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Abstract: Caffeine (1,3,7-trimethylxanthine) is the most consumed psychoactive substance in the
world, acting by means of antagonism to adenosine receptors, mainly A1 and A2A. Coffee is the main
natural source of the alkaloid which is quite soluble and well extracted during the brew’s preparation.
After consumption, caffeine is almost completely absorbed and extensively metabolized in the liver
by phase I (cytochrome P450) enzymes, mainly CYP1A2, which appears to be polymorphically
distributed in human populations. Paraxanthine is the major caffeine metabolite in plasma, while
methylated xanthines and methyluric acids are the main metabolites excreted in urine. In addition to
stimulating the central nervous system, caffeine exerts positive effects in the body, often in association
with other substances, contributing to prevention of several chronic diseases. The potential adverse
effects of caffeine have also been extensively studied in animal species and in humans. These aspects
will be approached in the present review.
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1. Introduction

Caffeine consumption is an ancient habit. Different cultures discovered that chewing seeds,
barks, or leaves of certain plants containing this substance had the effects of easing fatigue, increasing
awareness, and elevating mood [1]. Caffeine (1,3,7-trimethylxanthine) is a heterocyclic organic
compound with a purine base called xanthine, consisted of a pyrimidine ring linked to an imidazole
ring [2] (Figure 1). Caffeine is known as an alkaloid because it is a secondary plant metabolite derived
from purine nucleotides, with a heterocyclic nitrogen atom (definition of true alkaloid) [2,3]. However,
because it does not have the incorporation of an amino acid in its biosynthesis [2], some authors call it
a pseudo-alkaloid [4].
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Figure 1. Caffeine chemical structure.

Caffeine is the most abundant methylxanthine in foods [5]. It is present in nearly 100 species in
13 orders of the plant kingdom [6]. Although Coffea species are the major sources, it is also abundantly
found in Camelia sinensis, maté (Ilex paraguariensis), coca (Erythroxylon coca) and Coffea leaves, in cocoa
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(Theobroma cacao) and guaraná (Pauliniacupana) seeds, and in kola (Cola sp.) nuts [2,7], in addition to
other less significant sources. It is also found in several commercial non-alcoholic beverages, powders,
capsules and in association with therapeutic drugs [5].

Although there are reports on the use of coffee at least since the 9th century, caffeine was
only understood as a substance and component of food matrices in the middle of the 19th century.
The compound was first isolated by the German researcher Ferdinand Runge (1795–1867), under
the request of the chemistry and technology professor Johann Wolfgang Döbereiner (1780–1849) and
the philosopher Wolfgang von Goethe (1749–1832) [8]. Caffeine was first called “kaffein”, which
later became “caffeine” in English and was included in the medical vocabulary in 1823 [9]. In the
following years (1827 to 1865), the same compound was isolated from other plants with different names
at times [10].

The chemical structure of caffeine was first proposed in 1875 by Ludwig Medicus (1847–1915),
who, unusual for that time, deduced it from the already known pure compound [10]. The structures of
caffeine and other methylxanthines were validated in 1882 by Hermann Emil Fischer (1852–1919), who
published a series of studies on purine synthesis that were cited in his Nobel Prize in Chemistry in
1902. [11,12]. Since then, studies on caffeine have evolved largely, together with its broad consumption
worldwide. Today, much is known about the compositional, metabolic and physiological aspects. This
review will summarize these aspects, with a focus on contents in different beverages, health benefits
and potential adverse effects associated with caffeine consumption through coffee.

2. Chemical Aspects and Analysis of Caffeine

Caffeine is colorless at room temperature, odorless, and bitter [13]. It dissolves well in boiling
water, and its solubility is increased by the addition of acids and formation of complexes, such as
benzoate, citrate, and salicylate, at high temperatures (1%, w/v, at 15 ◦C and 10% at 60 ◦C) [14]. Better
solubility is achieved in chloroform at room temperature [2]. In aqueous solution, at physiological
pH, caffeine is a non-ionized compound. The melting point is 234 to 239 ◦C and the temperature
of sublimation, at atmospheric pressure, is about 178 to 180 ◦C [2]. Reports on caffeine ultraviolet
(UV) absorption region differ slightly in the literature. A reasonable wavelength interval between
250–280 nm can be concluded from reports [2], although wavelengths from 243 to 302 nm have been
used for analyses [15]. Maximum absorption (λ max) in aqueous solution occurs at 272/273 nm [4,15,16].

Several analytical methods have been proposed for determination of caffeine in foods. Gravimetry
was the first method developed for this analysis in food products [17]. However, it was time-consuming,
and the poor cleaning procedure of the extract caused overestimation of the contents [18]. The absorption
of electromagnetic radiation in the UV region by caffeine was described in the early 20th century [19].
A low-cost spectrophotometric analytical method based on the absorbance at 272 nm was developed
in 1948 [20]. The method was faster, simpler and more accurate than gravimetric methods, but the
results could still be overestimated by the presence of matrix interferents, usually associated with food
products [18,21].

High-performance liquid chromatography (HPLC) technique was used in caffeine analysis for the
first time in the early 1970s [22]. Ion exchange chromatography was also used to separate caffeine from
other organic compounds in coffee at that time [23]. The use of HPLC for determination of caffeine was
an important qualitative leap in terms of parameters of precision, accuracy, and speed [18], also allowing
multi-analysis of methylxanthines. The development of stationary phases containing micro-particles
(5 µm) and the use of the gradient system to separate caffeine from other methylxanthines allowed
better resolution in a shorter period of time [18]. However, in coffee matrix, due to the very low
amount of other methylxanthines, HPLC and ultra-high-performance liquid chromatography (UPLC)
isocratic systems have been often applied for determination and quantification of these compounds,
using a reverse-phase column and a mixture of methanol and water as the mobile phase [24–26].
Methods for HPLC analysis evaluating simultaneously caffeine and additional compounds were
developed in the 1980s [27]. In some cases, however, when only one methylxanthine is present in
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the matrix, UV-Vis spectrophotometric determination in clarified extracts may be preferred due to its
low cost, fastness and reasonable accuracy and reproducibility when compared to chromatographic
techniques [24]. With the development of UV/diode array detector (DAD), the multi-analysis of
methylxanthines improved in terms of precision and accuracy, since each alkaloid was analyzed at its
maximum absorption wavelength [28,29]. A UPLC/DAD method using a gradient of formic acid 0.1%
and acetonitrile has been recently applied for simultaneous determination of methylxanthines and
sugars [30]. Liquid chromatography-mass spectrometry (LC-MS) is one of the preferred techniques for
determining caffeine at low levels and/or in very complex matrices. The three advantages of LC-MS
over conventional HPLC methods can be represented by three “S”, sensitivity, selectivity and speed.
Nonetheless, due to the high cost, LC-MS techniques are not economically justifiable for the analysis of
caffeine in major sources of this compound, such as coffee [31].

In recent years, spectroscopy in the infra-red region has been introduced as a promising alternative
technique to wet chemical methods [18,32], especially the Fourier transform infra-red spectroscopy
(FTIR) [33]. Methods using this technique dissolve the active principles in chloroform, followed by
filtration of the solution to remove the excipients [18]. Chemometrics is a valuable mathematical tool
that, in combination with different chemical methods, enables the analysis of many variables in a single
sample [18]. Principal components analysis (PCA) has been most commonly used among chemometric
methods to discriminate samples with different chemical patterns. In the study by Briandet et al. [32],
analyses of caffeine were performed by FTIR, followed by PCA, to discriminate Coffea arabica and Coffea
canephora species among lyophilized dry instant coffee blends from Ireland.

More recently, bare carbon electrodes have been proposed as simple and efficient sensors for the
quantification of caffeine in commercial beverages, presenting similar values when compared to results
from UPLC analyses [30].

3. Contents of Caffeine in Green Coffee Seeds

The caffeine function in coffee plant and seeds seems to be basically related to protection.
The “chemical defense theory” proposes that caffeine in young leaves, fruits, and flower buds acts
to protect soft tissues from predators, such as insect larvae [34] and beetles [35]. The “allelopathic
theory” proposes that caffeine in seed coats is released into the soil to inhibit the germination of other
seeds [4,36].

The genetic factor is the key determinant for caffeine content variation in green (raw) coffee seeds,
especially between species and, to a lesser extent, varieties [37]. The effect of environment, agricultural
practices, including the use of fertilizers, and post-harvest processing on methylxanthines contents
seems to be less important than genetic aspects, except in the case of secondary processing, such
as decaffeination [38–40]. The range of caffeine contents reported for green C. arabica L. vary in the
literature between 0.7 and 1.7 g/100 g (dry matter-dm) [15,26,38,41–52], while those for C. canephora
vary in the range between 1.4 and 3.3 g/100 g (dm) [26,38,41,42,45,49,50,52–56]. However, common
values are in a narrower range, between 1.0 and 1.2 g/100 g, dw, for C. arabica [15,44,46–51,54], and
between 1.7 and 2.1 g/100 g (dm) for C. canephora [26,39,43,51,55,56]. In general, C. canephora seeds
contain 40–70% more caffeine than C. arabica species [57,58]. C. arabica presents a more homogeneous
composition independent of their geographical origin, due to the low genetic diversity characteristic
of the species [41], while higher variability is observed in C. canephora seeds [55]. The lower caffeine
content in C. arabica plants makes them more vulnerable to phytopathogens, as well as to biological
and mechanical stress, than C. canephora plants [59]. Other methylxanthines have been identified in
coffee seeds, but their contents are negligible, less than 1% of total methylxanthines [41].

Caffeine forms hydrophobically bound π-molecular complexes with chlorogenic acids, the main
phenolic compounds in coffee, especially with 5-caffeoylquinic and 3,5-dicaffeoylquinic acids [60–63],
in a 1:1 molecular ratio [64]. According to D’Amelio et al. [62,63], additional complexes may be formed
in green coffee, but at lower rates, with caffeoylquinic acid precursors as well as other chlorogenic acid
compounds, such as feruloylquinic acids, isomers of dicaffeoylquinic acid, and, during roasting, with
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chlorogenic acids lactones [65]. Such complexation in green seeds may be one of the facts responsible
for the correlation observed between chlorogenic acids and caffeine contents within the subgenus
Coffea [65]. These complexes seem to be also formed in the beverage (see Section 4: Contents of caffeine
in roasted coffee seeds and brews).

Regarding post-harvest processing, after the fruits harvest, green coffee seeds are obtained by
one of the different methods from which the most commonly known are called dry, wet and semi-dry
processing [57,66]. Although all methods aim at removing the fruit flesh of coffee cherry, they do
it in different ways, and this affects the final contents of some compounds in the seeds [67]. A few
studies have compared the caffeine contents in seeds obtained by different post-harvest methods. They
included comparisons between wet and dry methods [68], wet and semi-dry methods [48], and dry
and semi-dry methods [69]. None of them observed a significant difference in caffeine results from the
different methods.

Regarding the degree of maturation, small variation (about 2–10%) in the content of caffeine in
seeds have been observed during C. arabica fruits development [42,70]. After fruits development,
significant changes have been observed among seeds from different maturation stages, with a decrease
in contents observed as the fruits ripened and through senescence [44,71].

4. Contents of Caffeine in Regular and Decaffeinated Roasted Coffee Seeds and in Brews

4.1. Caffeine in Roasted and Ground Coffee

The content of caffeine is not significantly altered during coffee roasting due to its thermal stability,
but small losses may occur owing to sublimation. In terms of percent composition, an increase in
caffeine content may be observed due to the loss of thermolabile compounds [57]. The range of
caffeine contents reported for roasted C. arabica seeds vary in the literature between 0.7 and 1.6 g/100 g
(dm) [4,15,26,29,50,70,72–74], while those for C. canephora vary in the range between 1.8 and 2.6 g/100 g
(dm) [29,50,54,72].

4.2. Caffeine in Soluble Coffee

Soluble coffee production typically involves treating ground roasted coffee with hot water and
high pressure to extract the water-soluble compounds, followed by drying. While in Western countries
commercial ground roasted coffee generally consists of C. arabica seeds alone or of a blend with a small
percentage of C. canephora seeds, in some Western countries, a high percentage of C. canephora or plain C.
canephora may be designated for instant coffee production owing to the yield of higher amount of soluble
solids in the brew. This explains the higher caffeine contents often observed in reconstituted soluble
coffees purchased in some countries, such as Brazil, for example [57]. In C. canephora producing countries,
such as Indonesia, for example, this species is also abundantly used for commercial ground roasted coffee.

Data from a few studies investigating the contents of caffeine in C. arabica and C. canephora seeds
roasted in small scale laboratory roasters, as well as in commercial ground roasted blends and soluble
coffees are presented in Table 1.

Table 1. Summary data from studies investigating the caffeine contents in roasted Coffea arabica, and
Coffea canephora seeds, commercial blends and soluble coffees.

Coffee Species/Cultivar/
Type Country N

Range of Caffeine
Content
(g/100 g)

Mean Caffeine
Content
(g/100 g)

Reference

Coffea arabica

cv. Minas USA 2 0.9–1.2 1.1 [4]
Nr Ethiopia 4 0.9–1.1 1.0 [15] *

Nr Hawaii, Colombia, Brazil,
Africa 6 0.8–0.9 0.8 [26]

Nr Brazil, Mexico, Colombia,
Guatemala 9 1.2–1.6 1.3 [29]
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Table 1. Cont.

