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Abstract: To investigate the feasibility of automated follow-up recommendations based on findings
in radiology reports, this paper proposed a Natural Language Processing model specific for Pul-
monary Nodule Radiology Reports. Unstructured findings used to describe pulmonary nodules in
48,091 radiology reports were processed in this study. We established an NLP model to extract infor-
mation entities from findings of radiology reports, using deep learning and conditional random-field
algorithms. Subsequently, we constructed a knowledge graph comprising 168 entities and four rela-
tionships, based on the export recommendations of the internationally renowned Fleischner Society
for pulmonary nodules. These were employed in combination with rule templates to automatically
generate follow-up recommendations. The automatically generated recommendations were then
compared to the impression part of the reports to evaluate the matching rate of proper follow ups in
the current situation. The NLP model identified eight types of entities with a recognition accuracy
of up to 94.22%. A total of 43,898 out of 48,091 clinical reports were judged to contain appropriate
follow-up recommendations, corresponding to the matching rate of 91.28%. The results show that
NLP can be used on Chinese radiology reports to extract structured information at the content
level, thereby realizing the prompt and intelligent follow-up suggestion generation or post-quality
management of follow-up recommendations.

Keywords: natural language processing; radiology report; quality management; knowledge graph;
pulmonary nodule

1. Introduction

Radiology reporting is the final and crucial step of the computed tomography (CT)
radiology exam, and follow-up suggestions in its “Impression” part always present a
direct link of communication between clinicians and patients. Quality management of
the radiology reports is conventionally required to ensure the “Impression” of report is
consistent with the CT images and proper follow-up suggestions are presented in the report
to avoid over- or under-medicating.

Quality management approaches, based on manual intervention process and depart-
mental systems, did aid in the reduction in errors in reports [1–3]. To improve the overall
quality of the radiology reports, official guidelines from various associations provide the
templates and standards. However, because the quality of the report relies highly on
the knowledge and experience of the individual senior radiologist reviewer, it is difficult
to establish a consistent quality management model even within a healthcare organiza-
tion [4,5]. Management methods relying on manual intervention cannot provide consistent
and objective process specifications. The lack of consistent and stable quality management
methods in radiology reports may lead to the lack of strict follow-up suggestions, which
leads to unnecessary imaging examinations and the overuse of medical insurance resources.
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Many radiology experts agree that structured radiology reports are more complete and
more effective than unstructured reports [6,7], which can provide a good foundation for
automatic quality control based on the content of reports. However, in China, unstruc-
tured reports are still widely used in healthcare organizations so far, which poses credible
challenges to automatic quality management.

Structured reports can not only improve the consistency and clarity of reports, but
also assist radiologists to extract information and in the subsequent clinical decision mak-
ing [8–10]. Furthermore, in-depth and accurate information must undergo post-processing
to enable assessment of the quality of the report in multiple aspects. Therefore, natu-
ral language processing (NLP) techniques are increasingly applied in various fields and
languages [11–13]. Gershanik et al. performed NLP of chest CT reports to determine
consistency in the detection of pulmonary nodules [14]. Duszak Jr. et al. employed NLP
to determine whether radiologists’ records in abdominal ultrasound reports are sufficient
for diagnosis and to subsequently evaluate the report quality and its influence on medical
costs [15]. The American College of Radiology (ACR) developed a lung imaging reporting
and data system (Lung-RADS) as a quality assurance tool for standardized lung cancer
screening, reporting, and management recommendations [16]. The tools embedded in
medical information systems are increasingly employed in clinical applications, such as
learning tools to aid in the training of radiologists [17–19]. Nobel et al. used natural
language processing technology to process radiological reports in Dutch for automatic
classification of lung tumors [20]. S. Pathak et al. post-structured the Dutch radiological
free text report by taking the TF-IDF value of each word and the length of each sentence
as the characteristics [21]. However, there are few studies on post-structured reports and
automatic quality management in Chinese radiology reports currently.

