpha-amylase/trypsin inhibitor CMa
HOG1_HORVU 34.7 Gamma-hordein-1
G3P1_CANGA 35.9 Glyceraldehyde-3-phosphate dehydrogenase 1 (GAPDH 1)
HOR1_HORVU 33.4 B1-hordein
NLT2P_WHEAT 7.0 Non-specific lipid-transfer protein 2P (LTP2P)

PAU5_YEAST 12.8 Seripauperin-5
ENO2_YEAST 46.9 Enolase 2

HINB1_HORVU 16.1 Hordoindoline-B1 (Puroindoline-B)
BARW_HORVU 13.7 Barwin
AMYB_HORVS 59.6 Beta-amylase

AVLA4_WHEAT 18.9 Avenin-like a4
YGP1_YEAST 37.3 Protein YGP1 (GP38)

HS16B_WHEAT 16.9 16.9 kDa class I heat shock protein 2
EF1A_MAIZE 49.2 Elongation factor 1-alpha (EF-1-alpha)
PGK_YEAST 44.7 Phosphoglycerate kinase
PDC1_YEAST 61.5 Pyruvate decarboxylase isozyme 1

NLT2G_WHEAT 9.8 Non-specific lipid-transfer protein 2G (LTP2G)
ICIC_HORVU 8.3 Subtilisin-chymotrypsin inhibitor CI-1C

KPYK1_YEAST 54.5 Pyruvate kinase 1 (PK 1)
HINA_HORVU 16.5 Hordoindoline-A

TPIS_YEAST 26.8 Triosephosphate isomerase (TIM)
LEA1_HORVU 21.8 ABA-inducible protein PHV A1
LAS1_ARATH 86.5 Lanosterol synthase
ACT2_SCHCO 41.8 Actin-2
CIS3_YEAST 23.2 Cell wall mannoprotein CIS3

GDA7_WHEAT 36.1 Alpha/beta-gliadin clone PW8142 (Prolamin)
PST1_YEAST 45.8 Cell wall mannoprotein PST1 (Haze protective factor 2)
TRX2_YEAST 11.2 Thioredoxin-2 (Thioredoxin II)

NDK1_SACOF 16.6 Nucleoside diphosphate kinase 1
HINB2_HORVU 16.1 Hordoindoline-B2 (Puroindoline-B)
PR13_HORVU 17.7 Pathogenesis-related protein PRB1-3
ENO1_YEAST 46.8 Enolase 1
AWA1_YEASK 166.9 Cell wall protein AWA1
PDI_HORVU 56.5 Protein disulfide-isomerase (PDI)
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Table 2. Cont.

Protein MW
(kDa) Protein Name

G3PC2_ARATH 36.9 Glyceraldehyde-3-phosphate dehydrogenase GAPC2, cytosolic
ENO_YARLI 47.3 Enolase

RLA2_PSEMZ 1.0 60S acidic ribosomal protein P2 (Fragment)
HS17A_ORYSJ 17.9 17.9 kDa class I heat shock protein
RL8B_YEAST 28.1 60S ribosomal protein L8-B (L4)
ENO_ASHGO 46.6 Enolase
RS19B_YEAST 15.9 40S ribosomal protein S19-B
EXG1_YEAST 51.3 Glucan 1,3-beta-glucosidase I/II

MY119_ARATH 48.5 Transcription factor MYB119
ALF_YEAST 39.6 Fructose-bisphosphate aldolase

RIP1_HORVU 30.0 Protein synthesis inhibitor I
ACBP_YEAST 10.1 Acyl-CoA-binding protein (ACBP)

Abbreviations: MW = Molecular weight.

3. Results and Discussion

3.1. Physicochemical Measurements (Proteomics, RoboBEER, and NIR)

The analysis results showed that 150 proteins were found in the beers, the origins of most
of these are cereals (barley, wheat, and maize) and yeast mainly from Saccharomyces cerevisiae and
Schizosaccharomyces pombe. Specific proteins, such as LTP1, enolase 2, γ-hordein-1, γ-hordein-3,
B1-hordein, avenin-like a3, Barwin, alpha-amylase/trypsin inhibitor CMb, and proteins Z4 and Z7,
which are characteristic of beer [13,26,27], were found in all samples (Table S1).

