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Abstract: The quality of grapes, as well as wine quality, flavor, stability, and sensorial 

characteristics depends on the content and composition of several different groups of 

compounds from grapes. One of these groups of compounds are sugars and consequently 

the alcohol content quantified in wines after alcoholic fermentation. During grape berry 

ripening, sucrose transported from the leaves is accumulated in the berry vacuoles as 

glucose and fructose. The wine alcohol content continues to be a challenge in oenology, as 

it is also the study of the role of chemosensory factors in alcohol intake and consumer 

preferences. Several technical and scientific advances have occurred in recent years, such 

as identification of receptors and other important molecules involved in the transduction 

mechanisms of flavor. In addition, consumers know that wines with high alcohol content 

can causes a gustatory disequilibrium affecting wine sensory perceptions leading to 

unbalanced wines. Hence, the object of this review is to enhance the knowledge on wine 

grape sugar composition, the alcohol perception on a sensorial level, as well as several 

technological practices that can be applied to reduce the wine alcohol content. 
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1. General Introduction 

The sugar composition of berries has a key role in wine quality, since they determine the alcohol 

content of the wines. Grape berry sugar composition and concentration change during grape ripening 

and can be influenced by many factors, such as environment and viticulture management. 

Alcohol is the most abundant volatile compound in wine and it can modify both the sensory 

perception of aromatic attributes and the detection of volatile compounds [1]. Therefore, alcohol is 

important for wine sensory sensations but also by their interaction with other wine components, such 

as aromas [1] and tannins [2,3], also influencing wine viscosity and body [4] and our perceptions of 

astringency, sourness, sweetness, aroma, and flavor [5]. 

In the last years, the alcohol content in wines has tended to increase, due to different factors. One of 

them is the potential sugar increase in musts, attributed to the probable climate change [6,7]. However, 

at the same time, a great number of consumers from several countries, especially from Europe, demand  

more reduced alcohol beverages (9%–13% v/v) as a result of health and social concerns (i.e., traffic 

penalties) [8–10]. The increasing alcohol levels in wine could be resolved using techniques to remove 

or lower the wine alcohol content. However, it is important to know the limitations of these techniques 

on the wine sensorial characteristics, as well as providing information related to wine quality and 

consumer acceptance of these wines. 

Mouthfeel and texture are the major determinants for consumer’s preference for foods, including 

beverages [11–13]. Viscosity, density, and surface tension are the essential rheological properties 

which affect the mouthfeel of liquid food products, such as wine. They also modify other sensory 

properties like saltiness, sweetness, bitterness, flavor, and astringency [14–16]. It is important to 

understand how and where the interactions are generated as they have impacts on the flavor perception 

and the key sensory profile of food products. There are physical interactions between the components 

in the food or beverage matrix influencing the volatiles release [17] and/or viscosity [18], and  

multi-modal interactions resulting from the cognitive or psychological integration of the anatomically-

independent sensory systems [19]. 

Physical viscosity, density, and yield stress have also been used to give a more comprehensive 

profile of the rheological properties of fluids [20]. While white wine alcohol concentration was found 

to be highly correlated with the perceived intensity and physical measurements of viscosity and 

density, the perceived viscosity and perceived density maxima were best described by quadratic and 

cubic models, respectively [4]. Intensity maxima for viscosity and density occurred at 10% (v/v) and 

12% (v/v) white wine alcohol concentration, respectively, although white wines of 7% (v/v) to  

14% (v/v) alcohol concentration were not statistically differentiated for either attribute (perceived 

viscosity and density) [4]. For example, alcohol is commonly utilized in composing various beverages 

and flavored vodkas. For instance, in 2008, Finland Vodka Company noted a 30% increase in the sale 

of flavored vodkas, which contain herb extracts and essences, plant distillates, fruits and their juices, and 

volatile aromas [21]. According to the work of Pankiewicz and Jamroz [21], a link was found between 

the concentrations of alcohol in pure vodka and in its blends with pear nectar and the perceived 

sensory viscosity and density of the drink. 
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Thus, the intention of this review is to contribute to a better knowledge on the grape sugar 

composition, including the factors that influenced their accumulation during grape ripening, the alcohol 

perception on sensorial level, as well as technological practical to reduce the wine alcohol content. 