In recent years, Transformer has been used as main algorithm in NLP. Agnikula
Kshatriya et al. used BERT and Bio-BERT to extract the text features of electronic health
records and used semi-supervised training methods to evaluate doctors’ documents [22].
Hyun Gi Lee et al. used BERT and LSTM to extract the depth features of radiological
reports [23]. Sanjeev Kumar Karn et al. designed a word-level encoder and a sentence-level
encoder based on BI-LSTM to automatically generate a radiological report summary [24].
Song Wang et al. extracted information nodes from radiology reports and constructed
knowledge maps to assist the generation of reports [25]. Arnaud et al. used BERT to
learn text representation from French free text note and check the quality of the learned
embedding based on a set of clustering models [26].

In this study, we presented the intelligent quality management method in a Chinese
radiology report for the first time. BI-LSTM + CRF were adopted to extract the entities
of Chinese radiological reports. The key information entities associated with follow-up
recommendations for pulmonary nodules were identified, and a follow-up suggestion was
rendered based on a knowledge graph and rule template. Some unique problems of the
Chinese corpus were overcome in the implementation process, such as the shortage of
registered word vectors of Chinese medical terms and the lack of an available authoritative
specialized medical knowledge database. Through comparing the rendered follow-up
suggestion with the text in the “Impression” part of the original report, the feasibility
of automatic quality management method is investigated and verified, which could be
helpful to decreasing the work load of subjective imaging report quality management and
increasing the radiology report quality in Chinese.

2. Materials and Methods
2.1. Datasets

This retrospective study considered CT imaging of pulmonary nodules as the specific
example of a medical application. The content of the radiology report extracted in this
study is a summary of the description of routine diagnosis and treatment and does not
involve any patient’s personal information. Chest CT radiology reports (N = 115,754) from a
tertiary hospital in Beijing were collected between January 2015 and June 2019. All patients
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provided informed consent regarding the use of their data. Only the radiology reports
involving pulmonary nodule descriptions and diagnoses were retained after screening
(N = 52,089, 45%). Subsequently, the content with pulmonary nodule descriptions was
filtered and cleaned, and false and redundant text data were removed, such that all included
data were correct, objective, and uniform in format (N = 52,035; 45%). Subsequently, the
reports of outpatients and inpatients (who were not subjected to a physical examination)
with a history of cancer or immunodeficiency and those who were not suitable for lung
cancer screening were excluded. Finally, N = 48,091 (42%) radiology reports were included
in the study.

These data were input in both the NLP model and the follow-up generation model.
In the NLP model, the 48,091 reports were randomly divided into three sets, namely a
training set (N = 24,046; 50%), a verification set (N = 12,023; 25%), and a test set (N = 12,022;
25%) while ensuring that the patients’ age and anomaly distributions of each subset were
consistent with those of the entire dataset.

In the follow-up generation model, 48,091 reports processed by the NLP model gen-
erated follow-up recommendations that were subsequently compared with those of the
original reports to evaluate the quality management. Figure 1 summarizes the dataset
processing workflow.
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is presented in Figure 2.
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2.2.1. NLP Model

The bi-directional long short-term memory + conditional random field (Bi-LSTM + CRF)
model was employed for NLP during the implementation stage. Pulmonary nodule
descriptions in radiology reports were manually labeled and categorized into two groups.
The first included descriptions displayed in the image, such as the location, size, number,
shape, solidity and risk level, whereas the second included image diagnoses, as well as
diagnoses and follow-up recommendations regarding pulmonary nodules detected in the
report. All manually labeled content was provided by radiologists with many years of
radiology work experience who underwent specialized training at the tertiary hospital in
Beijing. There was no overlap between the doctors participating in the labeling work and
those who established the labeling standards to ensure unbiased comparison of results.

The experiments are implemented in Anaconda + PyCharm with Python3.6, using
Keras [27] library with a Tensorflow [28] backend.

2.2.2. Knowledge Graph Design

During the construction and implementation of the knowledge graph, the following
guidelines were adopted: Fleischner Society’s authoritative guidelines on pulmonary
nodule follow-up recommendations [29,30]; the eight sets of medical textbooks of the
Ministry of Health of the People’s Republic of China; Chinese experts’ guidelines on the
classification, diagnosis, and treatment of pulmonary nodules [31–33]; ACR guidelines on
Lung-RADS imaging reporting and data system [15,16], and high-quality radiology reports.
During the mapping between the English guidelines and Chinese radiology reports, the
Chinese version of SNOMED was employed, as it defines clinical concepts with unique
identifiers and descriptive features.