The ANOVA results showed that there were significant differences (p < 0.05) between samples in
136 out of 150 proteins identified in the beers (data not shown). Regarding the NIR measurements,
all beers presented the highest peak at 1940 nm (Figure S2) in which the water overtone is found [28].
Even though all beers had a similar trend up to 2200 nm, the different samples vary from 2200 to
2400 nm, at which most proteins and carbohydrates are detected [29]. These differences found in
proteins with both the proteomics and NIR methods are due to the variations in the raw material,
type of fermentation, and production process, which produce a different composition in the distinct
beer styles.

Figure 1 shows the correlations (p < 0.05) between the physical parameters (color, foam, and bubbles)
and the 150 proteins grouped by MW. It can be observed that proteins with MW within 0–20 kDa were
negatively correlated with MaxVol (r = −0.57), TLTF (r = −0.58), and CO2 (r = −0.52), and positively
correlated with FDrain (r = 0.62). Proteins in the 20–40 kDa group had a positive correlation with “a”
from the CIELab color scale (r = 0.49), MaxVol (r = 0.47), and TLTF (r = 0.47), and a negative correlation
with FDrain (r = −0.51). Those proteins with MW between 40 and 60 kDa did not have any significant
correlations with any of the parameters, while the 60–80 kDa group was negatively correlated with
FDrain (r = −0.48) and positively correlated with SmBubb (r = 0.47), CO2 (r = 0.64), TLTF (r = 0.57),
and MaxVol (r = 0.53). On the other hand, the proteins above 80 kDa had a positive correlation with
“G” (r = 0.46) and “B” (r = 0.57) from the RGB color scale and “L” (r = 0.42), and a negative correlation
with “b” (r = −0.54) from the CIELab scale.

It is well known that the proteins associated with foamability and foam stability are mainly
the LTP1 (MW 12 kDa), proteins Z4 (MW 43 kDa), and Z7 (MW 43 kDa), and hordeins (MW
30–35 kDa) [2,30–32]. However, their correlation with foaming parameters varies according to different
studies, Lusk et al. [33] found that LTP1 increased foam stability; however, Evans et al. [34,35] observed
that LTP1 and protein Z7 did not present a correlation with foam stability. The latter was also observed
in this study, as no correlation was found between the foam parameters and the proteins within
40–60 kDa. As previously mentioned, in the present study, proteins with low MW (0–20 kDa), in which
LTP1 is categorized (Table S1), had a negative correlation with MaxVol and TLTF, but a positive
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correlation with FDrain. This may be owing to the capacity of LTP1 to bind lipids, which contributes to
the differences in its influence in foam [30]. Furthermore, no positive effect of LTP1 on foamability for
high-carbonated beers has been reported [35]. Hordeins are within the 20–40 kDa MW group (Table S1),
which was positively correlated with MaxVol and TLTF; this confirms that these proteins may promote
foam formation and stability. Proteins with higher MW (60–80 kDa) presented similar results to the
20–40 kDa group, although there are no known published studies identifying this positive correlation;
however, in the present study, it was shown to contribute to smaller bubbles in the foam (SmBubb).
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Figure 1. Matrix showing the correlations (p < 0.05) between the physical parameters (color, foam,
and bubbles) and the proteins grouped by molecular weight (0–20 kDa, 20–40 kDa, 40–60 kDa, 60–80 kDa
and >80 kDa).

3.2. Machine Learning Modeling

Table 3 depicts the results of the ANN models. Model 1 presented a high overall correlation
coefficient (r = 0.89) to predict 54 proteins with the chemical fingerprinting measured using NIR
(1600–2400 nm). However, the r value (r = 0.68) for the testing stage was moderate and much lower than
the training stage. Additionally, the slope of the testing stage was low. In contrast, Model 2 had higher
overall accuracy (r = 0.93) to predict the same 54 proteins but using the physical parameters (color,
foam, and bubbles) measured using RoboBEER. This model presented similar results for the three
stages (training, testing, and overall) with high slope values (b ≈ 0.90). Furthermore, the performance
shows there are no signs of overfitting of the model as the MSE value of the training was lower than
the testing stage. On the other hand, Figure 2 shows the overall models in which a higher dispersion of
the data can be observed for Model 1 compared to Model 2.
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Table 3. Statistical results from the two machine learning models.