Coffee Species/Cultivar/
Type Country N

Range of Caffeine
Content
(g/100 g)

Mean Caffeine
Content
(g/100 g)

Reference

Nr Croatia 6 0.8–1.4 1.3 [50]
Nr Brazil 4 0.7–1.1 0.9 [70]
Nr Brazil 3 1.2–1.3 1.3 [72]
Nr Poland 2 1.0–1.1 1.0 [73]

cv. Bourbon, Catuaí, Icatu Brazil 3 1.0–1.3 1.2 [74]

Coffea canephora

cv. Robusta India, Honduras, Vietnam,
Angola, Caneron 20 2.0–2.6 2.3 [29]

cv. Robusta Croatia 2 1.8–2.5 2.2 [50]
cv. Robusta Ivory Coast 1 - 2.0 [54]

- Brazil 3 2.2–2.3 2.2 [72]

Commercial blends of C. arabica or C. arabica and C. canephora (cv Robusta or cv. Conilon)

Arabica blends USA 36 0.8–1.4 1.2 [4]
Blend Africa 1 - 1.4 [26]
Blends Brazil 10 0.8–1.4 Nr [75]
Blends USA 6 1.0–1.6 1.3 [76]

Nr Nr 3 1.4–1.9 1.7 [77]
Blends Brazil 40 0.8–1.6 1.2 [78]

- Mexico 3 1.5–1.7 1.5 [79]

Soluble coffee

Nr Brazil 2 2.0–2.2 2.1 [26]
Nr Nr 2 4.5–4.8 Nr [77]

Blends Brazil 10 1.8–3.1 2.5 [78]
Arabica Brazil 3 2.8–4.1 3.4 [80]

cv. Conilon Brazil 3 3.9–5.8 5.0 [80]
Nr Brazil 9 1.6–3.2 2.5 [81]
Nr Kenya 2 1.6–3.4 2.7 [82]
Nr Nr 5 2.2–3.9 2.8 [83]

Note: N: number of samples, Nr: not reported. Analyses performed by liquid chromatography unless specified by *
which indicates analysis performed by UV/vis spectrophotometer.

4.3. Caffeine in Coffee Brew

Caffeine content in coffee brew is closely related to its stimulating properties as well as to about
10% or less of its bitterness [39,47]. The final content of caffeine ingested by coffee drinkers depends
on all factors that affect the seeds contents, including blend composition, which depends mainly
on genetics, the degree of maturation, and the method used to brew the coffee, which may vary
considerably according to social and cultural habits of each country [57]. Caffeine is well extracted by
the most common hot brewing methods [57]. Percolation and decoction methods tend to extract more
than infusion methods which have low extraction power [58], but not only the extraction method is
important. The proportion of water to powder, water temperature, size of particle and duration of the
brewing process are determinant factors [57,76]. Caffeine seems also to be more easily extracted from
dark roasted coffees, and the type of filter may alter the result [84]. Lastly, there is the variability within
the preparation method, which may be very low or quite high in the case of commercial establishments
with different people preparing the brews. In a study that analyzed caffeine content in 20 different
specialty coffees purchased at coffee shops in the United States, the amount of caffeine in brews ranged
from 76 to 112 mg/240 mL serving (equivalent to 32 to 47 mg/100 mL) [85]. It was also observed
that caffeine content in the same type of coffee purchased in the same store on six separate occasions
ranged from 130 to 282 mg/240 mL serving (equivalent to 54 to 118 mg/100 mL) [85]. Data from studies
investigating the contents of caffeine in coffee beverages prepared by different methods are presented
in Table 2. Average values for the most commonly used methods are presented in Figure 2.
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Table 2. Caffeine contents in coffee brews obtained by different extraction methods.

Coffee
Species/

Type
Country N

Amount of
Powder (%)

to Water/
100 mL

Water
Temperature

Brewing
Time

Range of
Caffeine
Contents

(mg/100 mL)

Mean
Caffeine
Content

(mg/100 mL)

Reference

Manual drip

Arabica Colombia 2 10 100 ◦C 2 min 48.1–53.0 50.8 [86]
Arabica Indonesia 2 10 100 ◦C 2 min 48.3–57.9 53.1 [86]
Arabica Kenya 2 10 100 ◦C 2 min 54.2–57.3 55.8 [86]
Arabica Costa Rica 2 10 100 ◦C 2 min 50.7–59.0 57.1 [86]
Arabica USA 1 7 95 ◦C ~3 min - 60.2 [4]
Blend Brazil 40 10 90 ◦C 4 min 71.8–44.1 59.9 [85]
Blend Brazil 7 10 92.3 ◦C Nr 39.4–51.8 45.6 [87]
Blend UK 1 Nr Nr Nr - 55.0 [88]
Blend USA 26 Nr Nr Nr Nr 51.1 [89]

Nr USA 1 Nr Nr Nr - 52.0 [90]
Nr USA 14 Nr Nr Nr 30.3–54.8 39.7 [85]
Nr USA 7 10 100 ◦C 2 min Nr 131.0 [91]

Electric dripper

Arabica Guatemala 1 6 90 ◦C 6 min - 100.8 [92]
Arabica USA 1 7 95 ◦C 4 min - 76.5 [4]
Robusta Vietnam 1 6 90 ◦C 6 min - 200.8 [92]
Robusta Spain 1 6 90 ◦C 7 min - 110.0 [93]

Blend Brazil 40 10 90 ◦C 4 min 100.9–138.3 119.6 [85]
Blend Spain 2 6 90 ◦C 7 min 22.0–105.0 63.5 [93]

Espresso

Arabica USA 1 7 90 ◦C 28 s - 72.2 [4]
Arabica Ethiopia 1 14 92 ◦C 30 s - 410.0 [94]
Arabica Ethiopia 1 18 92 ◦C 25 s - 420.0 [94]
Arabica Guatemala 1 17.5 90 ◦C 24 s - 100.7 [92]
Arabica Ethiopia 1 18 92 ◦C 25 s - 420.0 [94]
Arabica Guatemala 1 17.5 90 ◦C 24 s - 100.7 [92]
Arabica Spain 1 18.7 96 ◦C 21 s - 209.0 [95]
Robusta Vietnam 1 17.5 90 ◦C 24 s - 177.3 [92]
Robusta Spain 1 18.7 96 ◦C 21 s - 296.0 [95]
Robusta Spain 1 17.5 90 ◦C 30 s - 375.0 [93]

Blend Scotland 20 Nr Nr Nr 160.4–650.0 378.0 [96]
Blend Croatia 4 14 95–97 ◦C Nr 97.7–190.0 142.0 [97]
Blend Australia 97 Nr Nr Nr 58.0–700.0 247.3 [98]
Blend Brazil 40 10 90 ◦C 28 s 159.5–233.2 196.4 [85]
Blend Spain 2 17.5 90 ◦C 30 s 63.0–241.0 152.0 [93]
Blend Spain 1 18.7 96 ◦C 21 s - 288.0 [95]

Nr USA 1 Nr Nr Nr - 123.0 [90]
Nr USA 6 Nr Nr Nr 138.3–290.2 197.1 [92]
Nr USA 27 Nr Nr Nr - 250.0 [91]

Regular/Nr Italy 1 Nr Nr Nr - 317.1 [30]
Lungo/Nr Italy 1 Nr Nr Nr - 171.3 [30]

Ristretto/Nr Italy 1 Nr Nr Nr - 533.4 [30]

Mocha

Arabica USA 1 7 95 ◦C 10 min - 92.4 [4]
Arabica Guatemala 1 8 93 ◦C 10 min - 156.4 [92]
Arabica Ethiopia 1 10 90 ◦C Nr - 128.0 [94]
Robusta Spain 1 8 93 ◦C 10 min - 192.0 [93]
Robusta Vietnam 1 8 93 ◦C 10 min - 226.8 [92]

Blend Spain 2 8 93 ◦C 10 min 28.0–159.0 93.5 [93]

Infusion bag

Arabica Japan 4 2.5 95 ◦C 5 min - 43.2 [4]

French press

Arabica Guatemala 1 8 98 ◦C 5 min - 118.3 [92]
Arabica Hawaii 4 10 98 ◦C 6 min 97.0–104.9 100.5 [99]
Arabica USA 1 7 90 ◦C 5 min - 75.0 [4]
Arabica Portugal 1 13 100 ◦C 2.5 min 84.0–106.0 95.0 [99]
Arabica Ethiopia 1 10 95 ◦C 5 min - 52.0 [94]
Robusta Vietnam 1 8 98 ◦C 5 min - 156.4 [92]
Robusta Spain 1 8 98 ◦C 5 min - 136.0 [93]

Blend Spain 2 8 98 ◦C 5 min 20.0–112.0 66.0 [93]
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Table 2. Cont.

Coffee
Species/

Type
Country N

Amount of
Powder (%)

to Water/
100 mL

Water
Temperature

Brewing
Time

Range of
Caffeine
Contents

(mg/100 mL)

Mean
Caffeine
Content

(mg/100 mL)

Reference

Aero press

Arabica Ethiopia 1 6.6 93 ◦C 1 min - 78.0 [94]

Cold brewing

Arabica USA 1 7
95 ◦C

followed by
10 ◦C

12 h - 52.3 [4]

Arabica USA 1 7 10 ◦C 12 h - 51.2 [4]
Arabica Hawaii 4 10 25 ◦C 24 h 99.0–123.0 112.0 [99]
Arabica Ethiopia 1 10 25 ◦C 6 h - 125.0 [94]

Turkish coffee

Arabica USA 1 7 90 ◦C 5 min - 85.3 [4]
Blend Croatia 3 8 98 ◦C 5 min 190.0–260.0 233.0 [94]

Boiled coffee

Arabica USA 1 7 95 ◦C 5 min - 85.0 [4]
Arabica Brazil 3 10 100 ◦C Nr 110.8–122.5 114.7 [100]
Conilon Brazil 3 10 100 ◦C Nr 171.3–192.0 179.8 [100]

Soluble or instant coffee beverage

- Brazil 10 2 90 ◦C - 257.3–280.7 269.0 [85]
- Nr 2 1 hot water - Nr 212 [21]
- Nr 2 2.2 hot water - Nr 74.5 [101]
- Nr 2 1 hot water - Nr 246.8 [102]
- UK Nr Nr hot water - - 39.0 [93]
- USA 26 Nr hot water - - 44.0 [97]
- USA 20 Nr hot water - - 39.0 [90]

Read to drink coffee beverage
Nr Japan 4 - - - - 57.1 [4]

Note: N: number of samples. Nr: Not reported.

Figure 2 illustrates the caffeine content variability among brews obtained by different preparation
methods as well as the variability within each method. The reasons for such values are already
aforementioned. Mostly, in addition to the characteristic power of extraction of the methods, which
have been comparatively consistent in literature reports [78,84], the amount of coffee to water and grid
also vary traditionally among them. It is important to note that these values are given per 100 mL and,
in order to compare the consumption per serving, one has to consider the various existing sizes of
cups used for the different types of coffees and cultures. Usually, however, the more concentrated the
brew, the smaller the cup is. This explains the large servings of infusions of manually dripped coffees
(236.5–591.4 mL/8–20 oz) in the USA, in comparison with 15–30 mL of a ristretto in Italy.
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Arabica Ethiopia 1 10 95 °C 5 min - 52.0 [94] 
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Aero press 

Arabica Ethiopia 1 6.6 93 °C 1 min - 78.0 [94] 
Cold brewing 

Arabica USA 1 7 95 °C followed 
by 10 °C 12 h - 52.3 [4] 

Arabica USA 1 7 10 °C 12 h - 51.2 [4] 
Arabica Hawaii 4 10 25 °C 24 h 99.0–123.0 112.0 [99] 
Arabica Ethiopia 1 10 25 °C 6 h - 125.0 [94] 

Turkish coffee 
Arabica USA 1 7 90 °C 5 min - 85.3 [4] 
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Arabica USA 1 7 95 °C 5 min - 85.0 [4] 
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Conilon Brazil 3 10 100 °C Nr 171.3–192.0 179.8 [100] 

Soluble or instant coffee beverage 
- Brazil 10 2 90 °C - 257.3-280.7 269.0 [85] 
- Nr 2 1 hot water - Nr 212 [21] 
- Nr 2 2.2 hot water - Nr 74.5 [101] 
- Nr 2 1 hot water - Nr 246.8 [102] 
- UK Nr Nr hot water - - 39.0 [93] 
- USA 26 Nr hot water - - 44.0 [97] 
- USA 20 Nr hot water - - 39.0 [90] 

Read to drink coffee beverage 
Nr Japan 4 - - - - 57.1 [4] 

Note: N: number of samples. Nr: Not reported. 

Figure 2 illustrates the caffeine content variability among brews obtained by different preparation 
methods as well as the variability within each method. The reasons for such values are already aforementioned. 
Mostly, in addition to the characteristic power of extraction of the methods, which have been comparatively 
consistent in literature reports [78,84], the amount of coffee to water and grid also vary traditionally among 
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15–30 mL of a ristretto in Italy. 
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Figure 2. Mean reported caffeine contents (mg/100 mL) in coffee brews obtained from a variety of
blends, and by different preparation methods (values extracted from Table 2).
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4.4. Caffeine Complexation with Chlorogenic Acids

It has been reported [62,63] that in addition to the free caffeine content presented in Table 2 and
Figure 2, there are also some complexes formed between caffeine and other compounds. According
to estimates based on results from model complexation with pure compounds and from espresso
beverage analysis [62,63], about 20% of total caffeine in the beverage (considering free and bound
caffeine) forms a complex with 5-caffeoylquinic acid (the main chlorogenic acid in coffee) and, to
a lesser extent, with other major chlorogenic acids and lactones, the latest formed during roasting
process. Structurally explaining, it was proposed, using a model in aqueous solution, that in the case of
complexation with 5-caffeoylquinic acid, and probably also feruloylquinic acid and lactones, the plane
of caffeine molecule would be parallel to the plane of the aromatic ring of the caffeoyl ester group and
that the five and six-membered rings of the nitrogen heterocycle would be equally involved in the
complex formation. In the case of 3,5-dicaffeoylquinic acid, a sandwich structure (caffeine between
two caffeoyl arms) was proposed. For other dicaffeoylquinic acids with lower chances of complexation,
other forms of complexations were proposed. In addition to forming complexes with chlorogenic acids,
according to the authors, about 10% of caffeine could be bound to other types of substances, such as
proteins and, after roasting, to melanoidins. For structures and other information on chlorogenic acids,
please see reference [103].