To ensure coverage of all information query results, it is critical to correctly set the
entities and their relationships in the knowledge graph. We assigned six types of entities,
including nodule name, size, solidity, quantity, risk level and follow-up recommenda-
tions, as well as four relationships, including “has,” “has_an_attribute,” “follow_up_is”,
and “same_as”.

Based on these entities and relationships, we compiled a knowledge graph of pul-
monary nodule follow-up recommendations, according to descriptions in authoritative
guidelines, medical textbooks and high-quality reports. The Neo4j graph database, re-
garded as a high-performance graph engine with all the features of a mature database, was
adopted as the knowledge graph tool during the implementation, owing to its advantages
of embedment, high performance, and light weight.

2.2.3. Generation of Intelligent Follow-Up Recommendations

The rule-based reasoning template was employed to locate a pulmonary nodule’s
status in the knowledge graph through the slot value and relationships of NLP. On this
basis, we applied the WHERE clause in the MATCH command to filter the results of the
MATCH query to derive follow-up recommendations. Five variables, namely a, b, c, d
and e that represent the name, solidity characteristics, size, quantity and risk level of the
nodule, respectively, were defined. Subsequently, slot values were filled into the variables
according to the NLP results. Finally, follow-up recommendations were generated based
on the attribute values of entities and relationships. If the output and text comparison
results were consistent with frequency and follow-up methods, then the comparison was
considered consistent.

3. Results

A total of 48,091 reports were used in this research. Because the system integrated
different modules, the results are presented in the following three sections: NLP model
results, knowledge graph construction and demonstration of the entire system.
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3.1. NLP Model Results

Seven practical attributes of the nodule and one follow-up attribute were acquired
after processing. The number of entities with different attributes and model evaluation
indicators are listed in Table 1, which presents the results of the best-performing feature
extraction. The overall accuracy, precision, recall and F1 of the NLP model are 94.22%,
94.56%, 93.96% and 94.26%, respectively. Notably, the NLP model performed well in terms
of expressing relatively fixed entity types. The accuracy and precision of location (96.71%,
96.00%), shape (94.62%, 96.70%) and nodule name (97.21%, 98.95%) are higher than the
overall level. Due to individual variations in the nodule sizes, the performance indicators
for size recognition perform lower than the overall level. These higher or lower levels are
not statistically different.

Table 1. Performance of natural language processing system.

Entity Type Accuracy Precision Recall F1 Number

Location 96.71% 96.00% 93.44% 94.70% 37
Shape 94.62% 96.70% 88.00% 92.15% 11

Nodule name 97.21% 98.95% 94.00% 96.41% 13
Solidity 93.13% 94.09% 94.47% 94.28% 7

Quantity 90.34% 89.34% 91.50% 90.41% 6
Risk level 89.34% 90.48% 90.20% 90.34% 14

Size 92.15% 93.08% 93.35% 93.21% -
Follow-up recommendation 93.12% 96.64% 89.75% 93.07% 9

Total 94.22% 94.56% 93.96% 94.26% 97

There are 97 entities after standardization, which serve as an objective manifestation
of various methods employed by doctors to describe the pulmonary nodule entity. There
are 37, 11, 13, 7, 6, 14 and 9 entities regarding the location, shape, nodule name, solid-
ity, quantity, risk level and follow-up recommendation, respectively. The nodule size is
meaningless for the calculation of the entity number of pulmonary nodules due to its
large variability. Therefore, the corresponding “Number” cell was not counted, whereas
other evaluation indicators of the model describing the size remained incorporated in the
performance evaluation.

