
Citation: Altuwaijri, G.A.;

Muhammad, G.

Electroencephalogram-Based Motor

Imagery Signals Classification Using

a Multi-Branch Convolutional Neural

Network Model with Attention

Blocks. Bioengineering 2022, 9, 323.

https://doi.org/10.3390/

bioengineering9070323

Academic Editors: Yuling Yan and

Andrea Cataldo

Received: 31 May 2022

Accepted: 12 July 2022

Published: 18 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Article

Electroencephalogram-Based Motor Imagery Signals
Classification Using a Multi-Branch Convolutional Neural
Network Model with Attention Blocks
Ghadir Ali Altuwaijri and Ghulam Muhammad *

Department of Computer Engineering, College of Computer and Information Sciences, King Saud University,
Riyadh 11543, Saudi Arabia; 438203980@student.ksu.edu.sa
* Correspondence: ghulam@ksu.edu.sa

Abstract: Brain signals can be captured via electroencephalogram (EEG) and be used in various
brain–computer interface (BCI) applications. Classifying motor imagery (MI) using EEG signals is
one of the important applications that can help a stroke patient to rehabilitate or perform certain tasks.
Dealing with EEG-MI signals is challenging because the signals are weak, may contain artefacts,
are dependent on the patient’s mood and posture, and have low signal-to-noise ratio. This paper
proposes a multi-branch convolutional neural network model called the Multi-Branch EEGNet with
Convolutional Block Attention Module (MBEEGCBAM) using attention mechanism and fusion
techniques to classify EEG-MI signals. The attention mechanism is applied both channel-wise and
spatial-wise. The proposed model is a lightweight model that has fewer parameters and higher
accuracy compared to other state-of-the-art models. The accuracy of the proposed model is 82.85%
and 95.45% using the BCI-IV2a motor imagery dataset and the high gamma dataset, respectively.
Additionally, when using the fusion approach (FMBEEGCBAM), it achieves 83.68% and 95.74%
accuracy, respectively.

Keywords: electroencephalogram; motor imagery; convolutional neural network; attention
mechanism; brain–computer interface

1. Introduction

Brain–computer interface (BCI) systems interact between humans and machines with-
out physical contact. The recent progress in this area has enabled devices to be controlled
by brain signals [1]. The most used brain signals are electroencephalography (EEG) signals
since they are non-invasive (measured from the scalp), have a high time resolution, and are
relatively inexpensive [2–4]. Dealing with EEG signals is challenging because the signals
are weak, may contain artefacts, are dependent on the patient’s mood and posture, and
have low signal-to-noise ratio [5].

To measure this signal, researchers use an elastic cap worn in the head where the EEG
electrodes are fitted. Such arrangement ensures that each experiment session’s data are
collected from the same area on the scalp [6]. An EEG signal is a combination of numerous
frequencies of the brain signal. The majority of studies [7] employ a frequency range
of 0–35 Hertz. However, we choose the whole band of frequencies without focusing on
band-limited signals.

This paper focused on EEG signals based on motor imagery (MI), which is the act of
envisioning limb movement. A subject’s MI data are generated when he or she imagines
moving a particular limb. In the early 2000s, researchers discovered that using common
spatial patterns (CSP) was the best technique to identify EEG-based MI (EEG-MI) signals.
For this approach, a collection of linear transformations, also known as spatial filters or
distance optimizers, is sought over a variety of classes. The energy of the filters constitutes
the feature set, which is fed to a support vector machine (SVM) [8].
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The decoding of EEG-MI is not only related to tremendous prospective but also crucial
applications such as healing [9,10], gaming [11], and robotics [12,13]). However, with
regard to data gathering and classification methodologies, there are significant limitations.
The goal of this study is to develop a deep learning-based classification model, which can
accurately decode EEG-MI signals with high kappa values, which is an evaluation statistic
that relates between the system accuracy and coincidental accuracy. Even though deep
learning has achieved success in various disciplines, its use to classify EEG-MI signals lacks
good performance. This is partially owing to the weak signal-to-noise ratio, the presence of
motion artefact and noise, and spatial correlation of the signals.