4.5. Caffeine in Decaffeinated Coffee

Coffee decaffeination is performed in the green seeds but given that recommendations for residual
content are made for roasted coffee, we chose to present this subject here. The first method for this
purpose was developed in Europe, but decaffeinated coffee achieved its first broad market in the
United States during the 1950s [104]. Since the early 1970s, the demand for decaffeinated coffee has also
gradually increased worldwide. World consumption of this type of coffee is difficult to gauge owing
to the lack of separate statistical data for many importing countries. According to the latest Coffee
Drinking Study performed by the National Coffee Association (USA), the consumption of decaffeinated
coffee in 2009 reached 16% of total coffee consumption [104]. Current information on decaffeinated
coffee sales in the US is not available in common coffee market reports. Elsewhere, consumption
of decaffeinated coffee has been fairly static over the last two decades and currently accounts for
approximately 12% of total worldwide coffee consumption [105], although in many countries new
low-caffeine coffee products have been introduced [106].

The decaffeination process can be performed using different methods and extraction vehicles
(water, supercritical carbon dioxide, ethyl acetate, methanol chloride) and often leaves residual amounts
of caffeine in the seeds [57]. According to various national and international rules and regulations,
decaffeination processes should lower the methylxanthine concentration by 97–99.9% in ground
roasted coffee and 97% in instant coffee [107–109], with no significant influence on other natural
compounds [58]. A more restricted norm is mandatory in the European Community countries, in
which decaffeinated coffee must be 99.9% alkaloid-free [58,107].

About 0.3–0.5 mg caffeine/100 g have been reported in decaffeinated ground roasted coffees [76]
and 0.7–0.9 mg/100 g in instant decaffeinated coffees [77]. Regarding decaffeinated coffee brews,
caffeine values from 0.1 to 2.6 mg/100 mL have been reported for brews made from decaffeinated
ground roasted coffees purchased in Brazil and in the United Kingdom [24,88], while in decaffeinated
coffee brews purchased in the United States coffee shops caffeine content reached 18 mg/473 mL serving
(~3.7 mg/100 mL) [92]. Contents from 0.9 to 1.2 mg/100 mL have been reported for reconstituted
instant decaffeinated coffee [21,24,88]. It is noteworthy mentioning that, for a heavy coffee drinker, the
ingestion of multiple servings of decaffeinated beverages could result in caffeine doses equivalent to a
caffeinated beverage [110].
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5. Global Caffeine Consumption Through Coffee

Currently, approximately 80% of the world’s population consumes a caffeinated product every
day [111], mainly for its stimulating effects, which makes it the most widely consumed psychoactive
substance in the world [112–116]. So where does coffee consumption stand in relation to other caffeine
sources? Over the last 50 years, world coffee consumption increased at a mean annual growth rate of
1.9%, to almost 9.7 million tons in 2018 [117]. The highest coffee consumption occurs especially in the
Americas, Europe and Japan [117]. The European Union is responsible for the largest consumption
volume (about 28% of the total world consumption), but breaking up into individual countries,
the USA are the first consumer country (about 16% of the total world consumption), followed by
Brazil (the largest producer, with 13% of world consumption), European Union countries, and Japan.
Philippines, Russia, Ethiopia, Canada and Mexico contribute about 2.8%, 2.5%, 2.4%, 2.3% and 1.5% of
total world consumption, respectively [117]. In Canada (6.5 kg/year coffee per capita consumption),
as well as in many European countries, such as Denmark (8.7 kg/year), Norway (9.9 kg/year) and
Finland (12 kg/year), coffee consumption is very prevalent and accounts for most of the daily caffeine
consumption among adults [118].

Considering these data, it is not difficult to accept that coffee is the major contributor to caffeine
intake in most countries worldwide. Exceptions occur in specific areas, such as regions of South
America [119,120], Ireland and the United Kingdom, China, India and other Asian countries [121],
where other beverages, such as maté leaves, natural guaraná beverage, and black/green Camelia sinensis
teas, are typically consumed.

However, additional sources of caffeine and other methylxanthines, mainly theobromine, are also
consumed worldwide and, for this reason, over the past years, there has been a renewed interest in
understanding caffeine exposure in populations. The daily caffeine intake and the type of caffeinated
product consumed vary considerably around the world, with sex, age segments, cultural habits and
household income. The age interval considered for each category also varies among studies and
reviews. The cultural habits influence not only the total intake but also the percent contribution
of foods to such intake. Differences also occur among geographic regions and between metropolis
and countryside, where certain types of products are not available. Other than cultural habits, one
reason for the differences in consumption levels is the variable concentrations of caffeine found among
home-made beverages [122].

Regardless of the longstanding consumption of caffeine-containing beverages in the diet and
acknowledging all the aforementioned aspects, there is a lack of current and comprehensive
population-based data on caffeine intake. Most studies on intake still cite information dating back
the 1980s and 1990s, when Barone and Roberts [90] highlighted results from earlier population-based
surveys or data from the food balance sheets published by the Food and Agriculture Organization (FAO)
of the United Nations in 1995 [123], which contains average food consumption estimates in all world
countries for all genders and ages. However, the national consumption of caffeine summarized in the
food balance sheets depended heavily on official statistics, which were thought to be greatly unreliable
at that time [111]. In addition, the estimates did not include soft drinks, although they may be a major
source of caffeine for children and adolescents, especially in Western society [90,111,121,124]. As a result,
the intake was underestimated. More recently, in a survey performed in 2015 by Mitchell et al. [125],
including 37,602 interviews in the United States, adults consumed, on average, 152 mg of caffeine/day
and the elderly 207.3 mg of caffeine/day. Less was consumed by adolescents (83 mg/day) and children
(30 mg/day). Due to the high consumption of regular soft drinks, they accounted for the main source
of caffeine among children and adolescents, while coffee was the main source of caffeine consumption
in adults. This was also observed in an earlier study performed by the same authors in 2014 [124].
According to Mitchell et al. [125], the American population, considering all ages, consumes 164.5 mg
caffeine/day, with coffee being responsible for 64% of this amount. Considering only adults and the
elderly, the coffee contribution was reported to be 63% and 76%, respectively.
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Further, in 2015, the Comprehensive European Food Consumption Database organized by the
European Food Safety Authority (EFSA) [126] was used for the calculation of caffeine intake from
all sources. It contains data from 39 surveys in 22 different European countries for a total of 66,531
participants. In most European surveys covered by EFSA’s Food Consumption Database [126], coffee
was the predominant source of caffeine for adults and the elderly, contributing, on average (considering
all countries), 78% and 84% of total caffeine intake, respectively. Exceptions were Ireland and the
United Kingdom, where tea was the main caffeine source. The average caffeine consumption by adults
in the UK was reported to be 138 mg/day for adults and 165 mg/day for the elderly, with the coffee
contribution of only 34% and 33%, respectively. Nordic countries were among the largest consumers.
The reported intakes by adults in Denmark, Finland, and Sweden were 320, 236, and 205 mg/day for
adults, and 362, 214, and 222 mg/day for the elderly, respectively, with coffee contributions of 88%, 94%
and 85% for adults and 91%, 97% and 89% for the elderly, respectively.

There is no official data on caffeine consumption in Latin American countries [127]. However,
it is believed that caffeine intake in countries, such as Brazil and Argentina, are high due to the large
popular intake of coffee and maté tea. A similar situation may occur in China due to the high intake
of green tea [127]. Recently, in Brazil, caffeine consumption was estimated [128] based on 13,569
interviews by the national consumption survey (Consumer Expenditure Survey, 2008–2009) performed
by the Brazilian Institute of Geography and Statistics. The average daily caffeine intake by Brazilians of
all genders, age groups, geographic locations, and income classes was, on average, about 130 mg/day,
with coffee being responsible for 90% of daily caffeine intake. Considering adults and the elderly,
total intakes were, on average, 137 and 146 mg/day respectively, with coffee contributions of 90% and
95%, respectively.

Regarding pregnant or lactating women, studies that evaluated the available data on daily
caffeine intake among these groups are very scarce [118]. Using data collected in the United States
by Share of Intake Panel for pregnant women, Knight et al. [129] estimated in 2004 the average daily
caffeine consumption from beverages in about 58 mg/day. Later, in 2009, using data from interviews,
Olmos et al. [130] estimated daily caffeine consumption among Argentinean pregnant women in
approximately 200 mg/day.

6. Caffeine Metabolism

The first studies on coffee bioactivity in humans date back centuries ago. Coffee was present in
medical journals since the 18th century, and the early physiological explanations already emphasized
nervous and vasomotor stimulation [131]. Caffeine is involved in several biological effects in the
human body, most of them related to improvements in brain and Central Nervous System (CNS)
functions. However, the biological effects associated with caffeine consumption largely depend on
its biotransformation in the body [132]. The earliest reported study on caffeine metabolism seems
to have been carried out in 1850 by Lehmann, who, following an oral dose, failed to detect traces
of caffeine in human urine. This was even before the chemical characterization of the compound
by Hermann Emil Fischer (1852–1919) in 1882 [114]. Albanese, in 1895 was the first to report that
dogs and rabbits fed large doses of caffeine excreted a monomethylxanthine, showing that ingested
methylxanthines were demethylated. A few months later, Rost published data on the excretion of
unchanged caffeine and theobromine in a cat, a dog, a rabbit, and a man [114]. The most complete
pharmacokinetic studies on caffeine in human subjects as well as various experimental animals
started to be performed late in the 1950s [133–137]. Other studies in humans followed including
minor methylxanthines, accessing their primary metabolites in plasma [138–141] or in urine [141–143].
Paraxanthine, 1-methylxanthine, and 1-methyluric acid have been the first urinary metabolites of
caffeine identified in men and rabbits [133]. Subsequently, theobromine and theophylline were
also reported to be urinary metabolites of caffeine in men and dogs [135,144]. Later, improved
analytical methodologies confirmed the extensive metabolization of caffeine, identifying secondary
metabolites such monomethylxanthines (1-methylxanthine and 7-methylxanthine), and methyluric
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acids (1-methyluric acid and 1,7-dimethyluric acid) in both plasma [145–148] and urine [148,149].
However, the most important results obtained in earlier studies have been ratified by recent studies.

6.1. Absorption

The pharmacokinetics of caffeine is relatively well elucidated and has been reported in several
studies, including recent ones [114,146,148,149]. Most existing reports on the matter come from studies
using pure caffeine in the form of solutions, capsules, and tablets [138,140,150,151]. Among the food
matrices evaluated, the most common are coffee, cola, and cocoa products [114,131,140,141,146–148].
The bioavailability of caffeine is similar among dogs, rats, and mice [114,152]. Because no hepatic
first-pass effect complicates its pharmacokinetics, caffeine absorption from foods and beverages has
been shown to be independent of the administration route, age, sex, health status, and concomitant
administration of alcohol, drugs and nicotine exposure [58,114,132].

Following ingestion, caffeine is rapidly and almost completely (up to 99%) absorbed into the
bloodstream. About 20% absorption occurs in the stomach, and the remaining 80%, in the small
intestine [114,138]. Caffeine can also be quickly absorbed through the oral mucosa [153], as it does not
need to pass the stomach and intestine to get into the blood [153–156], and when administered via
enema [146]. The pharmacokinetics of a similar dose of caffeine after a single administration of a coffee
enema (107.2 ± 2.2 mg) versus coffee consumed orally (96.3 ± 1.3 mg) was compared in healthy male
subjects (n = 11). The relative bioavailability of caffeine obtained from the coffee enema was about
3.5 times lower than when coffee was consumed orally [132,146].

In different studies, the time to reach the peak plasma concentration (Tmax) after oral doses
of 72 to 375 mg of caffeine in healthy adult volunteers has most often varied between 15 and
60 min [138,140,142,147,155,156], but, in some circumstances, it has taken 120 min after oral intake,
mainly due to delayed gastric emptying [153,157,158]. This involves motility of gastrointestinal
tract, individual physiology, and vehicle (the type of food matrix, volume, solid or liquid, capsule,
gum) [112,159]. In studies using different food matrices, the absorption of caffeine from soda and
chocolate was slightly delayed, relative to coffee [112,140,159], caffeine in a chewing gum format was
absorbed faster than in coffee [153] or in capsules [154] and in capsules, the absorption of the same
caffeine dose was faster than in coffee [112,140].

After oral consumption of 70–500 mg of caffeine, peak plasma concentration (Cmax) varies in reports
between 1.1 to 17.3 µg/mL [114,138,140,141,145,147,148,155]. Because caffeine is usually ingested in a
daily diet, owing to accumulation, its actual plasma concentration may be more than the value reported
in single-dosage studies, which are usually preceded by wash out or clearance period [58,132].

6.2. Metabolism and Distribution

After absorption, caffeine is quickly distributed to most tissues (mean volume distribution of
0.6–1.0 L/kg) and body fluids (i.e., bile, milk, saliva, semen, sweat, and urine) [114], although it is
received in the body as a xenobiotic substance. Studies have reported that concentrations of caffeine
in saliva are approximately 20–40% lower than in plasma [145,160–163]. The limited plasma protein
binding (estimated at 17–30%) combined with the relatively hydrophobic properties of caffeine allow
its passage through all biological membranes [14,114] and enables it to easily cross intracellular barriers,
including placental (mother-fetus-mother) and blood-brain barriers [114,132]. The distribution pattern
usually does not change during a person’s entire life, and it can be significantly higher in women when
compared to men [164,165]. However, severely obese subjects have exhibited an increased volume of
distribution [165,166], although this volume was decreased with weight reduction [114]. The effect
was more important in females, and it was suggested that caffeine distribution into the adipose tissue
was incomplete, representing 70–80% excess of body weight in obese subjects [164]. Caffeine and its
major metabolite paraxanthine can be found in the amniotic fluid throughout gestation [167], and they
are distributed to fluids and tissues of the fetus [167]. Caffeine has also been identified in women’s
milk [133,168].
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Caffeine is rapidly and extensively metabolized in the liver cells to form dimethyl and
monomethylxanthines, dimethyl and monomethyluric acids, and uracil derivatives [114]. Most
of the metabolism of caffeine and other methylxanthines is performed by phase I (cytochrome P450
CYP) enzymes, mainly CYP1A2, a major enzyme, among P450 enzymes in the human liver, that accounts
for approximately 13% of the total content of this enzyme group. The activity of the CYP1A2 isoform
accounts for almost 90% of caffeine metabolism [114,143,169]. The remaining pathways are related to
CYP1A1, CYP2E1, CYP2A6, as well as mono-oxygenase and N-acetyltransferase activities [58,132].