3.2. Graph Database Construction

A graph database for pulmonary nodule follow-up recommendations was established
as a small knowledge graph, based on multiple credible sources. The graph database
contained six categories of entities, namely nodule name, size, quantity, solidity, risk level
and follow-up recommendation of pulmonary nodule. It comprised a total of 168 different
nodes. All cases of pulmonary nodules were included in sequential order along with a
detailed follow-up recommendation for each specific nodule. The established knowledge
graph is shown in Figure 3. Based on it, a more comprehensive knowledge graph for related
lung diseases will be further explored and constructed.

In order to better illustrate the various types of entities in the graph knowledge
database, we differentiate them by color as follows:

• The gray dots are used to determine the presence of nodules and their shape and location.
• The pink dots are used to describe the solidity or sub-solidity of the nodule.
• The yellow dots are used to describe the size of the nodule.
• The red dots are used to describe the number of nodules.
• The purple dots are used to describe the degree of risk of the nodule.
• The green dots are used to describe the follow-up recommendations for the nodules.
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3.3. Demonstration of Entire System

Follow-up recommendations of the existing 48,091 (100%) reports were automatically
generated based on the word segmentation results of NLP and the logical rules established
by the knowledge graph. The number of results and their match percentages with the
follow-up recommendations provided in the original reports are listed in Table 2. A
total of 43,898 (91.28%) reports were found to contain follow-up recommendations that
were written clearly by doctors and proven correct, indicating an accuracy of 91.28%
compared to the follow-up recommendations generated by artificial intelligence. The
number of reports recommending no required routine follow up was the largest (N = 37,049;
77.04%), and these reports exhibited the lowest match with the follow-up recommendations
generated by the rule template. This indicates that doctors tend to skip explaining follow-
up recommendations at this level when writing the report. In contrast, in reports that
required a higher frequency of follow ups or more complicated follow-up methods, doctors
rarely disregarded or misjudged the case.

Figure 4 depicts the actual process implemented in hospitals. After image descriptions
of pulmonary nodules are processed, the preset entities are extracted using NLP techniques
(the text presented in different colors in the figure denotes different types of entities) and
subsequently documented in the patient’s record, which thus constitutes the attributed
values of different variables in the query language of the knowledge graph. Finally, the
system automatically generates follow-up recommendations by correlating these values
and their relationships. By calculating the match between the system-generated follow-up
recommendations and those provided in the radiologist reports, the quality management
of follow-up recommendations is performed automatically. Furthermore, this process can
be incorporated to provide near real-time suggestions to radiologists while writing the
report with regard to follow-up recommendation quality control, thereby facilitating the
generation of standardized follow-up recommendations at the writing stage. On average,
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it takes less than 0.5 s to process each report. Even when the response time spent on
querying the knowledge graph and prompting the results is added to this processing time,
the total time of realizing the function is negligible in comparison to the time spent writing
the report.

Table 2. Number of reports and corresponding match percentages for different levels of automatically
generated follow-up recommendations.

Follow-Up Recommendation Level Number of Reports Matching Rate

No routine follow up required 37,049 89.46%
CT review at 12 months 4501 95.02%

CT review between 6 and 12 months, and consider a
subsequent CT review between 18 and 24 months 1539 98.38%

CT review between 3 and 6 months, and a
subsequent CT review between 18 and 24 months 769 98.51%

Consider CT, PET/CT, or tissue biopsy at 3 months 1539 98.97%
CT review between 3 and 6 months, and if stable,
consider subsequent CT reviews at 2 and 4 years 1731 99.87%

CT review between 6 and 12 months, and if nodule
is persistent, subsequent CT review every 2 years

within a 5-year period
500 99.17%

CT review between 3 and 6 months, and if nodule is
persistent or solid content < 6 mm, subsequent CT

review every year within a 5-year period
269 98.77%

CT review between 3 and 6 months, and then
consider subsequent CT reviews according to status

of most suspicious nodule
192 98.25%

Total 48,091 91.28%
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4. Discussion

Radiology reports depict an objective reflection of the patient’s condition. They include
the doctor’s comprehensive judgment and interpretation of the imaging results and convey
the value of the field of image diagnostics. In terms of their functionality, they are an impor-
tant tool for effective communication among radiologists, clinicians, and patients, which
is essential for medical institutions to provide high-quality and efficient medical services.
The free-text data form makes the reports more challenging for contextual and semantic
analyses. Therefore, we explored the feasibility of performing upfront automatic quality
control of radiology reports during the report writing stage using artificial intelligence.