The fundamental challenge with EEG-MI categorization, according to preliminary
observations, is that it is a more subject-specific task, which implies that every individual
has distinctive characteristics that help the system classify the MI more effectively. The
rehabilitation of stroke patients requires the use of a subject-specific EEG-MI classification
scheme. This problem can be solved by multi-branch and multi-scale structures which
make the model more generalized; however, these structures are often computationally
expensive and hence, require much time to train. Therefore, we propose a lightweight
deep learning-based EEG-MI model, which conforms the subject-specific task with fixed
hyperparameters.

Contributions: The paper has the following main contributions:

• Develops a lightweight deep learning-based multi-branch model to classify EEG-
MI signals.

• Applies attention mechanism to the proposed model to improve the accuracy.
• Develops a general model that can perform well with fixed hyperparameters.
• Investigates the effect of the fusion technique in the proposed model.
• Validates the efficiency and strength of the model in data variations by using multi-

ple datasets.

The following is how the paper is organized. The literature review is provided in
Section 2. The suggested Multi-Branch EEGNet with Convolutional Block Attention Module
(MBEEGCBAM) is presented in Section 3. Section 4 provides experimental results and
discussion, while Section 5 concludes the paper.

2. Background
2.1. Related Work

In the handcrafted method, the feature extraction and the classification are done
separately [14,15], while in deep learning, these can be done in just one processing block.
This gives it an advantage to success, especially in medical signals [16,17]. The most often
utilized model in EEG-MI related tasks is convolutional neural networks (CNNs) [18–22],
but deep belief networks (DBN) [19], stacked autoencoders (SAEs) [20], and recurrent
neural networks (RNNs) [19,23] have also been utilized. In the processing of EEG-MI
data, CNN offers several benefits, including the capacity to acquire time-based and spatial
information concurrently, the facility to exploit the hierarchical structure of specific signals,
and to provide excellent precision on large datasets.

CNN models are now applied in a variety of domains, including EEG-MI. The ma-
jority of articles that use deep learning to identify EEG-MI fall into one of four categories,
depending on the input structure. Different features, spectral representation, raw signals,
or topological maps can all be used as input formulations [7]. In determining the input
formulation to employ, the design of the model is crucial.

Some researchers have done some preprocessing of EEG signals before feeding them
into a CNN. Sakhavi et al. presented one such approach in [24]. In the EEG recordings,
the authors applied the filter-bank CSP (FBCSP) [25], then retrieved temporal information
and applied channel-wise convolution. The authors used the BCI-IV2a dataset to test their
approach, which yielded an average accuracy of 74.46%.

Inspired by the FBCSP, a ConvNet was proposed to classify EEG-MI signals; the input
to the ConvNet is raw EEG data [26]. In [18], two models were presented; the first one was
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the ShallowConvNet, and the second one was the DeepConvNet. The ShallowConvNet has
fewer layers while the DeepConvNet is a deeper version of the ShallowConvNet having
extra aggregating layers. In [27], EEGNet was proposed as a dense form of prior techniques.
It involves a depthwise convolution and a separable convolution, which permits the
network for a reduction in the number of parameters. Riyad et al. [28] proposed a structure
that has the EEGNet followed by an inception block. In [29], the authors proposed temporal
convolutional networks (TCNs) with the EEGNet. All of these models address EEGNet’s
flaws, which limiting network volume and leading to overfitting. Because of these flaws,
even with a larger network, the throughput is still subpar. A multi-branch model, which
absorbs attributes from different branches, is recommended as a consequence of this.