Paraxanthine is the major caffeine metabolite in plasma, while methylated xanthines and methyluric
acids are the main metabolites excreted in urine [114,148]. The metabolic pathway of caffeine in humans
is shown in Figure 3. From the metabolic pathways of caffeine, it is apparent that each metabolite may
be derived from more than one precursor [139].

Beverages 2019, 5, 37 12 of 50 

 

accounts for approximately 13% of the total content of this enzyme group. The activity of the 
CYP1A2 isoform accounts for almost 90% of caffeine metabolism [114,143,169]. The remaining 
pathways are related to CYP1A1, CYP2E1, CYP2A6, as well as mono-oxygenase and 
N-acetyltransferase activities [58,132]. 

Paraxanthine is the major caffeine metabolite in plasma, while methylated xanthines and 
methyluric acids are the main metabolites excreted in urine [114,148]. The metabolic pathway of 
caffeine in humans is shown in Figure 3. From the metabolic pathways of caffeine, it is apparent that 
each metabolite may be derived from more than one precursor [139]. 

 
Figure 3. Metabolic pathways of caffeine and metabolites in humans. Grey arrows indicate lower 
production of the metabolite. Adapted from [132]. XO: xanthine oxidase, NAT 2: N-acetyltransferase 
2. 

The initial metabolization by CYP1A2, begins with 3-demethylation of caffeine, resulting in the 
formation of 1,7-dimethylxanthine (paraxanthine), which represents about 84% of primary caffeine 
metabolites [143,170] (Figure 3). CYP1A2 enzyme may also convert caffeine to theobromine (~12%) 
[171]. CYP2E1 participates in the metabolism of caffeine accelerating the synthesis of theobromine 
and theophylline (~4%) by 7- and 1-demethylation [58]. In a lesser extent, caffeine may be converted 
to 1,3,7-methyluric acid [132]. Paraxanthine, the major primary caffeine metabolite may be 
demethylated by CYP1A2 to form the main metabolite, 1-methylxanthine (~70%), which may be 
oxidized to 1-methyluric acid by xanthine oxidase. Secondary metabolites, such as 7-methylxanthine 
(~20%) may also be oxidized to 7-methyluric acid [58,114], and paraxanthine may also be 
hydroxylated by CYP2A6 to form 1,7-dimethyluric acid or acetylated by N-acetyltransferase 2, to 
form 5-acetylamino-6-formylamino-3-methyluracil, an unstable compound that may be 
non-enzymatically deformylated to form 5-acetylamino-6-amino-3-methyluracil [14,132,172] (Figure 
3). 

The pharmacological and biochemical properties of caffeine make it a model substrate capable 
of revealing activity of other drug metabolizing enzymes in animals and humans [173,174]. Caffeine 
has been extensively used as a probe to assess the metabolic activity and phenotyping of CYP1A2, 
CYP2A6, N-acetyltransferase 2 and xanthine oxidase enzymes activities, providing valuable 
information on cancer susceptibility, drug interactions and toxicity in population studies of healthy 

Figure 3. Metabolic pathways of caffeine and metabolites in humans. Grey arrows indicate lower
production of the metabolite. Adapted from [132]. XO: xanthine oxidase, NAT 2: N-acetyltransferase 2.

The initial metabolization by CYP1A2, begins with 3-demethylation of caffeine, resulting in
the formation of 1,7-dimethylxanthine (paraxanthine), which represents about 84% of primary
caffeine metabolites [143,170] (Figure 3). CYP1A2 enzyme may also convert caffeine to theobromine
(~12%) [171]. CYP2E1 participates in the metabolism of caffeine accelerating the synthesis of
theobromine and theophylline (~4%) by 7- and 1-demethylation [58]. In a lesser extent, caffeine
may be converted to 1,3,7-methyluric acid [132]. Paraxanthine, the major primary caffeine metabolite
may be demethylated by CYP1A2 to form the main metabolite, 1-methylxanthine (~70%), which
may be oxidized to 1-methyluric acid by xanthine oxidase. Secondary metabolites, such as
7-methylxanthine (~20%) may also be oxidized to 7-methyluric acid [58,114], and paraxanthine may also
be hydroxylated by CYP2A6 to form 1,7-dimethyluric acid or acetylated by N-acetyltransferase 2, to form
5-acetylamino-6-formylamino-3-methyluracil, an unstable compound that may be non-enzymatically
deformylated to form 5-acetylamino-6-amino-3-methyluracil [14,132,172] (Figure 3).
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The pharmacological and biochemical properties of caffeine make it a model substrate capable of
revealing activity of other drug metabolizing enzymes in animals and humans [173,174]. Caffeine has
been extensively used as a probe to assess the metabolic activity and phenotyping of CYP1A2, CYP2A6,
N-acetyltransferase 2 and xanthine oxidase enzymes activities, providing valuable information on
cancer susceptibility, drug interactions and toxicity in population studies of healthy subjects, given that
these are important detoxifying enzymes [175]. For example, the ratio of paraxanthine to caffeine, or
the ratio of paraxanthine plus 1,7 dimethyluric acid to caffeine in plasma has been used as an indicator
of CYP1A2 activity [58,176,177].

The half-life of caffeine in plasma seems to vary, on average, between 2.5–5 h in adults [14],
although larger variations from 2.3 to 12 h have been reported [156], indicating substantial intersubject
variability in caffeine elimination time [138]. Caffeine’s half-life is altered in the neonatal period.
It increases shortly after birth due to lower activity of cytochrome P-450 enzymes and the relative
immaturity of some demethylation and acetylation pathways [178]. Caffeine’s half-life is about 80 h
for the full-term newborn infant and can be over 100 h in premature infants [179]. Infants up to the
age of eight to nine months still present a reduced ability to metabolize caffeine, excreting in urine
about 85% of the administered caffeine in its unchanged form [180]. Moreover, caffeine’s half-life may
be influenced by other factors, including sex, smoking habit, use of oral contraceptives, and specific
biological moments, such as pregnancy [14,114]. Caffeine’s half-life has been reported to be 20–30%
shorter in females than in males [178] and 30 to 50% shorter in smokers compared to nonsmokers’
adult males [181]. On the other hand, caffeine’s half-life is almost doubled in women taking oral
contraceptives [182,183] and greatly prolonged (up to 15 h) during the last trimester of pregnancy [184]
and in patients with liver diseases [14]. In fact, health status, in general, is another factor that influences
caffeine metabolism. The biotransformation is related to the proper function of the liver and kidneys,
and the decrease of caffeine plasma clearance is a typical complication of these organ’s diseases [132].
Cirrhosis and non-cirrhotic cases of viral hepatitis are the most common liver diseases that may disturb
such process [58]. Obesity significantly increases plasma half-life, and decreases elimination rate,
without significant effect on the clearance [132].

The consumption of high amounts could lead to saturation in caffeine metabolism [148]. Thus,
while linear pharmacokinetics have been observed with caffeine intake between 70 and 100 mg, doses
ranging between 250 and 500 mg have resulted in increased plasma concentration, a non-linear kinetic
and prolonged half-life [148,154].

Regarding the interindividual variability in caffeine metabolization speed, the activity of
CYP enzymes has been reported to vary between individuals up to 50-fold for some metabolic
reactions [185]. The large interindividual variability of CYP1A2 activity may be due to factors, such as
gender, race, genetic polymorphisms, and environmental influences, such as smoking or exposure
to chemicals [186,187]. For example, higher activity of CYP1A2 has been shown in men compared
to women [169,177,188–190] and in white compared to black subjects [191]. The enzyme activity is
increased by cigarette smoking [192], and by moderate daily coffee consumption (at least three cups
of coffee). Some studies have reported that herbal medicines can induce or inhibit human CYP1A2
activity [193–196]. During pregnancy, the excretion of 1-methylxanthine and 1-methyluric acid was
decreased in women of between 34–36 gestational weeks that consumed caffeine doses from 123 to
369 mg [197], owing to a decrease in CYP1A2, xanthine oxidase, and acetyltransferase activities [198].
CYP1A2 is also inhibited by oral contraceptives [186].

CYP1A2 appears to be polymorphically distributed in human populations. The CYP1A2*1F
polymorphism characterizes the so-called “slow metabolizer” phenotype, which decreases enzyme
activity and inducibility and allows caffeine to stay longer bioavailable [192]. Conversely, homozygous
individuals (AA) for the allele CYP1A2*1A are rapid caffeine metabolizers. These individuals present
lower caffeine plasma levels and shorter exposure to this compound [192]. On the other hand,
homozygous individuals (CC genotypes) have been considered as “slow metabolizer” [199,200]. Such
polymorphism was observed in 1999 by Sachse et al. [192]. They first sequenced intron 1 of the
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CYP1A2 gene in DNA from eight volunteers and observed only one polymorphism represented by an
Adenine→Cytosine (A→C) substitution at position 734 (CYP1A2*1F) in the CYP1A2 gene. After this
result, a mutation-specific test was developed, and a functional significance of this polymorphism was
assessed in 185 healthy Caucasian non-smokers and in 51 smokers by genotyping and phenotyping
using caffeine (100 mg/oral doses). The A variant (CYP1A2*1A) was more frequent (46%, n = 108)
followed by the A/C genotype (44%, n = 104), and almost 10% (n = 24) corresponded to C variant
(CYP1A2*1B). The authors observed a significant difference between the A/A and A/C genotypes in the
5h plasma paraxanthine/caffeine ratios, but not between the A/C and the C/C genotypes and indicated
that the A allele is a recessive factor for high inducibility. Differences among CYP1A2 fast and slow
metabolizers still require further investigation. The importance given to the phenotype of individuals
in relation to CYP1A2 activity using plasma, saliva or urine samples [177] is increasing, since it has been
observed that this characteristic may influence the metabolism of individuals and may or not make
them susceptible to developing certain diseases. For example, slow caffeine metabolization can enable
the occurrence of side effects exposure [200] or make individuals more susceptible to hypertension
development [201].

Few studies investigated whether genetic polymorphisms have an effect on coffee and caffeine
consumption. Rodenburg et al. [202] studied the effect of CYP1A2*1F polymorphism and smoking on
coffee intake in 6.689 subjects in the Netherlands. Smokers drank almost one cup of coffee (0.90 cup/day
~ 110 mL) per day, more than did non-smokers. A meta-analysis [203] of 47,341 individuals of European
ancestry, including five studies within the United States, was performed using directly genotyped
and 2.5 million single nucleotide polymorphisms (SNP). Two sequence variants were found to be
significantly associated with increased coffee consumption: rs2472297-T, located between CYP1A1 and
CYP1A2 at 15q24 (P = 5.2 × 10−14) and rs6968865-T, near AHR at 7p21 (P = 2.4 × 10−19). An effect of
0.2 cups a day per allele was observed for both SNP. According to the authors, possibly rs2472297-T and
rs6968865-T allow people to consume more coffee because in these carriers clearance of caffeine is more
effective as a result of higher CYP1A1 or CYP1A2 enzymatic activities. In agreement with this result,
Tantcheva-Poór et al. [204] and Djordjevic et al. [169] observed that heavy coffee consumers have higher
CYP1A2 activity than those drinking less coffee, whereas Carrillo and Benitez [205] observed that low
CYP1A2 activity we more often found in subjects with toxic symptoms linked to caffeine consumption.

A more recent meta-analysis included 12 studies and looked at the association between habitual
coffee intake and CYP1A2 rs762551 polymorphism that splits the population in AA (rapid caffeine
metabolizers), AC and CC genotypes (slow caffeine metabolizers). The analysis showed an association
between the AA genotype and coffee consumption [OR = 1.13, 95%, CI = 1.03–1.24, P = 0.06]. This
association was found in men, individuals younger than 59 years, and Caucasians, but not in females,
individuals older than 59 years, and Asians [206].

6.3. Excretion

Despite caffeine efficient penetration in tissues and fluids, there is no long-term accumulation
of it or its metabolites in the body as seen by whole-animal autoradiography using radiolabeled
caffeine [114,207] and in humans [114]. Various experimental and human studies have proved that
caffeine is excreted mostly via kidneys. In humans, the total urinary excretion of monomethylxanthines
(1-methylxanthine, 3-methylxanthine, and 7-methylxanthine), dimethylurate derivates (1,3-methyluric
acid and 1,7-methyluric acid) and monomethylurates (1-methyluric acid), has been estimated to be
equivalent to about 90–95% of the amount of caffeine orally administrated (5–7.5 mg of caffeine/kg
body weight–bw), and that less than 5% is recovered as caffeine itself [114,208]. After peaking, plasma
concentrations of caffeine decrease more rapidly than those of its metabolite paraxanthine. Therefore,
despite important interindividual differences, the concentration of paraxanthine becomes higher than
that of caffeine within 8–10 h after administration [114,132]. Caffeine clearance is strongly dependent
on renal blood flow and urine passage because this alkaloid and its primary metabolites are extensively
reabsorbed (98%) in renal tubule, but the final urine concentration significantly correlates with the
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plasma caffeine level, as well as fluid intake [114]. The fecal excretion is not so relevant because it
covers only a small percentage (1–5%) of the caffeine ingested [114]. The microbial products identified
in human feces are: 1,7-dimethyluric acid (44%), 1-methyluric acid (38%), 1,3-dimethyluric acid (14%)
and 1,3,7-trimethyluric acid (6%), and caffeine (2%) [114,209].