2. Grape Berry Composition—Sugars 

Sugar accumulation in grape berries is an important phenomenon which has a great impact on the 

amount of alcohol in wine. In addition, in berries, total sugar is also an important fruit quality factor in 

table grapes. The predominant sugars that are present in grapes are glucose and fructose, with only 

trace content of sucrose in grape berries of most cultivars. Only a few high-sucrose content cultivars 

are detected in Vitis rotundifolia and hybrids between Vitis labrusca and Vitis vinifera [22–24]. 

Shiraishi et al. [25] identified two types of grapes based on sugar composition: hexose accumulators 

for which the glucose/(fructose + sucrose) ratio was >0.8, and sucrose accumulators for which this 

ratio was <0.8. According to Dai et al. [24], most Vitis vinifera cultivars have a glucose/fructose ratio 

of 1 at maturity, while this ratio varies from 0.47 to 1.12 in wild species. In addition, only few a 

species (Vitis champinii and Vitis doaniana) accumulate more glucose than fructose. Liu et al. [26] 

analyzed sugar concentration of 98 different grape cultivars and concluded that glucose and fructose 

were the predominant sugars in grape berries ranging from 45.86 to 122.89 mg/mL and from 47.64 to 

131.04 mg/mL, respectively. Additionally, sucrose was present at trace amounts in most of the 

cultivars studied (except for two cultivars of hybrids between Vitis labrusca and Vitis vinifera, which 

contained large amounts of sucrose). 

The accumulation of sugar in the form of glucose and fructose within the cellular medium, 

specifically in the vacuoles, is one of the main features of the ripening process in grape berries and is a 

major commercial consideration for the grape grower, winemaker, and dried grape producer. Thus, 

sugar content is an indicator often used to assess ripeness and to mark the harvest. Moreover, as most 

of the sugar is fermented to alcohol during the winemaking process, the measurement of sugar content, 

the so-called “must weight”, allows the control of alcohol content in the wine. 

3. Sugar Accumulation during Grape Ripening 

A schematic representation of grape berry development, sugar uptake, and metabolism during grape 

maturation is shown in Figure 1. Thus, during grape berry sugar accumulation, sucrose is produced  

in leaves by photosynthetic carbon assimilation and is transported to the berry in the phloem [27]. 

Sucrose is loaded into the phloem by either a symplastic or apoplastic mechanism [28]. The presence  

of an apoplastic step requires the involvement of membrane-located sugar transporter proteins  

(“hexose transporters” in Figure 1) mediating the exit of sucrose from the phloem, and the uptake and 

compartmentation of sugars across the plasma membrane and the tonoplast of flesh cells [29]. 
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Figure 1. Schematic representation of grape berry development, sugar uptake, and 

metabolism during grape maturation. The curve indicates changes in berry size and two 

possible pathways are indicated for sugar uptake and metabolism. Legend: (-----) berry 

changes size. P1 and V1—Hexose transporters; P2 and V2—Sucrose transporters. 

In the first phase of berry growth most of the sugar imported into the fruit is metabolized and grapes 

contain relatively low levels of sugars. However, at véraison sugar accumulation begins and the 

imported sucrose is converted into hexoses, which are stored in the vacuole. The grape berries 

accumulate glucose and fructose in equal amounts at a relatively constant rate during ripening [30]. 

According to several authors [31,32], massive accumulation of glucose and fructose in the vacuoles of 

mesocarp cells occurs after véraison and, twenty days after this period, the hexose content of the grape 

berry is close to 1 M, with a glucose/fructose ratio of 1. Since sucrose is the major translocated sugar 

in grape vine, the rapid accumulation of hexoses characterizing berry ripening must involve the 

activity of invertases. Their expression is high at early stages of berry development, but it declines 

greatly when hexose accumulation starts [28]. In addition, Hawker [33] found that invertase enzyme 

activity in Sultana berries increased immediately after flowering and that the activity peaked 6–7 

weeks later, at véraison, when the rapid accumulation of hexoses commenced. According to the same 

author, another enzyme that might be involved in the breakdown of sucrose is sucrose synthase, which 

also increases during véraison, but their maximal activity is low compared to the level of invertase 

activity (200–300 times less). Invertases catalyze hydrolysis of sucrose provided by the phloem 

conducting complex into glucose and fructose. Different invertase isoforms are localized in the cell 

wall, cytoplasm, and vacuole. Hydrolysis of sucrose by cell wall invertase may promote unloading by 

preventing its retrieval by the phloem, and by maintaining the sucrose concentration gradient. 