The actual reports exhibit low-matching degrees with the obtained system results.
This is potentially specific to China, where a hierarchical diagnosis and treatment system
has not been strictly implemented. Namely, the clinician that treats the patient does
not need to strictly follow the radiologists’ advice and retains significant freedom in the
selection of medical imaging examinations. The implementation of a hierarchical diagnosis
and treatment system in China [34] will hold frontline doctors to stricter guidelines to
closely follow radiologists’ recommendations in their decision on whether to perform a
specific medical imaging exam. Therefore, it is required that domestic radiologists prepare
in advance by providing more accurate follow-up recommendations in their radiology
reports and reduce the frequency of overuse, underuse and misuse of subsequent medical
imaging exams.

From a technical perspective, our study shows that the NLP model resolves the
unstructured data problem, which previously prevented the direct use of unstructured
data on a large scale. The proposed model demonstrates both high accuracy and fast
processing speed. The fast response ensures that the intelligent generation of follow-up
recommendations does not increase the waiting time and workload for doctors. Therefore,
the implementation of this function not only helps patients understand the report more
clearly, but also helps doctors provide prompt recommendations.

From a quality management standard perspective, the introduction of a knowledge
graph in this study resolves the issue of inconsistent quality control standards due to
individual and experience level differences among reviewing doctors. The established
knowledge graph is based on several authoritative guidelines, making the quality manage-
ment standards of the system reliable, objective and consistent. With regard to the quality
management process, the proposed method enables quality management to be conducted
in parallel with the writing of the report. In comparison to existing quality control methods,
such as departmental spot checks after writing the reports, the upfront quality control of
radiology reports aids radiologists in identifying non-standard writing and makes timely
modifications based on radiology images. Thereby, the process reduces the occurrence of
errors in the final report and enhances the report.

In this study, pulmonary nodule-related reports were selected as the subject of re-
search mainly because of their clinical significance, as well as the comprehensiveness and
availability of the associated guidelines. For patients with incidental pulmonary nodules,
nodule detection is not among the main purposes of the patient’s medical visit or image ex-
amination. Although most pulmonary nodules are benign, there is still a risk of malignancy.
Therefore, early detection and scientific assessment can save lives and substantially reduce
medical costs. Moreover, listing detailed follow-up recommendations in the report can
help patients gain trust in the medical system and build a closer relationship between the
two entities while improving the efficiency and quality of the provided medical services,
thereby raising the hospital’s value.

Nevertheless, problems regarding data structuring, mapping and knowledge graph
construction require further in-depth research. Data structuring is an important aspect
determining data quality. The development of a structured report template that meets
the specific requirements of diagnosis and treatment in China can further improve the
accuracy and efficiency of NLP. The mapping between Chinese medical oncology and
English data remains to be addressed. A significant obstacle in the standardization of
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mapping and terminology has been the absence of a Chinese version of LABLEX, which
was developed as a standardized radiology terminology compilation. Finally, in this
study, the knowledge graph only focused on the quality control of pulmonary nodule
follow-up recommendations, whereas the description of other pulmonary functions, such
as pulmonary texture and fibrosis were omitted. Therefore, the establishment of extensive
tailored knowledge graphs is essential for the application of this function in other clinical
areas. Moreover, the quality of knowledge graphs should be validated based on three
aspects including: (i) accuracy, (ii) consistency and (iii) conciseness [35]. This task was not
implemented in this study and will be applied in the subsequent research involving the
creation and verification of large-scale knowledge graphs.

5. Conclusions

In summary, a deep learning and CRF model was adopted to solve the problem of
post-structured data of radiology reports. Subsequently, a knowledge graph was applied
to build a connection between the NLP model results and rule templates to help solve
quality management issues in radiology reports. Our results suggest that this method can
be applied to pulmonary nodule reporting in real-world clinical practice, thereby achieving
real-time quality control of pulmonary nodule follow-up recommendations.
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