7. Health Benefits of Caffeine Consumption

The most well-known acute effects of caffeine consumption are stimulation of brain function and
improvement in mood, and physical performance [57]. However, along the past few years, several
epidemiological studies have associated moderate coffee consumption with the reduction in the relative
risk of development of chronic degenerative diseases and death [210–219], and caffeine is one of the
compounds responsible for many of these benefits. They include reduction in the risk of Parkinson’s
and Alzheimer’s diseases as well as hepatoprotective effects. The mechanisms involve antioxidant and
anti-inflammatory activities, among others. The main caffeine benefits will be commented below.

7.1. Caffeine, Mood, and Behavior

Once caffeine is absorbed, it exerts a variety of pharmacological actions at diverse central and
peripheral sites [220,221]. These effects are predominantly related to its antagonistic activity at
adenosine receptors [222], which are widely distributed throughout the body, allowing the substance’s
wide range of effects. Of the four adenosine receptors (A1, A2A, A2B, and A3), caffeine acts mainly as an
antagonist to adenosine A1 and A2A receptors, that are expressed in the CNS [112,223]. In humans, A1

and A2A have been shown to be activated in normal plasma caffeine concentrations (10–50 µM), while
the other two receptors (A2B and A3) are only stimulated at higher concentrations [223]. Thus, when
caffeine intake is able to cause an extracellular concentration of 10–50 µM, it selectively blocks adenosine
receptors and competitively inhibits the action of adenosine [224]. Consequently, caffeine increases the
responses from dopaminergic receptors [225] and the release of various neurotransmitters, such as
norepinephrine, dopamine, and serotonin [226], stimulating psychomotor properties and improving
behavioral functions, such as mood and wellbeing [227], sense of energy [228], and effects related to
alertness, mental focus/attention [229,230], memory, speed at which information is processed [115,230],
awareness, and reaction time [227,229,231]. According to EFSA [126], who reviewed all existing
evidence of caffeine on mental performance, generally, a dose of 75 mg is needed to obtain these effects,
although very large differences in individual responses to caffeine are observed as stated above. There
is a consensus that in most people, at low (~50–250 mg) to moderate doses (~250–400 mg) [123,231]
or 1–5 mg caffeine/body weight/day for a 70-kg person [223] positive changes occur in mood and
human behavior, such as enhanced energy, well-being, sociability, willingness and motivation to
work, improved self-confidence and cognitive function, including enhanced alertness and mental
focus, vigilance, learning and memory [123,232]. This is generally true for both caffeine-deprived and
caffeine-tolerant individuals [223].

7.2. Caffeine and Exercise Performance

Caffeine exerts a positive effect on endurance and exercise capacity owing to the aforementioned
neural mechanisms that trigger a chain of physiological reactions, which makes it an ergogenic
resource [233]. Exercise performance is shown to be significantly improved by oral caffeine
administration or by the consumption of dietary sources, either by avoiding fatigue, improving
substrates supply or by enhancing oxygen uptake [221,234]. Ergogenic effects of caffeine are similar in
both non-habitual and habitual caffeine consumers [235] and have been observed after administration
of doses between 3 and 6 mg/kg of body weight [233,236]. Considering a 70 kg individual and a
supplemented dose of 3 mg/kg of caffeine, the intake could be estimated in 210 mg [237]. Caffeine
also increases coordination [238] and reduces the perception of pain and fatigue [222]. Because
caffeine increases metabolic rate, energy expenditure, lipid oxidation and presents lipolytic and
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thermogenic activities, all favorable components for weight management, coffee has been used for
weight loss [239,240].

Historically, in 1984 the International Olympic Committee had caffeine on the list of banned
substances for urinary concentrations greater than 15 µg/mL (equivalent to 5–6 mg of caffeine/kg bw),
being considered a doping infraction [241]. In 2003, the World Anti-Doping Agency (WADA) included
caffeine in the list of stimulants banned from sports competitions, with a maximum allowed urinary
concentration of 12 µg/mL [242]. However, it was observed that both the commonly consumed doses
and the supplementation doses indicated to promote ergogenic effect (3 to 6 mg/kg bw) resulted in
urinary concentrations far below the limit proposed by WADA. Because of the difficulty to differentiate
the low levels of habitual caffeine ingestion from the intentional use of caffeine to improve athletic
performance, WADA removed caffeine from the list of prohibited substances in 2004 and added it to
its monitoring program [243], which includes substances that are not prohibited in sport, but which
WADA examines in order to detect patterns of misuse [237].

7.3. Caffeine and Antioxidant and Antiinflammatory Activities

Some of the beneficial health effects reported for caffeine have been associated with antioxidant
properties [244–250] although not all studies have found such activity at physiological micromolar
concentrations [251]. Caffeine has been reported to be an efficient scavenger of hydroxyl radicals
generated by the Fenton reaction [239], evaluated by electron spin resonance spin trapping, and
it has also been reported to inhibit lipid peroxidation of rat liver microsomes at millimolar
concentration by reducing the production of TBARS (thiobarbituric acid reactive substances) and
lipid hydroperoxides [252]. Caffeine metabolites, especially 1-methylxanthine,1-methyluric acid [251],
and 1-methylurate [253] have also exhibited effective in vitro antioxidant activity, in the case of
1-methylxanthine, equivalent to ascorbic acid activity. Caffeine intake has also been responsible for
an increase in glutathione levels in rats [250]. Corroborating in vitro results, the average plasma
iron-reducing capacity of human subjects was higher after regular coffee consumption than after
decaffeinated coffee consumption [254], suggesting that whole coffee is more efficient than decaffeinated
coffee in respect to its antioxidant capacity. This was later confirmed by other studies [255,256].

Since inflammation is correlated with and influenced by various cytokines and chemokines,
reduction of these markers should decrease the degree of overall inflammation [257].
The anti-inflammatory action of caffeine is thought to be related to phosphodiesterase inhibition and/or
with adenosine receptor antagonism mechanisms [244,258]. Caffeine anti-inflammatory potential has
also been linked to modifications in cell signaling molecules production [259]. In many studies, caffeine
potentiated the release of anti-inflammatory cytokines, including interleukin 10 (IL-10) [260,261].
Additionally, caffeine mediates immune-suppression of pro-inflammatory cytokines release, including
tumor necrosis factor alpha (TNF-α), interleukin 2 (IL-2) and interferon-gamma (IFN-γ), which have a
central role in autoimmune disease initiation and propagation [262,263].

7.4. Caffeine and Antimicrobial Activity

Regarding caffeine’s antimicrobial activity, there are a few in vitro studies showing that caffeine
contributes to the antibacterial effect of coffee against Streptococcus mutans, the main cariogenic
bacteria [264], as well as intestinal pathogenic bacteria’s [265,266]. Additionally, a study showed
the effectiveness of caffeine in inactivating and inhibiting significantly the growth of Escherichia coli
O157:H7 in brain heart infusion broth, indicating that caffeine has potential as an antimicrobial agent
for the treatment of E. coli O157:H7 infection and could be investigated further as an eventual food
additive to increase bio-safety of consumable food products [267].

7.5. Caffeine and Neurodegenerative Diseases

The effect of caffeine on neurodegenerative diseases has gathered considerable attention in the
last years [244]. Several studies have reported that regular coffee/caffeine intake is related to lower risk
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of neurodegenerative diseases development, especially Parkinson’s and Alzheimer´s [245,268–272],
and prevention of memory decline during aging [273,274]. A few findings from selected studies and
meta-analyses are presented here.

Parkinson’s disease is characterized by selective degeneration of dopaminergic neurons
in the midbrain with a clinical presentation of motor and non-motor symptoms and by the
prominent alpha-synuclein-containing proteinaceous inclusions, called Lewy bodies [275,276]. Coffee
consumption appears to reduce the risk of Parkinson’s disease or to delay its onset [238], by attenuating
dopaminergic neurodegeneration [277]. In a meta-analysis of 26 studies from the USA, Europe, and
Asia, a 25% lower risk of Parkinson’s disease was found in coffee drinkers as compared to non-coffee
drinkers [237,271]. The overall risk has been reported to fall at least by 24–32% per 300 mg (three cups
of 100 mg) increase in caffeine intake [271]. Higher risk reduction (up to 80%) have been suggested
for the intake of more than four cups of caffeinated coffee daily [231]. This inverse relationship was
confirmed by similar findings in two larger ethnically diverse cohorts involving 47,351 men and 88,565
women. In both studies, the consumption of caffeinated (but not decaffeinated) coffee was associated
with reduced risk of developing Parkinson’s disease [277,278].

Differences between genders [278] regarding the association of caffeine intake and the risk of
Parkinson’s disease have been reported: while for men a strong inverse association was found, for
women, this association was non-linear (“U-shaped”), with the lowest risk occurring at moderate
intake (one to three cups/day). The authors further investigated this difference in two large cohorts
in the USA [279,280] and found an interaction among the use of postmenopausal hormones, caffeine
intake, and risk of Parkinson’s disease. In one of the cohorts, the risk was increased among women
who were in hormonal replacement therapy [279]. In the second cohort, the risk was increased among
hormone users who were heavy coffee drinkers (more than six cups/day) [280]. The reason for the
interference of estrogens on the protective effect of coffee was not clear [279,280]. Additional studies
involving caffeine protection against Parkinson´s disease development are presented in Table 3.

Alzheimer’s disease is the most frequent cause of dementia, leading to a progressive cognitive
decline [237]. Definitive diagnosis of Alzheimer’s disease is based on the presence of senile plaques
and neurofibrillary tangles that are identified in post-mortem brain specimens [281]. The formation
of Alzheimers’ disease-specific lesions is attributed to the pathological accumulation of either toxic
extracellular amyloid beta peptide in the brain [282], or intraneuronal hyperphosphorylated Tau
protein [283]. Constituents of the lesions are prone to promote synaptic deficits leading to memory
impairments [284]. Currently, there is no medication against Alzheimer’s disease once it is installed [285],
but there are a few ways of preventing it, among them the consumption of foods rich in polyphenols and
caffeine [281]. A meta-analysis has reported an inverse association between regular coffee consumption
and the development of Alzheimer’s disease, with a 27% risk reduction observed in the highest
category of coffee consumption compared with the lowest [286]. The mechanism for caffeine protection
is believed to be related to an anti-inflammatory effect on the A1 and A2 receptors as well as to the
reduction in the deposits of toxic beta-amyloid peptide in the brain [287]. Alzheimer’s disease mouse
model study confirmed these findings, reporting that heavy coffee intake (the human equivalent
of 500 mg caffeine or five coffee cups/day) was able to protect against and could treat Alzheimer’s
disease [287].

Exceptionally, in a study evaluating Japanese-American men, the authors did not find a significant
association between caffeine intake and the risk of dementia [288]. However, they interestingly reported
that, at autopsy, patients in the highest quartile of caffeine intake (>277.5 mg/day–all caffeine sources)
were less likely to have any of the neuropathological lesions, such as Alzheimer’s disease-related
lesions, ischemic microvascular lesions, cortical Lewy bodies, hippocampal sclerosis or generalized
atrophy [288]. Additional studies on the protective effect of caffeine against Alzheimer’s disease are
presented in Table 3.
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7.6. Caffeine and Liver Diseases

In the past three decades, caffeine has been related to a lower incidence of chronic liver diseases,
such as cirrhosis and hepatocellular carcinoma [289–291]. Additionally, in several studies, regular
coffee consumption has been significantly associated with reduced hepatic fibrosis related or not with
non-alcoholic fatty liver disease [292] and with chronic hepatitis C [293]. In 2016, The International
Agency on Research on Cancer (IARC) evaluated several studies [294] and concluded that higher coffee
consumption was associated with lower blood concentrations of biomarkers of liver damage, including
alanine aminotransferase and γ-glutamyl transferase [295]. Moreover, in prospective studies, coffee
consumption was associated with a lower risk of liver cirrhosis [296]. Two important meta-analyses
that combined data from cohort and case-control studies, adjusting the results for potential confounders
(age, sex, alcohol intake, smoking, and history of liver diseases), confirmed the inverse association
between coffee consumption and liver cancer [297,298].

Caffeine, together with other bioactive compounds, such as chlorogenic acids and trigonelline, has
been reported to be responsible for coffees´ hepatoprotective effect. The mechanisms underlying the
potential benefits of caffeine have not yet been fully determined. However, some plausible explanations
have been suggested [291]. In patients with chronic hepatitis C, a suggested possible mechanism
would be the alteration in liver signaling and inflammatory pathways [291]. In a rat model, caffeine
suppressed connective tissue growth factor expression by interfering with a profibrogenic cytokine,
transforming growth factor beta (TGF-β) signaling through the Smad pathway [299]. Smad comprises
a family of structurally similar proteins that are the main signal transducers for receptors of TGF-β,
which are critically important for regulating cell development and growth. Caffeine also has a direct
inhibitory effect on hepatic stellate cells by downregulating focal adhesion kinase and actin synthesis
and also induces hepatic stellate cells apoptosis [300]. Additional studies on the protective effect of
caffeine on the liver are presented in Table 3.

Table 3. Complementary studies on the protective effect of caffeine against neurodegenerative and
hepatic diseases.