4. Factors that Affect the Sugar Accumulation and Level in Grape Berries 

Berry sugar accumulation is regulated by complex mechanisms. For example, the expression of 

disaccharide transporter genes (DSTs) and monosaccharide transporter genes (MSTs), sugar 

transporter proteins that mediate the exit of sucrose from the phloem and the uptake of sugars across 

the plasma membrane and the tonoplast of flesh cells, may be affected by various parameters, 
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including light, water, and ion status, wounding, fungal and bacterial attacks, and hormones [34–36]. 

According to several authors [24,37] sugar composition is mainly determined by genotype, and sugar 

concentration is strongly affected by several factors, such as environment and cultural management. 

For example, irrigation has a variable effect on sugar accumulation in the grape berries. Thus, 

according to several studies [38–42], there is a variation in sugar concentration (increase, decrease or 

no changes) as a result of irrigation practice. Esteban et al. [39] analyzed the impact of water 

availability on the yield and must composition of Vitis vinifera L. cv. Tempranillo grapes during  

three-year period and concluded that total soluble solids, and the concentration of glucose and fructose 

were significantly higher in the irrigated vines than in the non-irrigated vines, mainly towards the end 

of ripening. On the other hand, Intrigliolo et al. [41] consider that the effects of irrigation on must and 

wine composition are largely dependent of climatic characteristics of each year, namely by the 

different rainfall amount and crop levels. 

For several researchers [43,44] temperature is an important environmental factor that affects the 

grape sugar accumulation. For temperatures above 25 °C, net photosynthesis decreases even at 

constant sun exposure [45]. In addition, for temperatures above 30 °C, several authors [46,47] have 

reported a reduction of berry size and weight, and metabolic processes and sugar accumulation may 

completely stop. However, although high temperatures accelerate grape maturation, according to 

Coombe [47] temperature effects on final sugar accumulation are reported to be relatively small. 

Higher temperatures (30 °C) may lead to higher suspended solid concentrations, but Brix levels higher 

than 24–25 Brix (238.2 g/L of sugar to 249.7 g/L of sugar; 14.15% (v/v) estimated alcohol to 14.84% 

(v/v) estimated alcohol) are likely not due to photosynthesis and sugar transport from leaves and wood, 

but to concentration by evaporation [48,49]. In the last years, the alcohol content of wines tended to 

increase, due to different factors. One of them is the sugar increase in grapes and must, attributed to the 

climate change [50]. However, according to [44], the extremely high sugar concentrations reached at 

harvest today, especially in warm climates, may be rather associated with the desire to optimize 

technical or polyphenolic and/or aromatic maturity. Finally, moderate water deficit, UV-B radiation, 

and low temperatures (below 30 °C), have a positive effect during grape ripening by the increasing of 

sugar content in grape berries [51,52]. Duchêne and Schneider [53] showed that, over the last 30 years, 

the estimated alcohol level of Riesling grapes in Alsace, increased 2.5% (v/v) due to warmer ripening 

periods and earlier phenology. Additionally, Godden and Gishen [54] observed in Australian wines an 

increase in the alcohol content from 12.3% (v/v) to 13.9% (v/v) for red wines and from 12.2% (v/v) to 

13.2% (v/v) for white wines, between 1984 and 2004. 

5. Psychophysiology of Alcohol Perception 

Taste strongly influences food intake [55], including alcohol consumption [56,57]. Alcohol 

activates olfactory, taste, and chemesthetic receptors and each modality is carried centrally by different 

nerves; these inputs affect the perception evoked by alcohol. Chemesthesis is defined as the chemical 

sensibility of the skin and mucous membranes. Chemesthetic sensations arise when chemical 

compounds activate receptors associated with other senses that mediate pain, touch, and thermal 

perception. Examples of chemesthetic sensations include the burn-like irritation from chili pepper, the 

coolness of menthol in mouthwashes and topical analgesic creams, the stinging or tingling of 
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carbonation in the nose and mouth, and the tear-induction of onions. The oral consumption of alcohol 

by humans is accompanied by chemosensory perception of flavor, which plays an important role in its 

acceptance or rejection. Three independent sensory systems, taste, olfaction, and chemosensory 

irritation, are involved in the perception of flavor in food and in wine in particular (Figure 2) [58]. 