Amin et al. developed a multilayer fusion approach to EEG-MI classification in [30].
The features from different layers of a CNN are fused using several fusion strategies. They
tested using two classification approaches: subject-specific and cross-subject, and the test
included two datasets: BCI-IV2a and high gamma dataset (HGD). In both datasets, the
multilayer CNNs with MLP (MCNN) model produced more accuracy than the other state-
of-the-art (SOTA) models in the subject-specific classification. Furthermore, the multilayer
CNNs with cross-encoding autoencoders (CCNN) model showed a significant accuracy
gain in the cross-subject classification. The same researcher proposed in [31] a two-attention-
block inception model. This produced decent accuracy in the BCI-IV2a dataset (74.7%) and
HGD (94%).

Recently, a multi-branch 3D CNN to maintain spectro-temporal characteristics was
proposed in [22]. The authors embodied the three dimensions as a series of two-dimensional
representations based on the sensors’ locations and then used the temporal information
as the third dimension. To increase the number of training samples, the authors utilized
a cropped method. Their finding showed that the proposed 3D CNN outperformed the
three single networks in terms of accuracy. In another work, 3D filters were used for the 3D
CNN-based EEG-MI classification model [32]. In practice, the 3D filter is harder to construct,
whereas the 1D filter is simpler. A network having three one-dimensional filters to cover all
three dimensions in 3D may outperform traditional convolutional networks while requiring
much less computation, according to researchers in [33]. In our proposed model, there is a
2D CNN with two 1D filters applied along time/space; this model can lessen computation
while increasing the model’s skill to cope with subject-specific difficulties compared to
3D filters.

The authors in [34] introduced a CP-MixedNet structure, where each of the convolution
layers collects EEG temporal information at different scales. Using the self-attention process,
the authors of [35] developed a spatial-temporal representation of raw EEG data. When
coding EEG-MI channels, the spatial self-attention module was used. The raw signal was
filtered to various band ranges by the authors of [36] to produce three band-limited signals.
Each band-limited signal is passed through three parallel branches with varied filter sizes.
This caused a massive number of parameters more than 1215 K for the whole system. The
system’s use in many applications is limited as a result of this scenario. Furthermore,
because the filter size did not vary, the influence of changing localities in channels was not
accounted for in the model. In [37], the authors proposed a more sophisticated approach
based on a temporal-spectral-based squeeze-and-excitation (SE) feature fusion network (TS-
SEFFNet). It is a computationally expensive network with a huge number of parameters.

A combination between the multi-scale and the attention was proposed in [38]. Based
on the attention process, the authors developed a multi-scale convolutional neural network
using attention mechanism for fusion (MS-AMF). In the BCI-IV2a dataset, the experimental
findings demonstrated that the network had superior classification than the baseline tech-
nique with 79.9% average accuracy. However, this model has a preparation part for the data
before inputting them into the model. Jia et al. [39] proposed a big model that has several
branches on each different scale; this increased the computation complexity. It contains five
parallel branches each having an inception block followed by a residual block and a SE.
The EEG Inception block (EIB) has four parts: three 1D convolutions (with different kernel
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sizes that gradually increase among all EIBs) and pooling operations. The authors did
the experiments on two public BCI competition datasets: BCI-IV2a and BCI-IV2b datasets
achieving 81.4%, and 84.4% accuracies, respectively.

In our previous work [40], we examine the multi-branch CNN in classifying the raw
EEG-MI signal with fewer parameters. In this study, we investigate the effect of adding
attention blocks to the multi-branch EEGNet.

2.2. Datasets

In this research, we evaluated our proposed model with two frequently used public
EEG-MI datasets. Data from nine people were gathered using 22 EEG electrodes in the
BCI Competition IV-2a dataset (BCI-IV2a) at a rate of 250 Hz [41]. In addition, data on
eye movement were collected using three additional electrooculography (EOG) channels.
There are four MI classes: left hand, right hand, feet, and tongue.

To validate the proposed model’s robustness against data variations, we evaluated
it using another dataset which is the HGD. The HGD has more trials than the BCI-IV2a,
and has four classes: left hand, right hand, both feet, and rest. The HGD was collected
in a controlled setting from 14 volunteers [18]. The data were collected using a total of
128 channels, only 44 related to MI, at a sampling frequency of 500 Hz.