Subjects’
Origin Sample Study Type Conclusions Reference

Neurodegenerative diseases

Finland n = 6.710 Large prospective study
(follow-up for 22 years)

Results support the hypothesis that coffee
consumption reduces the risk of

Parkinson’s disease.
[301]

Greece n = 26.173

Population-based
prospective cohort

(follow-up for
3–5 years)

Results support the hypothesis that coffee
consumption reduces the risk of

Parkinson’s disease.
[302]

Denmark n = 1.876 Large case-control
study

Moderate coffee intake (3.1–5 cups/day)
was associated with a lower odds ratio for

Parkinson’s disease.
[303]

Mostly from
USA, Europe,

and Asia
- Dose-response

meta-analysis

Non-linear relationship between coffee
intake and the risk of Parkinson’s disease

was found, with maximum protection effect
at approximately 3 cups/day and no

improvement after that.

[304]

Canada n = 6.434
Prospective analysis of
risk factors (follow-up

for 5 years)

Daily coffee consumption decreased the
risk of Alzheimer’s disease by 31% during

the follow-up.
[305]

Finland n = 1.409
Population-based

cohort study (follow-up
for 21 years)

Coffee drinkers at midlife had a lower risk
of dementia and Alzheimer’s disease later
in life compared to those who drank no or
little coffee, with lower risk (65% decreased)

in those who drank 3–5 cups per day.

[269]

Mostly from
USA, Europe,

and Asia
- Systematic review

Findings indicate that moderate
coffee/caffeine intake decreases the risk of

cognitive impairment/decline and
dementia/Alzheimer’s disease later in life.

[306]
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Table 3. Cont.

Subjects’
Origin Sample Study Type Conclusions Reference

Liver diseases

Mostly from
USA, Europe,

and Asia
-

Systematic review and
dose-response
meta-analysis

Regular intake of three cups of caffeinated
and decaffeinated coffees was associated

with reductions of 27% and 14% in the risk
of hepatocellular carcinoma, respectively.

[307]

USA, France
and Brazil - Systematic review and

meta-analysis

Decreased risk of advanced liver fibrosis
and liver inflammation among hepatitis C

virus-infected patients who consumed
caffeine on a regular basis.

[308]

USA n = 5.944 Population-based
cohort study

Dose–effect relationship between coffee and
caffeine consumption and decrease in

aminotransferase (ALT) levels, reducing the
prevalence of above-normal ALT value by
50% for two cups/day, and by 66% for three

cups/day.

[309]

Italy n = 732 Population-based study Coffee caffeine may inhibit the onset of
alcoholic and nonalcoholic liver cirrhosis. [310]

8. Potential Adverse Effects of Caffeine Consumption

8.1. Caffeine Acute and Chronic Toxicity

Based on scientific evidence, moderate caffeine consumption is currently considered by EFSA [126],
Food and Drug Administration (FDA) [311] and the Scientific Committee on Food within the European
Commission (SCF) [312], among other health authorities, to be a safe habit. However, caffeine acute
toxicity effects related to excessive intake may occur and are well characterized. The first studies
on the toxicity of caffeine were performed in the 19th century, initially with animals [313], and soon
after, with humans [314]. In 1850, Lehmann [314] reported several adverse symptoms after acute
oral administration of 2 to 10 g of caffeine. Such intoxication results in ‘caffeinism’, which refers to
a syndrome characterized by a range of adverse reactions, for instance, restlessness, nervousness,
anxiety, irritability, agitation, muscle tremor, insomnia, headache, diuresis, tachycardia, arrhythmia,
pulse irregularity and increased frequency, elevated respiration and gastrointestinal disturbances (e.g.,
nausea, vomiting, diarrhea) [315]. Besides tachycardia and diuresis, caffeine toxicity in children has
also been implicated in severe emesis, photophobia, palpitations, muscle twitching, convulsions, and
unconsciousness, especially at doses around 80 mg/kg of body weight [14].

Regarding lethality, caffeine death-related reports in humans are unusual, implying rather
significant concentrations which are not provided by regular coffee drinking. Only a few cases
have been reported in the literature [316]. Concerning the exact dose, as previously mentioned, the
metabolism and physiological effects of caffeine vary greatly, depending on several factors. For slow
metabolizers, the lethal dose will be lower than for fast metabolizers. Foods or medications taken
simultaneously will affect caffeine metabolism and, therefore, also the lethal acute dose [316]. Other
complications would be age and previously existing cardiovascular diseases or other types of diseases.
According to Frerichs [317], severe symptoms might be induced in humans about 15 min after oral
administration of 25 g of the drug, which is an extremely high amount. Currently, studies using
potentially lethal doses (LD) are not performed in humans, and the perception of LD is only based on
extrapolation of animal studies or case reports. Tarka and Cornish [318] determined the LD50 (the
amount given acutely which causes death of 50% of the animals) for caffeine in rats and extrapolated
the results to humans. According to them, the LD 50 for caffeine in humans would be about 192
mg/kg of body weight. For Cappelletti et al. [245] the LD of caffeine should be about 10 g/day, which
according to the authors could be comparable to drinking 100 cups of instant coffee. Arnaud [14] also
estimated in 10 g the acute LD of caffeine which they extrapolated to 150–200 mg/kg bw in agreement
with Tarka and Cornish [318], but death has been reported after ingestion of 6.5 g of caffeine [14], which
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is in agreement with a report from Kerrigan and Lindsey [319] suggesting lethal doses to be typically
in excess of 5 g, although according to the authors, there has been several cases in which adults and
teenagers consumed between 5–10 g and survived. The survival of a patient who supposedly ingested
24 g of caffeine has also been reported [315,320].

In general, high chronic exposure to caffeine (more than 400–600 mg/day) has also been
associated with a range of dysfunctions involving the gastrointestinal, liver and renal systems,
besides musculature [315,320], unstable bladder, mainly developed in women [321]. In more extreme
cases, symptoms may include myopathy, hypokalemia, muscular weakness, nausea, vomit, diarrhea,
and weight loss [322].

Following, the most commonly reported potential negative effects of acute and chronic caffeine
consumption on the human body are discussed, especially the effects on CNS and behavior,
cardiovascular system, glucose metabolism, bone and calcium balance, reproductive and development
effects and carcinogenesis. Caffeine withdrawal syndrome will also be approached.

8.2. Potential Adverse Effects of Caffeine on Mood, Behavior, and Sleep

The effects of caffeine on mood in adults have been extensively studied and the most common
negative effects reported after caffeine intake are related to its stimulating effects due to the
aforementioned responses in dopaminergic D1 and D2 receptors [225] and release of neurotransmitters,
such as norepinephrine, dopamine, and serotonin [112]. Although ingestion at low to moderate doses
tends to licit the pleasant sensations previously described in this review, higher doses consumed
either on a single occasion or within short periods of time can produce or exacerbate jitteriness,
insomnia (especially in those who are caffeine-abstinent) [112], nervousness and anxiety, especially
in those with preexisting psychiatric anxiety disorders, but also in healthy adults, particularly when
they are non-habitual caffeine consumers [232]. The dose range considered to cause anxiety and
mood change varies considerably among authors and official guidelines, from 400 to 2000 mg
caffeine/day [14,232,323–325]. In slow metabolizers, such negative effects can be felt at much lower
doses compared to fast metabolizers, as low as 50 mg or less. After repeated intake, however, tolerance
to general effects of caffeine is usually observed. The mechanism to increase tolerance is not well
understood and is highly variable among the population, but it has been attributed to upregulation
of adenosine receptors [112]. However, in adults, tolerance to such anxiogenic effect develops with
frequent caffeine consumption, even in genetically susceptible individuals [326]. The inter-individual
variability in the anxiogenic response to caffeine intake has been suggested to be caused by a single
nucleotide polymorphism in the gene coding for the adenosine A2A receptor (ADORA2A) [326,327].
In any case, such high doses are consumed only by a small segment of caffeine consumers, and
individuals experiencing the anxiogenic effects of caffeine as well as slow metabolizers who are
sensitive to its effects in general are likely to avoid the use of the substance [315]. Thus, the self-limiting
nature of caffeine intake reduces caffeine potential to produce anxiety in adults [326,327].

Regarding sleep, in adults, single doses equivalent to about 100 mg of caffeine or more (1.5 mg/kg
bw/day in a 70 kg adult) have increased sleep latency, in a dose-dependent manner and reduced sleep
duration when consumed close to bedtime [328]. This may be accompanied by impairment of sleep
quality, characterized by an increased number of spontaneous awakenings and body movements.
Doses lower than 100 mg do not appear to have such an effect on sleep in most people [14,329]. Chronic
high consumers of caffeine, however, are less likely to report sleep disturbances than individuals
consuming caffeine more occasionally, also suggesting the development of tolerance to the effects of
caffeine on this parameter [330].

There seem to be only a few human intervention studies, meta-analysis and controlled trials
investigating the effects of caffeine on psychological, behavioral, cognitive functions and sleep of
children and adolescents [331–342]. In an earlier study by Rapoport et al. [333], daily caffeine
consumption was investigated for two weeks in relation to self-reported anxiety, parents/teachers’
ratings of children’s behavior and side effects in pre-pubertal children. Data from 19 children were
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analyzed depending on whether they were “low” (up to 50 mg/day) or “high” (more than 300 mg/day)
caffeine consumers. The results provided evidence that “high” habitual caffeine consumers (and
their parents) tended to report more side effects during the caffeine withdrawal period, compared
to “low” caffeine consumers, suggesting the development of tolerance and withdrawal symptoms in
“high” habitual consumers. Moreover, in “high” habitual caffeine consumers, despite the significant
improvements in tasks related to vigilance and significant increases in locomotor activity, symptoms
as “nervous/jittery” were also reported, although not classified as anxiety [126,333]. Considering the
existing literature data on the subject up to 2015, according to EFSA [126], regular consumption of
caffeine (up to about 3 mg/kg bw/day, approximately 60–120 mg of caffeine/day) does not appear to
induce behavioral changes in children and adolescents.

8.3. Potential Adverse Effects of Caffeine on Cardiovascular System

Investigations regarding the effects of caffeine consumption on the cardiovascular system generally
focus on evaluating the heart functioning as the onset of morbi-mortality covering the main risk
factors. For this, it is especially important to distinguish acute from long-term cardiovascular effects of
caffeine [126,172]. Single 200–250 mg doses of pure caffeine acutely increased plasma renin activity,
catecholamine concentrations, and blood pressure, and were able to induce cardiac arrhythmias (mostly
atrial) in healthy subjects [343,344].

Possible mechanisms for the acute cardiovascular effects of caffeine include antagonistic action
on adenosine receptors, activation of the sympathetic nervous system (release of catecholamines
from adrenal medulla), stimulation of adrenal cortex (release of corticosteroids), renal effects
(diuresis, natriuresis, activation of the renin-angiotensin-aldosterone system), and inhibition of
phosphodiesterase’s (increase in cyclic nucleotides), although the contribution of each of these
mechanisms to the acute cardiovascular effects of caffeine is unclear [126,201], and may depend
on the source of caffeine, the dose administered, and on plasma concentrations prior to caffeine
administration [126].

According to epidemiological data, the coffee effect on blood pressure differs with CYP1A2
genotype [345]. While in fast caffeine metabolizers (CYP1A2*1A) the effect of caffeine on blood
pressure seems to be insignificant, in slow metabolizers (CYP1A2*1F) the hypertensive effect seems to
prevail [345]. However, it has been observed that in fast metabolizers, caffeinated cola consumption,
but not coffee, has been associated with hypertension, which may be due to the lack of polyphenols
in the cola beverages [345]. Watanabe et al. [346] examined the blood pressure-lowering effect of
chlorogenic acids (the main polyphenols in coffee) in patients with mild hypertension through a
placebo-controlled, randomized clinical trial. Subjects (n = 28) were randomized to receive treatment
with chlorogenic acids (140 mg/day) from green coffee extract or placebo daily for 12 weeks. In the
chlorogenic acids group, but not in the placebo group, blood pressure (systolic and diastolic) decreased
significantly during the ingestion period, demonstrating the hypotensive action of coffee phenolic
compounds, a mechanism that seems to involve nitric oxide-mediated vasodilation [347].

Comparing the hypertensive effect with frequency of caffeine consumption, acute increases in
systolic and diastolic blood pressures, as well as in pulse pressure have been reported after single
doses of caffeine ranging from 80 to 250 mg, in coffee abstainers and in habitual caffeine consumers,
after 12 to 48 h withdrawal [126,348–350]. Although the hypertensive effect of caffeine was observed
in many repeated-dose studies, it was not as consistent as in the acute-dose studies [344]. Tolerance
usually develops within a couple of days, and it is accompanied by a reduced release of adrenaline,
noradrenaline, and rennin, compared with the non-tolerant state. Although fast tolerance development
has been observed in habitual coffee drinkers (within one to three days), the hypertensive response
is regained after relatively brief periods of abstinence (12 h) and depends on how much caffeine is
consumed, the schedule of consumption, and on the half-life and elimination of caffeine from the
body [351,352].
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Caffeine intake has also been associated with the occurrence of arrhythmias in humans. It produces
a direct stimulation of myocardial tissue, leading to increased heart rate and force of contraction [14].
Cardiovascular disease has been assessed by a range of outcome variables, including death from
myocardial infarction or Coronary Heart Disease (CHD), non-fatal myocardial infarction or coronary
event, angina pectoris and/or hospitalization for CHD. Prospective epidemiological studies and
case-control studies were more likely to show an increased risk in cardiovascular disease onset only
when five or more cups of coffee were consumed per day (≥ 500 mg caffeine/day) [353–357]. However,
as with blood pressure, in patients with a history of cardiovascular disease, slow caffeine metabolizers
(CYP1A2*1F), were associated with increased risk of myocardial infarction when coffee consumption
was increased [199]. Additional studies on the effect of caffeine on blood pressure and cardiovascular
diseases are presented in Table 4.