 

Figure 2. Mechanism of flavor perception in food and wine intake. Adapted from  

Redondo et al. [59]. 

As reported by Allen et al. [60], humans perceive alcohol as a combination of sweet and bitter tastes 

odors (Figure 3), and oral irritation (burning sensation). However, several researchers like Lanier et al. [58] 

found that some people describe experiences of more bitterness and less sweetness when drinking 

alcohol, and this directly relates to the genes they have inherited and individual differences in 

bitterness and sweetness are predictors of alcohol liking and intake in young adults. In addition, the 

perception of bitterness and sweetness also vary as a function of alcohol concentration [61,62]. 

 

Figure 3. Diagram showing the signal transduction pathway of bitter taste. A, taste bud;  

B, taste cell; and C, neuron attached to B. Adapted from Hldavis4 [63].  
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Multiple studies [64,65] have linked variation in TAS2R (taste receptor, type 2) bitter receptor 

genes to alcohol intake. An important gene contributing to PTC (the ability to taste the bitterness of 

phenylthiocarbamide) perception has been identified [66]. The gene (TAS2R38—taste receptor,  

type 2, member 38), located on chromosome 7q36, is a member of the bitter taste receptor family. 

There are two common molecular forms (proline-alanine-valine (PAV) and alanine-valine-isoleucine 

(AVI)) of this receptor defined by three nucleotide polymorphisms that result in three amino acid 

substitutions: Pro49Ala, Ala262Val, and Val296Ile. Duffy et al. [67] reported that TAS2R38 

haplotypes are associated with alcoholic intake, with AVI homozygotes, who perceive less bitterness 

from the bitter compound propylthiouracil (6-n-propylthiouracil (PROP) is a thiouracil-derived drug 

used to treat hyperthyroidism, including Graves’ disease, by decreasing the amount of thyroid hormone 

produced by the thyroid gland) consuming, significantly, more alcoholic drinks than heterozygotes or 

PAV homozygotes. More recently, Dotson et al. [68] reported associations between TAS2R38 and 

TAS2R13 polymorphisms and alcohol intake derived from the Alcohol Use Disorders Identification 

Test (AUDIT) in head and neck cancer patients. 

In addition, to bitter and sweet sensations, as we mentioned before, alcohol also causes irritation 

commonly described as burning or stinging [58]. Burning sensations in the mouth are due, in part,  

to activation of the transient receptor potential vanilloid receptor 1 (TRPV1) that is activated by  

noxious heat, capsaicin [69,70], and alcohol even at relatively low concentrations (0.1% to 3% v/v) [71]. 

When the TRPV1 gene is knocked out in mice, knockouts have a higher preference for alcohol and 

consume more than wild-type mice [72]. Collectively, these data suggest the TRPV1 receptor likely 

plays a role in the perception and acceptability of alcohol. 

Many factors underlie the role that alcohol flavor plays in the development of alcohol preference 

and consumption patterns. Such factors include the activation of peripheral chemoreceptors by  

alcohol [70]; central mechanisms that mediate the hedonic responses to alcohol flavor [73]; learned 

associations of alcohol’s sensory attributes and its post digestive effects and early postnatal exposure 

to alcohol flavor [74,75]; and genetically determined individual variation in chemosensation [21,61]. 

The study of the role of chemosensory factors in alcohol intake and preferences is of special interest 

because the past decade has witnessed significant technical and scientific advances, which include 

identification of receptors and other key molecules involved in the transduction mechanisms of 

olfaction [76,77], chemosensory irritation [78], and taste [79–82]. 