3. Method
3.1. EEG Data

For the BCI-IV2a dataset, from the onset of the pre-cue through the completion of each
trial, we obtained 4.5 s of data of sampling frequency 250 Hz (250 × 4.5 = 1125 samples).
Each trial produced a data matrix of dimension (22 × 1125).

Downsampling the HGD dataset from 500 Hz to 250 Hz resulted in an improvement
in the data quality. Additionally, channels were decreased from 128 to 44 to eliminate
repetitive information. We excluded the electrodes not connecting to the motor imagery
area. We picked only 44 sensors with C in their name (according to the database description)
as they cover the motor cortex. To be consistent with the BCI-IV2a dataset, we used each
trial of 4.5 s (0.5 s before the cue to the end of the trial) to produce 1125 samples per trial
with a data matrix of dimension (44 × 1125) [35]. There were no further filters used, and
each channel was uniform. The accuracy was calculated across trials for the same subject
(within subject).

3.2. EEGNet Block

Local connection, invariance to location, and invariance to local changeover are three
fundamental properties of the cerebral cortex. CNN’s primary concept is to use a filter to
examine the influence of adjacent neurons [42,43]. The filter size we use is determined by
the data type and the feature map we wish to create. The first block in our proposed model
is the EEGNet which was introduced in [27]. The EEGNet block contains three convolution
operations with varied window sizes, which are defined by the kernel size.

The first convolution layer uses 2D filters followed by a batch normalization. Batch nor-
malization aids in the acceleration of training and the regularization of the model [44]. The
second convolutional layer uses depthwise convolution followed by batch normalization
and activation function in the form of an exponential linear unit (ELU), average pooling,
and dropout. The third convolutional layer uses separable convolution. A simplified
architecture of the EEGNet is shown in Figure 1.
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Figure 1. The EEGNet block.

3.3. CBAM Attention Block

Attention is well established to play a significant influence in human perception. A
human uses a sequence of limited sights and categorically focuses on significant sections
of the image to apprehend the visual meaning [45]. From this idea comes the attention
mechanism in deep learning. It is a module that can be added to the model to focus on
relevant attributes and ignore others.

One of the attention modules is the Convolutional Block Attention Module (CBAM)
described in [46], where the authors built a module to emphasize significant characteristics
along the channel and spatial axes. Each branch may learn ‘what’ and ‘where’ to pay
attention in the channel and spatial axes by using the sequence of attention modules
(as shown in Figure 2). Because the module learns which information to highlight or
hide, it efficiently helps the flow of information across the network. CBAM has two
submodules: the channel attention submodule and the spatial attention submodule. In the
channel attention submodule, the input features from the preceding block are concurrently
transmitted to the average pooling and max-pooling layers. The features map generated
by both pooling layers is then transmitted to a shared network, which is made up of an
MLP with one hidden layer. In this hidden layer, a reduction ratio was used to reduce the
number of activation maps which reduces the parameter overhead. After applying the
shared network to each pooling feature map, element-wise summing is used to merge the
output feature maps. Then, to generate the feature vectors that will be the input for the
spatial attention submodule, the element-wise multiplication is used between the output
feature map from the channel attention submodule and the input features map for the
attention module. When calculating spatial attention, the channel axis average-pooling
and max-pooling processes are used. As a result, a convolution layer is used to build an
efficient feature descriptor. Both submodules are presented in Figures 3 and 4.
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3.4. Proposed Models

We propose a multi-branch EEG-MI classification system, where each branch has its
own set of parameters to deal with the subject-specific problem. More specifically, we use
three branches in the proposed system. Using the suggested technique, the convolution
size, number of filters, dropout probability, and attention parameters may be determined
for all subjects. It is also possible to tailor the model to a certain topic at the same time
as increasing its applicability. In the first convolutional layer, based on local and global
modulations, the model learns temporal properties and spatial attributes based on spatially
distributed unmixing filters.