8.4. Potential Adverse Effects of Caffeine on Glucose Metabolism and Insulin Resistance

Coffee consumption has been associated with reduced risk of type 2 diabetes [358–364]. However,
a key issue that remains to be resolved is whether the consumption of caffeinated and decaffeinated
coffees is similarly associated with the reduced risk of type 2 diabetes [365,366]. Shearer et al. [365]
observed that glucose infusion rates and measures of whole-body metabolic clearance were greater in
rats that received decaffeinated coffee (2 g/100 mL) than in placebo or caffeine (20 mg/100 mL) added to
decaffeinated coffee (2 g/100 mL), indicating increased whole-body insulin sensitivity in decaffeinated
coffee. It was concluded that caffeine can antagonize the beneficial effects of decaffeinated coffee. Most
evidence, in fact, indicates that caffeine alone promotes adverse effects on glucose metabolism [366–368]
and reduces insulin sensitivity [364,369]. The intake of about 500 mg/day by usual coffee drinkers was
associated with higher average daytime glucose concentrations and exaggerated post-prandial glucose
responses in diabetic patients [366]. In healthy individuals, the ingestion of caffeinated coffee with
either a high or a low glycemic index meal significantly impaired acute blood glucose management and
insulin sensitivity compared with decaffeinated coffee [367]. These effects could be partially explained
by the direct inhibition of glucose uptake in adipocytes and skeletal muscle through antagonism of
adenosine receptors [370] or possibly as a result of elevated plasma epinephrine [371].

On the other hand, both caffeinated and decaffeinated coffee consumption enhanced insulin
sensitivity in a cross-sectional study [372] and in epidemiological studies [373–376], suggesting beneficial
effects of both drinks on glucose homeostasis. Other studies have found that when controlling for
total coffee intake, caffeine intake was not associated with diabetes risk [363,364], showing that the
consumption of both decaffeinated e and caffeinated coffees is significantly associated with a lower
risk of developing type 2 diabetes [358,359,366,373,374]. As with blood pressure, although most data
from short- and long-term studies indicate that caffeine intake promotes adverse effects on glucose
metabolism [377–379], evidence points out that coffee components other than caffeine, especially
chlorogenic acids and trigonelline [102,365,380], exert several positive effects on glucose homeostasis,
balancing caffeine effects [364,378–382].

In conclusion, although regular consumption of both decaffeinated and regular coffees is proved
to reduce the risk of diabetes, decaffeinated beverages seem to be more beneficial for glycemic control
than caffeinated ones, although most epidemiological studies have failed to discriminate the effects of
these two types of coffee on the protective effect of coffee against type 2 diabetes. Additional studies
on this topic are presented in Table 4.

8.5. Potential Adverse Effects of Caffeine on Calcium Balance

This is one of the most discussed potential adverse effects of caffeine intake. Caffeine potential to
adversely influence calcium excretion and bone metabolism was investigated by epidemiological studies
which evaluated the relationship between caffeine intake and the risk of fracture and fall [383–387], bone
mineral density (BMD) and osteoporosis [388–393], and the effect on calcium homeostasis [394,395].
On the potential risk factor for bone fracture and fall, most studies reported a lack of association between
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caffeine intake and increased risk of fracture considering consumption below 400 mg/day [383–387].
However, in a cross-sectional study, caffeine intake was associated with an increased incidence of
low trauma fractures [396]. When the consumption was estimated in more than 544 mg caffeine/day,
consumers had a higher risk of hip fracture than those who ‘almost never’ consumed coffee. Hallström
et al. [397] also reported that a daily intake of ≥ 330 mg caffeine might be associated with a modestly
increased risk of osteoporotic fractures (relative risk (RR): 1.20, CI: 1.07–1.35), especially in women with
low calcium intake. However, when stratified by calcium intake, the increased risk was only significant
when calcium intake was low (less than 700 mg/day). No trend in increased risk of osteoporotic
fractures was observed with higher caffeine intake in participants with high calcium intake.

Caffeine consumption of 175 mg/day has been positively associated with increased 24-h urinary
calcium excretion [398]. Heaney and Rafferty [394] also reported that acute consumption of caffeinated
beverages (60–92 mg caffeine) produced small increases in calcium excretion, which, according to
the authors, could be offset by small increases in calcium intake (15–30 mL of milk). Based on a
study group of women who habitually consumed low-calcium, Ribeiro-Alves et al. [395] reported that
exposure to 285 mg caffeine resulted in increased calcium excretion. However, in another study by
Barger-Lux et al. [399], when a greater amount of caffeine was ingested by healthy premenopausal
women for a prolonged time (400 mg/person/day for 19 days), no effect on calcium absorption,
endogenous fecal calcium or urinary calcium excretion was found, despite the observation of bone
remodeling. Interpretation of caffeine’s effects on bone metabolism is complex since caffeine intake
is usually associated with other risk factors for osteoporosis, such as lower calcium intake [393,400]
and advanced ages [401,402]. Considering all available data, and evaluating the same population of
postmenopausal women studied by Barger-Lux et al. [399], a model was elaborated: coffee intake
higher than 1000 mL/day (760 mg caffeine/day) could induce excess calcium loss, while intakes of
150–300 mL coffee/day (112–224 mg caffeine/day) would have little impact on calcium balance [403].

The effect of coffee consumption on BMD in elderly men and women, with regards to the CYP1A2
genotype, was recently evaluated by Hallström et al. [397]. A decrease in BMD of the proximal femur
was observed in men consuming four or more cups of coffee daily. It was also found that, in high coffee
consumers, fast caffeine metabolizers had lower BMD values than slow metabolizers. Considering that
in a higher CYP1A2 activity condition caffeine is more rapidly metabolized and the concentrations
of its metabolites in plasma increase in relation to the parent compound, it was suggested that the
deleterious effects of coffee consumption on bone might be due to caffeine metabolites, especially
paraxanthine [391]. This metabolite has been found to be a potent suppressor of transforming growth
factor beta (TGF-β) in vitro [404], which stimulates bone formation [405]. Moreover, deactivation of
the adenosine receptors, which are expressed in bone cells, can result in reduced bone formation [406].
Since paraxanthine acts through the same mechanism as caffeine, that is the competitive antagonism
interaction with A1 and A2 adenosine receptors [405], it could also act on such signaling pathway to
reduce bone formation. Therefore, paraxanthine seems to be the main contributor to the coffee effect
on BMD reduction, being the rapid metabolizers of caffeine at higher risk for bone loss induced by
coffee than slow metabolizers [391].

Considering all previously published data, Nawrot et al. [232] concluded in a review published in
2003 that caffeine intake lower than 400 mg/day does not have significant effects on bone status or
calcium balance in individuals ingesting at least 800 mg calcium/day. No other recommendations were
made thereafter. Additional studies on this topic are presented in Table 4.

8.6. Potential Adverse Effects of Caffeine on Fertility and Reproductive and Developmental Effects

The effects of caffeine consumption have been reviewed in terms of reproduction or
fertility [407–410] and in terms of pregnancy outcomes, including spontaneous abortion, birth weight,
gestational length, and congenital malformations [410]. Consistent relationships between caffeine
intake and subfecundity have not been observed to date. However, bringing together existing data
available up to 2003, Nawrot et al. [232] suggested that the consumption of caffeine at doses greater
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than 300 mg/day might reduce fecundability in fertile women. In respect to male fertility, Dlugosz
and Bracken [407] suggested that doses higher than 400 mg/day might decrease sperm motility and/or
increase the percentage of dead spermatozoa, but not sufficiently to affect the male fertility in an
adverse manner.

Once pregnant, women who regularly consume caffeine may be at risk of miscarriage, but current
evidence of spontaneous abortion remains insufficient to allow conclusions regarding the potential
role of caffeine [411]. The existing data do not support convincing results that caffeine consumption
increases the risk of any perinatal adversity [412]. Nevertheless, based on several studies evaluating
the association of caffeine intake and risk of perinatal adversities, Nawrot et al. [232] advised that
women who are pregnant or are planning to become pregnant should limit the consumption of caffeine
to less than 300 mg/day, which is historically a common amount consumed by this group with no
adversities [413].

The potential adverse impact of caffeine consumption during pregnancy on fetal growth has also
been a concern for many years. Caffeine increases the levels of cyclic adenosine monophosphate through
inhibition of phosphodiesterase’s, which might interfere with fetal cell growth and development [414].
It is known that caffeine ingested by the mother is rapidly absorbed from the gastrointestinal tract
and readily crosses the placenta, being distributed to all fetal tissues, including the CNS. Once present
in the fetus organism, caffeine has increased half-life due to the immaturity of the enzyme complex
involved in its metabolism. Therefore, if a pregnant woman does not limit her caffeine intake, the fetus
and neonate may be exposed to substantial amounts of caffeine and metabolites and may suffer the
consequences of potentiated adverse effects [14]. According to Rosenberg et al. [415], no association
was found between drinking caffeine-containing beverages at levels up to 400 mg caffeine/day and five
types of malformation (inguinal hernia, oral clefts, cardiac defects, pyloric stenosis, neural tube defects)
in a case-control study. These results were ratified by Olsen et al. [416]. Although published results
are not yet entirely consistent, evidence suggests that caffeine intake at doses higher than 300 mg/day
may cause adverse effects on some fetus developmental parameters, such as fetal intrauterine growth
retardation or decrease in birth weight [407,417]. Being cautious, based on two prospective cohort
studies that investigated positive association between caffeine intake during pregnancy and risk of
adverse birth weight-related outcomes [418,419], EFSA [126] concluded that caffeine intake from all
sources up to 200 mg/day by pregnant women in the general population does not raise safety concerns
for the fetus. The association between caffeine intake and other adverse pregnancy-related outcomes
was less consistent [419]. Additional studies on this subject are presented in Table 4.

8.7. Potential Carcinogenicity of Caffeine

In 1983, a safety assessment on caffeine consumption was performed by the SCF within the
European Commission [312]. Comparatively high doses of caffeine had shown weak teratogenic effects
in experimental animals and mutagenic effects in vitro, but not in vivo, and it was concluded that
there was no evidence for concern over carcinogenic, teratogenic, or mutagenic effects of caffeine in
man at the actual levels of intake (between 2.0 and 4.5 mg/kg of body weight/day) and that human
epidemiological studies provided no evidence for any association between coffee consumption and
congenital defects [312]. In 1987, caffeine underwent another extensive review in which the FDA
declared its safety for all consumers, including children. In 1991, several studies suggesting the
potential carcinogenic effects of coffee, specifically regarding bladder [420–422] have led IARC [423]
to classify coffee as possibly carcinogenic to humans, based on limited evidence of association with
cancer of the urinary bladder from case-control studies, and inadequate evidence of carcinogenicity
in experimental animals. However, IARC [423] concluded that there was no evidence for concern
over carcinogenic, teratogenic, or mutagenic effects of caffeine in man at the observed levels of intake
(between 2.0 and 4.5 mg/kg/day) and that human epidemiological studies provided no evidence for
any association between coffee consumption and congenital defects. Most evidence indeed supports a
lack of substantial relation between caffeine intake, as measured by coffee consumption, and various
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types of cancer, including gastric cancer [424], renal cancer [425], breast cancer [426,427] and colorectal
cancer [428]. In 2016, IARC [294] re-evaluated studies investigating the association between coffee
consumption and cancer. For this re-evaluation, a much larger database of prospective cohort and
population-based case-control studies that controlled adequately potential confounders, including
tobacco and alcohol consumption, was available. For bladder cancer, there was no consistent evidence
of association with coffee drinking. In several studies, relative risks were increased in men but were
null or decreased in women, consistent with residual confusion caused by smoking or occupational
exposures among men. IARC concluded that positive associations between coffee and bladder cancer
reported in some studies could have been due to inadequate control for tobacco smoking, which can
be strongly associated with heavy coffee drinking, and, as a result of the re-evaluation, IARC changed
coffee classification to no carcinogenicity to humans [294]. In the same evaluation, for endometrial
cancer, the five largest cohort studies showed mostly inverse associations with coffee drinking. These
inverse associations were also observed in cohort and case-control studies of liver cancer in Asia,
Europe, and North America, in several types of studies, which lead IARC in 2016 to acknowledge the
protective effect of coffee [294], and suggest that an increase in consumption of one cup of coffee/day
(and consequently, an increase in caffeine intake of about 50–150 mg/day) was associated with reduced
risk of kidney, breast, buccal and pharyngeal, colorectal, endometrial, esophageal, leukemic, pancreatic,
and prostate cancers [429–431] and, therefore, regular caffeine intake does not seem to be associated
with increased risk of cancer when considering whole coffee consumption. Additional studies on this
topic are presented in Table 4.

8.8. Caffeine Withdrawal Syndrome

It has been widely experienced that the sudden cessation of regular caffeine ingestion produces
specific interrelated symptoms [432,433], which are named caffeine withdrawal syndrome as stated by
the Diagnostic and Statistical Manual of Mental Disorders of the American Psychiatric Association
(APA) [434]. Characteristic symptoms of caffeine-withdrawal include headache, drowsiness, lethargy,
fatigue, work difficulty (decreased motivation for work and impaired concentration), decreased
wellbeing (including decreased self-confidence and increased irritability), fall in blood pressure and
rise in cerebral blood flow [432,433,435]. These are opposite sensations to those obtained after caffeine
consumption. Withdrawal symptoms generally begin about 12 to 24 h after cessation of caffeine
consumption and reach a peak after 20 to 48 h. However, in some individuals, these symptoms can
appear within only 3 to 6 h and can last for a week [316]. Thus, even a short abstinence equivalent to
missing the morning cup of coffee can lead to significant unpleasant effects [436,437]. The syndrome is
probably specifically due to the discontinuation of caffeine intake because it persists in spite of analgesic
consumption [112] and is reversed by caffeine ingestion [438]. The fact is that daily consumption of
caffeine can result in physical dependence and the removal of caffeine causes withdrawal symptoms,
irrespective of the pattern of intake across the day [435] and of small (129 mg: one to two cups of
coffee) or large (2548 mg: 20–30 cups of coffee) amounts of caffeine ingested [432,437,438]. Caffeine
withdrawal syndrome can be avoided if caffeine ingestion decreases slowly.