Stage Samples Observations
(Samples × Targets) r Slope Performance

(MSE)

Model 1: Near-infrared inputs

Training 50 2700 0.97 0.93 0.02
Testing 22 1188 0.68 0.56 0.20
Overall 72 3888 0.89 0.81 –

Model 2: RoboBEER inputs

Training 50 2700 0.96 0.90 0.02
Testing 22 1188 0.90 0.85 0.07
Overall 72 3888 0.93 0.88 –

Abbreviations: MSE = mean squared error, r = correlation coefficient.
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Figure 2. Overall artificial neural network models to predict 54 proteins in beer (Table 2), showing the
correlation coefficient (r) for (a) Model 1 using the absorbance values of near-infrared spectra
(1600–2400 nm), and (b) Model 2 using the 15 physical parameters (color, foam, and bubbles) measured
using RoboBEER (Figure 1).

Despite the chemical fingerprinting from NIR spectra within 1600–2400 nm presenting several
overtones, which are related to the protein content, it was found in this study that these are not
appropriate for the prediction of specific proteins in beer as the model (Model 1; Table 3) did not
show a high correlation coefficient for the testing stage. Furthermore, this model (Model 1) presented
underfitting of values along the entire scale, which makes it unsuitable for the prediction of proteins.
However, the physical parameters (color, foam, and bubbles) were able to predict the 54 proteins with
high accuracy (Model 2; Figure 2). The latter may be due to the significant contribution of proteins
to foamability and, according to Figure 1, the color and lightness (L) of beer. This model presented
underfitting focused on the lowest values (normalized: −1, real value: 0); in this particular case, this is
not an issue as it is easy to detect given a good performance metric of the general model and known
minimum values. Furthermore, this may be easily solved by using a simple rule to assign the logical
0 values on negative values for proteins on the model deployment after the denormalization of the
output values.

Even though proteins within 40–60 kDa did not present significant correlations with the physical
parameters (color, foam, and bubbles), some of these proteins were included in the model (Table 2) as
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they contributed to its high accuracy. This may be explained since the ANN is a non-linear modeling
method that can find complex relationships within the inputs and targets for their prediction [6],
in contrast with the matrix in Figure 1, which only shows linear correlations.

Although some studies have successfully developed predictive models for proteins using NIR
data as inputs using partial least squares regression (PLS), these only predict the total protein content;
therefore, it is not able to provide more specific and multitarget results [36–39]. Other results with
higher accuracy and performance of ANN modeling using calculated parameters rather than raw
data (such as NIR spectra) have been reported for different purposes, such as other beer quality
parameters, such as sensory attributes [23] and type of fermentation, using the physical parameters
(color, foam, and bubbles) [1] and from different studies related to the classification of grapevine leaves
into cultivars based on morphometric and colorimetric parameters [40] and prediction of cocoa aromas
from canopy architecture parameters of cacao trees obtained using remote sensing and computer vision
algorithms [41].

4. Conclusions

The high accuracy obtained by Model 2 showed that the proposed method might be the first
reliable, objective, affordable, and rapid technique to evaluate the influence of specific proteins on beer
foamability and quality using an artificial intelligence approach with the aid of robotics and machine
learning. Therefore, it may potentially be utilized to predict the influence of different proteins on beer
quality traits within the production line of both large- and small-scale breweries to assess beer quality.
Furthermore, this method allowed a total of 69 physicochemical parameters [15 physical parameters
(color, foam, and bubbles), and 54 protein] to be obtained, which is beyond the number of analyses
that breweries are able to conduct to assess beer quality in every batch; this will allow the offering of
products with higher quality.

Supplementary Materials: The following are available online at http://www.mdpi.com/2306-5710/6/2/28/s1,
Table S1: Identified proteins showing their molecular weight (MW) and in which beer samples they were found
(Y = detected; X = not detected); Figure S1: Diagram of the two-layer feedforward models showing the inputs,
number of neurons, and outputs/targets used to construct both models; Figure S2: Absorbance values of the
near-infrared spectra of 24 different beer samples.
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