The proposed method Multi-Branch EEGNet with Convolutional Block Attention
Module (MBEEGCBAM) can be divided into two parts: EEGNet block and Convolutional
Block Attention Module (CBAM). Those basic blocks, EEGNet and CBAM, contain layers
as described in [27,46], respectively.

The architecture of the MBEEGCBAM is shown in Figure 5. It has three different
branches, each branch has an EEGNet block, channel attention block, and spatial attention
block followed by a fully connected layer. Each branch has a varied number of parameters to
capture different features. Moreover, after the improvement shown by the fusion in medical
signals and images [47–49], we investigate the effect of fusion of the output feature maps
from EEGNet blocks with the output from the EEG-CBAM blocks to reduce feature loss and
construct a comprehensive feature map. For that, we propose the FMBEEGCBAM model
(Figure 6) that has the same blocks and connections as in the MBEEGCBAM model with an
extra step. In this model, we add two concatenate layers: one after the EEGNet blocks and
the other one after the CBAM blocks, then we flat and fuse both concatenate layers before
using the fused layer as input into the softmax layer for classification. We test our models
in BCI-IV2a and HGD, which are two benchmark datasets in MI EEG classification.
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3.5. Training Procedure

In the realm of EEG-MI research, the emotional and physical state of research volun-
teers can vary greatly. For that, we employed the within-subject approach to classifying
the data in this research [30]. For both datasets, one session was used for training and the
other was used for testing. Global hyperparameters, which were obtained in our previous
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work [40], were employed for all subjects, as shown in Table 1. The learning rate was 0.0009,
batch size was 64, and the number of epochs was 1000. The Adam optimizer was used, and
the cost function was the cross-entropy error function.

Table 1. Global hyper-parameters used in proposed models.

Branch Block Activation
Function Hyperparameter Value

First branch

EEGNet
Block elu

Number of temporal filters 4

Kernel size 16

Dropout rate 0

Attention
Block

relu
Ratio 2

Kernel size 2

Second
branch

EEGNet
Block elu

Number of temporal filters 8

Kernel size 32

Dropout rate 0.1

Attention
Block

relu
Ratio 8

Kernel size 4

Third branch

EEGNet
Block elu

Number of temporal filters 16

Kernel size 64

Dropout rate 0.2

Attention
Block relu

Ratio 8

Kernel size 2

4. Experiments

The Tensorflow deep learning library with Keras API was used in all experiments in
Google’s Colab environment.

4.1. Performance Metrics

To analyze our models, we used the following performance metrics: accuracy (%),
precision, recall, F1 score, and Cohen’s Kappa test.

4.2. Overall Comparison

Table 2 shows the performance comparison between the proposed models and other
SOTA models. In particular, the average classification accuracies, Kappa values, and F1
scores obtained by the FBCSP [25], ShallowConvNet [18], DeepConvNet [18], EEGNet [27],
CP-MixedNet [34], TS-SEFFNet [37], MBEEGNet [40], and MBShallowCovNet [40] from
the BCI-IV2a and HGD datasets are summarized in Table 2. Our methods have the highest
average accuracy, Kappa, and F1 score as can be observed. Moreover, we compared our
results with those of our previous work [40] which contains lightweight multi-branch
models without attention blocks. We found that the attention block improves the accuracy
by around 1%.

Using the two public datasets, we evaluate the performance of our models.
Figures 7 and 8 show how our methods performed against the SOTA models in the BCI-
IV2a and HGD. From the figures, we can see that the proposed models achieve at least
8.14% higher accuracy than other baseline models in the BCI-IV2a. However, in HGD the
improvement was by around 2% in both MBEEGCBAM and FMBEEGCBAM.
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Table 2. The comparison summary of classification performance in proposed models.