6. The Effects of Ethanol on the Body and Other Sensory Characteristics of Wines 

The terms “body” and “fullness” are wine attributes frequently used to describe the in-mouth 

impression of both red and white table wines [83]. Wines are regularly classified as being light, 

medium, or full bodied. Presumably as wines of different style appeal to different market segments, 

and are consumed in different social and culinary contexts. However, despite its widespread use and 

application, there appears to be a lack of common understanding within the wine trade as to what 

sensory aspects contribute to wine body. Most importantly, there appears to be no agreed position on 

the necessary conditions for “fullness” in wine or other alcoholic beverages. Despite the apparent lack 

of agreement on what constitutes body in wine, Gawel [84] showed that experienced wine tasters, with 

extensive practical training, had an equivalent understanding of “body” in white wines, and considered 
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the feature important in distinguishing between the wines. It has long been speculated that alcohol 

strongly contributes to palate fullness in white wine [85]. Pickering et al. [4] were the first to formally 

test this premise. They found that the perceived density of a de-alcoholized wine generally increased 

with increasing alcohol over a 14% (v/v) range, while its perceived viscosity was highest at 10% (v/v) 

ethanol. Later work [86] using model wine solutions showed a positive monotonic effect of alcohol 

content on both perceived viscosity and density over the same alcohol range, further supporting the 

existence of a positive relationship between alcohol content and fullness in white wine. 

The contribution of ethanol to wine sensory properties extends beyond that of possibly enhancing 

fullness. Ethanol affects the headspace concentrations of many wine volatiles [87], and also contributes 

to sweetness [88]. Furthermore, ethanol induced palate warmth and perceived viscosity may indirectly 

affect both aroma and flavor perception. Moreover, according to the work of Joshi and Sandhu [89] the 

results of sensory evaluation of different vermouths prepared with different ethanol concentrations, 

sugar levels and spices extract showed significant differences for various sensory quality parameters. 

The data obtained revealed that for color and appearance, 12% (v/v) and 15% (v/v) of alcohol with 

2.5% (w/v) spices extract scored better, but for aroma virtually all the treatments were comparable. 

However, in total acidity vermouth with 18% (v/v) ethanol scored lower than those with 12% (v/v) and 

15% (v/v). In bitterness and astringency, vermouths of all the treatments were comparable. In overall 

quality, apple vermouth with 15% (v/v) ethanol, 2.5% (w/v) spices extract, and 4% (v/v) sugar content 

scored the highest. So, bitterness, astringency, and total acidity are influenced by the alcohol vermouth 

concentration. However, for Noble [90], the higher concentrations of alcohol in wines contribute to 

enhance bitterness intensity, but have no effect on perception of astringency. 

7. Technological Practical to Reduce the Wine Alcohol Content and Their Sensorial Impact 

Alcohol fermentation is done by yeast and some types of bacteria. These microorganisms convert 

berry sugars into ethyl alcohol and carbon dioxide. Alcoholic fermentation begins after glucose enters 

the yeast cell (Saccharomyces cerevisiae). The glucose is broken down into pyruvic acid, which is then 

converted to carbon dioxide, ethanol, and energy for the cell. Humans have taken advantage of this 

process in making wine, bread and beer. 

Nowadays, the market in general, appreciated full body red wines with intense and complex flavor 

profiles produced from grapes with adequate phenolic ripeness, optimal flavor balance and lower 

acidity [91–95], but the juice from such grapes also contains high sugar content and consequently leads 

to wines with high alcohol contents (14%–16%, v/v) [91,96]. Alcohol taste near or above this 

threshold is described as bitter or as sweet and/or sour [88]. Nevertheless, in recent years there is a 

consumer demand for wines with lower alcohol content (9%–13%, v/v), that apparently are healthier 

since the consumer’s attitudes are changing [8,9,97]. In addition, consumers also perceive that high 

alcohol levels affects wine sensory perceptions, leading to unbalanced wines. On the other hand, wines 

made from grapes with high sugar levels will probably show low acidity and poor aromatic notes. 

These wines can be perceived as more hot on the palate and the volatility and sensory perception of 

other volatile compounds affects detection thresholds [5]. Additionally, in some countries, winemakers 

have to pay taxes when alcohol content in wine is over 14.5% (v/v), increasing in this way the wine 

final price [97]. 
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Wines with higher alcohol levels changed their wine sensory profile [98], partly by decreasing the 

volatility of wine aroma compounds, since up to a certain level of alcohol a decrease in fruity aromas 

was observed, being that many of these wines considered out of balance, and dominated by  

alcohol-associated attributes [1]. The effect of alcohol on the sensory perception of fruitiness from a 

mixture composed by nine fruity compounds at the maximum concentrations found in the wines was 

evaluated by Escudero et al. [99]. According to these authors, when there is no alcohol in the mixture, 

the smell is strong; however, the intensity of the smell decreases with the content of alcohol in the 

mixture being at 14.5% (v/v) no longer perceived. It was also observed by other authors [2,5] that the 

bitterness intensity was higher when the alcohol content increased and astringency decreased linearly 

when the content of alcohol increased, too. However, Noble [90] showed also that higher 

concentrations of alcohol enhance bitterness intensity in wines, but observed no effect on perception of 

astringency. According to the author [90], subjects with high salivary flow rates perceived maximum 

intensity sooner and reported shorter duration of both bitterness and astringency than low-flow judges. 