Slow caffeine metabolizers are less likely to experience sedation on withdrawal or onset of anxiety
on resumption. This is in accordance with the general principle that slow reduction minimizes
withdrawal symptoms [439]. Moreover, slow metabolizers are likely to drink less coffee and less
frequently, which also decreases withdrawal syndrome probability.

Withdrawal symptoms have also been reported in newborns whose mothers were heavy coffee
drinkers during pregnancy. These infants displayed irritability, high emotivity, and even vomiting.
Symptoms begin at birth and spontaneously disappear after a few days [440]. Caffeine withdrawal
may also occur in children who largely consume soft drinks [441].

Despite the described withdrawal symptoms, according to the Diagnostic and Statistical Manual
of Mental Disorders, (by APA) [434] caffeine is not present in the category of substances classified as
causing “substance dependence”, since the substance does not cause the severity of withdrawal or
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harmful drug-seeking behaviors as street drugs or alcohol and these symptoms are easily and reliably
reversed by ingestion of caffeine.

Table 4. Complementary studies on the potential adverse effects of caffeine on health.

Sample Type of Study Coffee/Caffeine
Doses Conclusions Reference

Anxiety

Healthy subjects
(n = 13) Clinical study 9 mg of caffeine/kg

body weight (bw)

High caffeine doses (> 400 mg/day)
significantly increased some anxiety

aspects.
[442]

Subjects with panic
disorders (n = 28),
performance social

anxiety disorder
(n= 19), and healthy

subjects (n = 26)

Clinical study 480 mg of caffeine

Patients with panic disorders and
performance social anxiety disorders

had a higher number of induced panic
attacks, some specific anxiety

symptoms, and a more severe anxiety
response than healthy volunteers.

[443]

Cardiovascular system

Normotensive subjects Critical review
and meta-analysis

Single doses
200–250 mg of

caffeine

Increase in systolic blood pressure by
3–14 mm Hg and diastolic blood

pressure by 4–13 mm Hg.
[345]

Hypertensive subjects Systematic review
and meta-analysis

Single doses
200–300 mg of

caffeine

Induced average increases of 8.1 mm
Hg in systolic and 5.7 mm Hg diastolic

blood pressure, observed within the
first 60 min after intake and persisting

for 180 min, on average.

[444]

Hypertensive subjects Systematic review
and meta-analysis

Doses ≥ 410 mg of
caffeine/day for at

least 7 days

No effect on heart rate associated with
consumption as compared to those

who consumed < 410 mg/day.
[445]

Glucose metabolism and insulin resistance

Healthy subjects Systematic review
and meta-analysis

3–6 mg of
caffeine/kg bw

Acute caffeine ingestion reduces
insulin sensitivity. [446]

People with type II
diabetes

Systematic review
of randomized
controlled trials

~200–500 mg of
caffeine

Caffeine intake increased blood
glucose concentrations by 16–28% of
the area under the curve (AUC) and
insulin concentrations by 19–48% of

the AUC.

[447]

Bone and calcium balance

Healthy postmenopausal
women

(n = 205)

Randomized
clinical trial

280–420 mg of
caffeine/day

Daily consumption of 280–420 mg
caffeine/day may accelerates bone loss

from the spine and total body in
women with calcium intakes below the

recommended dietary allowance of
800 mg.

[448]

Healthy women
(n = 61.433)

Longitudinal
population-based

≥ 560 mg of
caffeine/day

Not associated with higher rate of
fractures and bone mineral density [385]

Healthy women Systematic review
and meta-analysis

2–8 cups of
coffee/day

The fracture risk was 14% higher in
women and 24% lower in men with the

highest level of coffee consumption.
[387]

Fertility andreproductive and developmental effects

Healthy women
Systematic review
and dose-response

meta-analysis

≥600 mg of
caffeine/day

Coffee/caffeine consumption is
associated with a significantly

increased risk of spontaneous abortion.
[449]

Healthy pregnant
women Systematic review up to 300 mg of

caffeine/day

Lack of birth defects following
consumption of caffeine in healthy

pregnant women.
[354]

Carcinogenesis

Healthy subjects Dose-response
meta-analysis

1–3 cups of
coffee/day

Caffeinated but not decaffeinated
coffee consumption was negatively

associated with basal cell
carcinoma risk.

[450]

Healthy subjects Meta-analysis 5 cups of coffee/day

Caffeinated but not decaffeinated
coffee consumtion might have

chemo-preventive effects against
malignant melanoma risk, coffee.

[451]
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9. Maximum Caffeine Intake Recommendations

Because of the high caffeine consumption worldwide, continuous research on potential health
effects and on safety aspects has been performed. However, there is currently no recognized reference
standard for caffeine consumption, such as an acceptable daily intake (ADI) [452]. A number of
assessments have been made around the world, and exposure limits have been adopted for different
population groups. Some of the most important ones are presented in Table 5.

Individuals that do not consume caffeine daily are at greater risk of negative physiological
effects than the habitual consumers [127]. In the same way, for those who are highly sensitive to
the stimulating effects of caffeine, it is hard to determine the safety limit for its consumption [453].
Some slow metabolizers called popularly “ultra-sensitive”, can be over-stimulated by the delay in
caffeine metabolization and clearance in the body. Moreover, individual differences in responses to
caffeine may occur not only at the metabolic (pharmacokinetic) level but also at the drug-receptor
(pharmacodynamic) level and they can contribute to the quality and magnitude of direct physiological
effects and as a consequence to caffeine consumption. Additional factors are age, use of other drugs
and circadian factors [122]. The biological mechanisms of these possible sources of variation involve
interactions at multiple sites with the enzymes that break down caffeine in the liver, as well as receptors
in the brain that are affected by caffeine [454]. For these reasons, the exact amount of caffeine necessary
to produce adverse effects varies from person to person depending on their sensitivity to caffeine [453]
and therefore caffeinated beverages should be consumed by these individuals with caution, until a
person understands how it interacts with his/her particular genetic structure and health profile [455].
If willing to consume caffeine, ultra-sensitive consumers should try small amounts until they find
the amount appropriate or acceptable for them, offering the wellbeing sensation without causing
side-effects. For these people, decaffeinated coffee, which still contains residual amounts of caffeine,
may be more appropriate.

Commenting on adolescents and children, a study from The University Children’s Hospital in
Zurich showed that caffeine can interfere with children and teenagers’ (aged 10–16 years, n = 32)
sleep, possibly hindering proper brain development, and, therefore, limiting caffeine intake was
recommended [456]. Moreover, recently, EFSA recommended no consumption of caffeine for children
under 12 months [126] and this involves no consumption of all caffeine-containing drinks and foods,
such as chocolate drinks, maté, Camelia sinensis teas, and soft drinks, which are often offered by parents.

Attention deficit hyperactivity disorder (ADHD) is one of the most common children’s mental
health conditions. It involves symptoms of inattention or impulsivity and hyperactivity that lead
to behavioral impairments [457]. Many studies have investigated the possible role of caffeine
in ADHD. In an animal model study using rats, caffeine restored the function of dopamine as
a neurotransmitter in the brain [457]. It is also known that being a vasoconstrictor, caffeine can
mimic ADHD medications, such as amphetamine, that also constricts blood vessels and increase
concentration [458,459]. Notwithstanding the fact that caffeine appears to be beneficial for some
children (and also adults) with ADHD, lack of adverse effects is not guaranteed. Overconsumption
should be avoided in children, especially on a regular basis and over a long period of time. It is
noteworthy mentioning that in some Latin American producing countries, such as Brazil and Colombia,
for example, people start drinking coffee with milk early in childhood. In Brazil, a project to stimulate
the children’s coffee and milk consumption was launched in 2007 and continues to exist to date [460].
Such a small quantity (20 mL coffee per 200 mL cup) is supposed to be safe and has helped increase
attention and learning capacity of children and teenagers in these countries. While limiting caffeine to
teenagers to a great extent would be ideal, due to cultural habits and to the increasing demands placed
on this age group regarding school, sports, and even work in some places, caffeine consumption is
becoming more common among them. According to the American Academy of Pediatrics [461], for
all the above reasons and because of possible unknown medical conditions, developing teens should
consume no more than 100 mg of caffeine daily.
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Table 5. Caffeine intake safety limit for different age groups recommended by studies and regulatory
agencies around the world.

Agency or Study
Safe Limit of Caffeine

Consumption (mg/day or
mg/kg Body Weight – bw/day)

Equivalent to
(Approximately)

Adults

USA: Nawrot et al. [232] 1cup of 100 mL espresso coffee + 2 cups of
100 mL manual dripped coffee or

6 cups of 100 mL manual dripped coffee or
3 cups of 100 mL French press coffee + 1 cup

100 mL cold brewing coffee

Canada: Health Canada [462]
South Korea: Korean Food and

Drug Administration [463] 400 mg/day

Belgium: Belgium Superior
Health Council [325]

Europe: European Food Safety
Authority [126]

Europe: European Food Safety
Authority [126] Single doses of up to 200 mg

3 cups of 100 mL manual dripped coffee or
1 cup of 100 mL soluble coffee + 1 cup 100 mL

cold brewing coffee or
2 cups of 100 mL aero press coffee + 1 cup of

100 mL infusion coffee bag

Reproductive-aged women

International Life Science
Institute (ILSI) [464] Less than 5 to 6 mg/kg bw/day

(amounts estimated for a 70 kg bw woman)
1cup of 100mL espresso coffee + 1 cup of

100 mL French press coffee or
2 cups of 100 mL mocha coffee

Pregnant and lactating woman

USA: Nawrot et al. [232] 1 cup of 100 mL espresso coffee + 1 cup of
100 mL dripped coffee or

2 cups of 100 mL mocha coffee or
2 cups of 100 mL electric dripper coffee +

1 cup 100 mL ready to drink coffee beverage

New Zealand: New Zealand
Ministry of Health [452]

South Korea: Korean Food and
Drug Administration [463] 300 mg/day

Belgium: Belgium Superior
Health Council [325]

United Kingdom: UK Food
Standard Agency [465]

Europe: European Food Safety
Authority [126]

200 mg/day

3 cups of 100 mL manual dripped coffee or
1 cup of 100 mL soluble coffee + 1 cup 100mL

cold brewing coffee or
2 cups of 100 mL aero press coffee + 1 cup of

100mL infusion coffee bag

Children

USA: Nawrot et al. [232]
Canada: Health Canada [462]

(amounts estimated for a child a 5-8-year-old,
with 22 kg bw)

1 cup of 100 mL manual dripped coffee or
1 cup of 100 mL ready to drink coffee beverage

South Korea: Korean Food and
Drug Administration [463] < 2.5 mg/kg bw/day

Belgium: Belgium Superior
Health Council [325]

UK: Knight et al. [466] 45 mg/day (up to 4 years) 1 cup of 50 mL cold brewing coffee or
1 cup of 75 mL of manual dripped coffee

New Zealand: New Zealand
Ministry of Health [452] 95 mg/day (aged 5-12 years) 1 cup of 100mL manual dripped coffee +

1 cup of 50mL ready to drink coffee beverage

Europe: European Food Safety
Authority [126] < 3.0 mg/kg bw/day

(amounts estimated for a 5-8-year-old child,
with 22 kg bw)

1 cup of 100 mL manual dripped coffee or
1 cup of 100 mL ready to drink coffee beverage

10. Concluding Remarks

In the present review, reports on the contents of caffeine in coffee seeds, commercial ground
roasted coffees, instant coffees, and brews were summarized with focus on the variability of caffeine
content in brews due to cultural habits, which are reflected in the blend composition, extraction
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methods, and proportion of powder/water used for brews preparation. Lower amounts of caffeine in
coffee can be obtained by decaffeination processes and low-caffeine cultivars.

Caffeine intake varies significantly considering different types of beverages commonly consumed
in the various cultures and population groups around the world. Coffee typically contains more
caffeine than most other beverages and is widely and frequently consumed. Thus, it contributes
significantly to overall caffeine consumption in populations, particularly in adults and the elderly.
Considering the widespread caffeine consumption around the world, some assessments have been
made in order to establish the maximum safe consumption limit for different population groups. In this
case, the inclusion of caffeine on product labels may prevent its unsafe consumption.

A number of studies have demonstrated that caffeine is rapidly absorbed and extensively
metabolized mainly in the liver by CYP1A2, which is polymorphically distributed in human populations,
causing a considerable difference in clearance time and sensitivity of caffeine’s acute effect in the
body and this is likely to be an issue that warrants further investigation, regarding health outcomes.
Regarding the complexation between caffeine and chlorogenic acids, the bioacessibility and health
effects of these complexes are unknown. Considering that plain caffeine and caffeine from coffee were
reported to exert similar stimulating effects [127], it is more probable that caffeine is not unbound during
digestion and that these complexes are not absorbed. If absorbed, it is probable that they do not bind
adenosine receptors. If not absorbed, it is possible that such complexes could exert an antioxidative
effect in the digestive system, as it occurs when chlorogenic acids are bound to melanoidins. This
subject deserves a thorough investigation.

Caffeine has been the subject of extensive research for its long history of use and elevated
consumption worldwide both in natural foods and in medicines. The combined physiological and
psychological impacts of caffeine intake depend mainly on the individual genotype and on the pattern
and the degree of exposure to the substance. It must also be noted that most mechanistic explanations
on caffeine’s effects have been derived from acute administration to fasting subjects submitted to a
period of caffeine abstinence in order to ensure low plasma caffeine concentrations. It is thus difficult to
extrapolate the results to the usual pattern of caffeine consumption, given that most people consume it
at different intervals throughout the day and over periods of years. Controversies regarding caffeine’s
benefits and risks still exist, but reliable evidence is becoming available supporting its health promoting
potential when moderate amounts are consumed.
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