Datasets Methods Accuracy (%) Kappa F1
Score

BCI-IV2a

FBCSP [25] 67.80 Not Available (NA) 0.675

ShallowConvNet [18] 72.92 0.639 0.728

DeepConvNet [18] 71.99 0.627 0.719

EEGNet [27] 72.40 0.630 -

CP-MixedNet [34] 74.60 NA 0.743

TS-SEFFNet [37] 74.71 0.663 0.757

MBEEGNet [40] 82.01 0.760 0.822

MBShallowCovNet [40] 81.15 0.749 0.814

MBEEGCBAM (proposed) 82.85 0.771 0.830

FMBEEGCBAM (proposed) 83.68 0.782 0.838

HGD

FBCSP [25] 90.90 NA 0.914

ShallowConvNet [18] 88.69 0.849 0.887

DeepConvNet [18] 89.51 0.860 0.893

EEGNet [27] 93.47 0.921 0.935

CP-MixedNet [34] 93.70 NA 0.937

TS-SEFFNet [37] 93.25 0.910 0.901

MBEEGNet [40] 95.30 0.937 0.954

MBShallowCovNet [40] 95.11 0.935 0.951

MBEEGCBAM (proposed) 95.45 0.939 0.955

FMBEEGCBAM (proposed) 95.74 0.943 0.958
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proposed FMBEEGCBAM.
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4.3. Results of MBEEGCBAM

The proposed model was trained on session “T” from the BCI-IV2a dataset, while
in the HGD, the proposed model was trained in all sessions in the dataset except the last
two sessions which were kept for the testing. In the experiments, the within-subject or
subject-specific approach was used.

One of the main focuses of this study was to find the optimal hyperparameters that
can advance the accuracy with less complication. Therefore, first, we found the best
hyperparameters in the EEGNet block by performing multiple experiments. Then, we
carried out other experiments to choose the best reduction ratio and kernel size in the
CBAM block. Figure 9 shows the accuracy comparison between different kernel sizes
and Ratios in CBAM blocks on different EEGNet blocks. As we can see from Figure 9, in
EEGNet Block 1 (Figure 9a), the maximum accuracy was attained (74.83%) at ratio 2 and
kernel size 2 × 2. Ratios 2 and 4 normally give better accuracy in EEGNet Block 1; however,
ratio 8 gave better accuracy in EEGNet Block 2 and Block 3. On the hand, kernel size 8 × 8
and 4 × 4 gave better accuracy in EEGNet Block 1 and Block 2 while kernel size 2 × 2
provided the best accuracy in EEGNet Block 3. We chose Ratio 2 for EEGNet Block 1 and
Ratio 8 for EEGNet Block 2 and Block 3; for the kernel size, we chose 2 × 2 for EEGNet
Block 1 and Block 3 and size 4 × 4 for EEGNet Block 2. The hyperparameters that we used
in the CBAM block in each branch of our proposed models are mentioned in Table 1.

Table 3 shows the performance of each branch separately, as well as the multi-branch
model without attention blocks compared with our proposed model using the BCI-IV2a
dataset. From the table, we can see that the proposed method, which is a combination of
different EEGCBAM branches, enhances the performance of EEG-MI classification.
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Figure 9. Accuracy comparison between different kernel sizes and ratio in CBAM block on EEGNet
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Table 3. The classification performance in different models.

Methods Accuracy (%)

EEGCBAM1 74.83

EEGCBAM2 78.02

EEGCBAM3 79.92

MBEEGNet [40] 82.01

MBEEGCBAM (proposed) 82.85

The comprehensive findings of MBEEGCBAM using the BCI-IV2a dataset and HGD
are shown in Tables 4 and 5. In the tables, LH, RH, F, and Tou represent left hand, right
hand, feet, and tongue MI classes, respectively. Using Wilcoxon signed-rank test, there
is a significant increase with p < 0.05 in the average accuracy and Kappa value using
MBEEGCBAM compared to other SOTA models described in [18,29,34,37].

Table 4. Performance metrics on the BCI-IV2a dataset using the MBEEGCBAM.

1 2 3 4 5 6 7 8 9 Avg. Std. Div.