In spite of the final quality and acceptance of wines, musts with high sugar content usually show 

additional oenological problems, as difficulty to carry out alcoholic fermentation, with sluggish 

fermentation, and even fermentation stops [100]. This fact gives origin to new problems, due to the 

microbiological instability of wines with high levels of residual sugars. In an effort to meet the 

demands of consumers for wines with lower alcohol, winemakers are searching for technological 

strategies to low the wine alcohol content. There are some technical procedures to reduce the alcohol 

content that could be done either by reducing the concentration of sugar present in grapes [50,101], or 

by removing alcohol from wine [92]. 

The grape sugar reduction involves harvesting grapes at an earlier stage of ripening [94]. However, 

the wine composition and quality changed due to fewer aromas flavor and color intensity, and 

increased acidity. 

During alcoholic fermentation, respiration of sugars by non-Saccharomyces yeasts has been 

recently proposed for lowering alcohol levels in wine. Development of industrial fermentation 

processes based on such an approach requires the identification of yeast strains able to grow and 

respire under the relatively severe conditions found in grape must. In a work performed by  

Quirós et al. [102], physiological features of some strains of Metschnikowia pulcherrima and 

Kluyveromyces yeasts that constitute the main part of the microbiota of sound ripe grapes, and are 

known to predominate during the initial stages of wine fermentation [103], suggest that they are 

appropriate for lowering alcohol yields by respiration. Although the concentration of molecular oxygen 

is particularly low during fermentation, mainly due to carbon dioxide release, several practices 

employed during the first stages of winemaking such as pumping over, délestage, or 

macrooxigenation, can increase oxygen concentration. These, or ad hoc oxygenation practices, would 

allow for the partial respiration of grape sugars by the appropriate yeast strains. However, in a regular 

fermentation, S. cerevisiae usually dominates the fermentation, being this practice somewhat difficult 

and with poorer results. 

For using S. cerevisiae strains in alcohol reduction, different techniques have been applied like 

expression of NADH-dependent lactate dehydrogenase or a bacterial NADH oxidase in yeast [104]. 

Although both techniques reduced alcohol production, the wine quality has been spoiled due to  

the detrimental byproducts, like lactic acid, acetaldehyde, and some oxidized compounds [104].  
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Non-genetically modified (non-GM) approaches, such as evolutionary engineering, has been practiced 

thanks to adaptive evolution [105]. Adaptive evolution can be applied by diversion of carbons towards 

the pentose phosphate (PP) pathway leading to lower availability of carbons for ethanol production by 

elimination of carbons in the form of carbon dioxide and reduced acetate production and increased 

ester formation. Another approach is evolutionary engineered yeasts with sugars diverted towards 

glycerol and 2,3-butanediol. According to Tilloy et al. [104] these engineered yeasts have ability to 

reduce the alcohol content of wine by 0.5% to 1% (v/v). 

It is also possible to reduce the sugar in musts to obtain wines with a slight alcohol reduction by the 

use a several technologies, namely nanofiltration. Thus, according to García-Martín et al. [50] the 

sugar reduction in must by using the nanofiltration technology resulted in a satisfactory alcohol 

reduction in the resulting wine, but with a slight loss in the color and aroma. 

Several membrane technologies have also been developed for alcohol removal from wine, in the 

winery. They are reported to allow the reduction of the alcohol content under soft conditions in order 

to try to preserve the sensory characteristic of the original wine [8,92,106]. Semi-permeable 

membranes by which alcohol can be separated from wine have been available since the 1970s [92]. 

The benefit of membrane technologies (nanofiltration, membrane contactor, reverse osmosis, and other 

membrane techniques) is the low operations cost, and the advantage to work at low to moderate 

temperatures, being limited by the negative effects on wine aroma chemical reactions or degradation [107]. 