Accuracy (%) 91.09 65.87 94.52 77.88 81.87 64.48 93.38 89.84 86.69 82.85 0.113

K value 0.881 0.545 0.927 0.705 0.758 0.526 0.912 0.865 0.822 0.771 0.151

F1 score 0.912 0.662 0.945 0.782 0.821 0.644 0.937 0.899 0.869 0.830 0.113

Precision

LH 0.941 0.601 0.968 0.84 0.919 0.562 0.982 0.914 0.904 0.848 0.157

RH 0.943 0.539 0.958 0.795 0.777 0.584 0.84 0.899 0.827 0.796 0.147

F 0.936 0.764 0.915 0.634 0.724 0.714 0.958 0.847 0.862 0.817 0.113

Tou. 0.824 0.729 0.94 0.848 0.854 0.719 0.955 0.935 0.876 0.853 0.086

Avg. 0.911 0.658 0.945 0.779 0.819 0.645 0.934 0.899 0.867 0.828 0.114

Recall

LH 0.909 0.580 0.932 0.762 0.842 0.606 0.838 0.956 0.854 0.809 0.135

RH 0.94 0.535 0.986 0.716 0.909 0.630 0.979 0.913 0.785 0.821 0.163

F 0.870 0.882 0.937 0.856 0.795 0.636 0.970 0.875 0.876 0.855 0.096

Tou. 0.929 0.669 0.928 0.807 0.748 0.703 0.972 0.856 0.967 0.842 0.116

Avg. 0.912 0.667 0.946 0.785 0.823 0.644 0.940 0.90 0.870 0.832 0.113
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Table 5. Performance metrics on the HGD dataset using the MBEEGCBAM.

Subject/Metric Accuracy (%) K Value Precision Recall F1 Score

S1 96.43 0.952 0.964 0.965 0.965

S2 93.52 0.914 0.935 0.939 0.937

S3 100 1 1 1 1

S4 96.90 0.959 0.969 0.969 0.969

S5 97.52 0.967 0.975 0.975 0.975

S6 98.80 0.984 0.988 0.988 0.988

S7 95.25 0.937 0.953 0.955 0.954

S8 96.90 0.959 0.969 0.969 0.969

S9 98.20 0.976 0.982 0.982 0.982

S10 89.93 0.866 0.899 0.903 0.901

S11 90.50 0.873 0.905 0.907 0.906

S12 96.35 0.951 0.963 0.964 0.964

S13 96.90 0.959 0.969 0.969 0.969

S14 89.09 0.855 0.891 0.895 0.893

Average 95.45 0.939 0.954 0.956 0.955

Std. Div. 0.034 0.045 0.034 0.033 0.033

4.4. Results of FMBEEGCBAM

To study the effect of the fusion of multi-branches, we added a connection between
the output feature maps from EEGNet blocks with the output from the EEG-CBAM blocks.
Tables 6 and 7 show the detailed result using both datasets, the BCI-IV2a and the HGD.
From the tables, we can see that the proposed fusion model improves the classification
accuracy in six subjects out of nine in the BCI-IV2a dataset, while in the HGD, eight subjects
have an improvement in the accuracy. The drawback of this model is the increase in the
number of parameters. The fusion model has 3808 parameters more than the MBEEGCBAM
model with around a 1% increase in the classification accuracy.

Table 6. Performance metrics on the BCI-IV2a dataset using the FMBEEGCBAM.

1 2 3 4 5 6 7 8 9 Avg. Std. Div.

Accuracy (%) 92.96 68.33 96.75 80.39 79.78 69.73 91.18 88.77 85.21 83.68 0.099

K value 0.906 0.578 0.957 0.739 0.730 0.596 0.882 0.850 0.803 0.782 0.133

F1 score 0.931 0.684 0.968 0.806 0.800 0.699 0.915 0.889 0.853 0.838 0.099

Precision

LH 0.957 0.639 0.984 0.915 0.800 0.618 0.982 0.902 0.918 0.918 0.141

RH 0.971 0.555 0.945 0.691 0.813 0.643 0.870 0.923 0.772 0.772 0.145

F 0.965 0.831 0.970 0.741 0.814 0.789 0.955 0.822 0.857 0.857 0.083

Tou. 0.825 0.709 0.971 0.870 0.764 0.740 0.840 0.904 0.861 0.861 0.083

Avg. 0.929 0.684 0.968 0.804 0.798 0.697 0.912 0.888 0.852 0.852 0.099

Recall

LH 0.948 0.599 0.946 0.777 0.848 0.732 0.833 0.971 0.865 0.835 0.119

RH 0.971 0.588 1.000 0.726 0.868 0.682 0.980 0.888 0.758 0.829 0.147

F 0.854 0.854 0.958 0.912 0.711 0.656 0.912 0.859 0.848 0.840 0.097

Tou. 0.959 0.697 0.969 0.820 0.784 0.732 0.949 0.841 0.947 0.855 0.105

Avg. 0.933 0.685 0.968 0.809 0.803 0.700 0.918 0.890 0.854 0.840 0.099
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Table 7. Performance metrics on the HGD dataset using the FMBEEGCBAM.

Subject/Metric Accuracy (%) K Value Precision Recall F1 Score

S1 97.55 0.967 0.976 0.976 0.976

S2 96.29 0951 0.963 0.963 0.963

S3 100 1 1 1 1

S4 98.80 0.984 0.988 0.988 0.988

S5 98.20 0.976 0.982 0.982 0.982

S6 98.77 0.984 0.988 0.988 0.988

S7 94.43 0.926 0.944 0.944 0.944

S8 96.52 0.954 0.965 0.968 0.966

S9 98.77 0.984 0.988 0.988 0.988

S10 91.18 0.882 0.912 0.915 0.913

S11 88.82 0.851 0.888 0.890 0.889

S12 96.94 0.959 0.969 0.970 0.970

S13 96.52 0.954 0.965 0.968 0.966

S14 87.49 0.833 0.875 0.880 0.878

Average 95.74 0.943 0.957 0.959 0.958

Std. Div. 0.039 0.052 0.039 0.038 0.038

4.5. Feature Discrimination Discussion

Using a confusion matrix, we demonstrate the competence of features obtained by the
proposed MBEEGCBAM for different MI classes. Figure 10 shows the confusion matrixes
of the proposed model and the SOTA models in both datasets. We see that the proposed
MBEEGCBAM significantly improved accuracy in four MI tasks across both datasets,
especially in the “Foot” task, which reached an average increase of 12.8% in the BCI-IV2a
and 11.4% in the HGD. The rest of the tasks increased by around 9.13% in the BCI-IV2a
and 3.5% in the HGD. To study the discriminative nature of the features obtained by the
MBEEGCBAM, the t-SNE was used to visualize the features [50] (see Figure 11). Compared
to ShallowConvNet [18], DeepConvNet [18], and EEGNet [27], the proposed MBEEGCBAM
model extracted more separable features from EEG-MI.
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5. Conclusions

In this paper, we propose lightweight multi-branch models with attention, which
improve the performance of EEG-MI classification with fewer parameters. The multi-
branch model concatenates different features from three branches. When compared to other
SOTA models, our model exhibits promising results in terms of accuracy, Kappa value, and
F1 score. Our results were more accurate than other multi-branch models and required
less human intervention. The study used the BCI-IV2a dataset and the HGD dataset, both
of which are freely available. The experiment used a within-subject method, with global
hyper-parameters applied to all subjects in both datasets. The proposed MBEEGCBAM
had an average classification accuracy of 82.85% on the BCI-IV2a dataset, while that of the
proposed FMBEEGCBAM was 83.68%. The average accuracy on the HGD in MBEEGCBAM
and FMBEEGCBAM was 95.45% and 95.64%, respectively. In the future, we want to apply
different fusion strategies in the proposed models.
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