This procedure will be used to reduce only 1% or 2% (v/v) of the alcohol content in order to obtain 

more balanced wines with complete aromatic potential and phenolic ripeness [93,108], as established 

by the European regulation (EC Reg. 606/2009) [109] reduction of the actual alcoholic strength by 

volume may not be more than 2% (v/v), but more recently this limit has been changed. Thus, 

according to the Commission Regulation (UE) N 144/2013 [110] the alcohol content may be reduced 

by a maximum of 20% (v/v), OIV-ECO 433-2012 [111]. The separating techniques that can be used to 

reduce the alcohol content according to OIV (Resolution OIV-Oeno 394A-2012) [112] are: partial 

vacuum evaporation, membrane techniques, and distillation. Of these, the most used in the wineries are 

the spinning cone column and reverse osmosis system to produce lower alcohol wines or to adjust the 

ethanol content [3,92]. Reverse osmosis, is a membrane separation process that is probably the most 

successfully-employed procedure for partial dealcoholization [113]. The results showed that this 

technique has the advantage of having a minimal negative influence on wine taste, by modifying only 

the wine alcohol content while the other parameters remained unaffected, since it is performed at low 

temperature [92]. Reverse osmosis could be a technique for improving a wine’s balance in regions 

where wines can reach high alcohol content. However, this wine alcohol reduction process could also 

negatively affect the wine sensorial quality, leading in the worst cases to an unacceptability of the 

wine, by changing the complex equilibrium among organic compounds responsible for wine taste, 

flavor and mouth feel. The observed modifications in reduced alcohol wine sensorial characteristics 

could be due to the reduction in alcohol content, which plays an important role in wine taste [5], mouth 

feel [2,4], and olfactory wine properties [1,99]; and in the losses of volatile and polyphenolic 

compounds, during the alcohol reduction process [106,114]. Removal of alcohol from wine reduced 

fruity aromas, and enhanced vegetative and sweaty aromas in white wines [93]. According to King and 

Heymann [115] reducing the alcohol content of oaked white wine using spinning cone technology 

results in a minimal impact on sensory composition and consumer preferences since no perceptible 
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changes to the sensory profile were observed. These authors showed that panelists and consumers were 

unable to detect changes among wines with a 1% (v/v) difference. This work suggests that the use of 

technology to partially reduce the white wine alcohol content without reducing the wine quality is of 

beneficial use to the wine industry. However, Meillon et al. [3], using the reverse osmosis treatment to 

reduce the wine alcoholic degree of Merlot and Syrah wines, showed that the wine sensory perception 

and their appreciation/acceptability by consumers was modified, particularly a decrease in the 

perception of the wine balance was observed. According to the same authors, a significant impact on 

the sensory properties of red wines with a decrease in the perception of hotness, bitterness, aromas, and 

persistency in the mouth was observed, and also an increase in the perception of astringency and a 

decrease in the perception of wine complexity. Generally, alcohol reduction was less well accepted for 

red than for white wines, and it was also variable from one grape variety to another one. In this way, 

there are several kinds of interactions between alcohol and wine components that make difficult the 

generalization of alcohol reduction effect on the sensory perception of wines [3]. Lisanti et al. [116] 

concluded that wine alcohol reduction using the membrane contactor technique affected the red wine 

sensorial properties. The most reduced olfactory notes were those of cherry and red fruits, particularly 

in wine with 5% (v/v) alcohol reduction. The alcohol reduction process also increased the intensity of 

astringency, bitterness, and acidity. However, according to the same authors an alcohol reduction of 

2% (v/v), has slightly affected the wine sensory profile. 

8. Final Remarks 

Grape sugar concentration is a parameter to predict grape and wine quality. However, in recent 

years, the sugar concentration has increased in grapes, attributed to climate change; therefore, the 

alcohol content of wines tended to increase. The high sugar concentrations reached at harvest today 

may, rather, be associated with the desire to optimize technical or polyphenolic and/or aromatic 

maturity. 

Though, consumption of alcohol beverages is accompanied by chemosensory perception of flavor, 

which is an important factor for acceptance or rejection.  Thus, the main factors for selection of the wine 

alcohol-reducing technique are maintaining quality, in terms of flavor, in the final wine, and lowest cost. 

The request for less alcoholic wines has led to technological innovations to low alcohol content 

without changing the wine sensorial profile. 
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