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Abstract: Despite advances in telemedicine, practices remain diverse, ranging from telephonic to still
images and video-based conferencing. We review the various modes of telemedicine in burn care and
summarize relevant studies, including their contributions and limitations. We also review the role
of a more recent technology, augmented reality, and its role in the triage and management of burn
patients. Telemedicine in burn care remains diverse, with varied outcomes in accuracy and efficiency.
Newer technologies such as augmented reality have not been extensively studied or implemented
but show promise in immersive, real-time triage.
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1. Introduction

Despite technological advances in telemedicine, initial burn triage and care remain
diverse, ranging from still images on phone-based applications or electronic medical
records (“EMR”) to more advanced, real-time video-based technologies. Reports indicate
that clinicians fail to make the correct diagnosis 40% of the time when assessing burn
wound depth [1–3]. This inability to distinguish wound depth and extent can cause either
inadequate tissue excision, leading to wound infection and wound failure, or excessive
debridement and inappropriate tissue removal, leading to iatrogenic injury. However,
telemedicine is no stranger to burn surgery, with many centers throughout the United
States utilizing anything from “store and forward” to interactive video communication [4,5].
There are several contributing factors to this variety in communication, including: (1) non-
standardized image-capture technology and EMR, (2) varied costs of and rate of change in
technology and (3) buy-in from providers to learn and adopt. Many burn wounds are low
in total body surface area (“TBSA”) and in severity but are still over-triaged and transferred
to burn centers with associated costs to the patient and the healthcare system [6,7]. We
review the various modalities used for burn-wound triage and treatment and propose an
augmented reality (“AR”), hands-free, head-mounted display (ARHMD) to help safely
triage burn wounds in real time with the goal to decrease over-triage and improve accuracy
in burn TBSA and severity.

2. Background
2.1. Cameras and Facsimiles

Burn wound triage in TBSA and burn depth requires training with repetition and ex-
perience, which occurs at higher-level burn centers. Burn wounds, in addition to cutaneous
malignancies and skin infections, are highly amenable to image-based technology because
of their visible nature, ease of reproducing images, and need to monitor progress as part
of treatment. One of the earlier, published series in the military consisted of photos and
facsimiles as part of an overseas tele-health initiative [8]. These case reports included one
of a chemical burn to the face and cornea, shrapnel to the chest, and other ophthalmologic
cases. These early communications mark the beginning of advanced tele-health within the
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military. However, there were several limitations, including quality of images, decreased
or varied abilities to assess depth, severity, and TBSA with still images, and frequency of
communication. The assessment of burn injuries is a dynamic process that requires serial
assessment to evaluate for progression of disease to mitigate complications as infection
and scarring.

2.2. Hand-Held Phone and Application-Based Technology

Once hand-held phones became prevalent, phone-based documentation replaced
bulky cameras and facsimiles, but relied on text messaging (SMS), application-based mes-
saging and e-mail to upload images prior to discussing the case with the receiving burn sur-
geon. Several of these studies found improvement in safely down-triaging patients [7,9–11].
Photo-based triage was also found to have the same inter-reliability amongst surgeons
performing face-to-face examinations compared to image-based via application-based mes-
saging [12]. However, these modalities may not be the most secure and produce concerns
about medico-legal practices and security of patient information [13]. So-called “store and
forward” telemedicine could address this security concern by uploading an image to an
encrypted cloud-based service or by secure e-mail, which then would be received by the
burn or plastic and reconstructive surgeon [14]. However, store and forward typically does
not occur in real time during patient triage and early resuscitation, leading to some delay.

2.3. Shared Electronic Medical Record and Cloud-Based Services

The shared electronic medical record with ‘in-network’ or collaborating facilities
has facilitated the sharing of essential patient information without compromising patient
security. However, several limitations remain, including a lack of real-time viewing and
interaction, and the costs to networks to build these virtual bridges and maintain these
data [15,16].

2.4. Video-Based Burn Tele-Medicine

One of the more overlooked details in initial burn management are dynamic, including
the patient’s appearance, pain, vital signs and response to treatment. Images of burn
wounds may not necessarily capture blanching or be sufficiently detailed to look for the
presence of hair buds and other signs indicating depth of burn. Video-based telemedicine
has been utilized to address some of these concerns. In one study, video was used to record
the burn wound, including TBSA, and initial management [17]. This modality did improve
burn size estimation and management; however, the video was “stored and forwarded,”
thus not analyzed in real-time.

Real-time, interactive video has been used for burn patients, but mostly for after-care
with good success with no re-admissions or complications and cost savings, including
travel distance and travel time with overall cost reductions to the patient [18]. This mode
does require a computer or laptop with a high-definition camera for both parties, and
call-routing software and has been found to be more time-consuming for providers.

2.5. Augmented Reality and Hands-Free Telemedicine

There are a few modes of “realities”, ranging from completely immersive and lack
of a “see-through” interface, as demonstrated in Figures 1 and 2, to an augmented reality
in Figure 3, where the interface is see-through but with super-imposed images. The most
concise definition is a ‘reality-virtuality continuum’ between the real and virtual worlds,
where virtual is less ‘real’ and augmented reality approaches the real world [19]. The
most commonly known and popular interactive “smart” hands-free devices were smart
glasses, which were used as part of a wound evaluation and management program. These
glasses incorporated a camera with a real-time, interactive platform for performing wound
dressings and operations in patients with lower extremity wounds [20].
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To our knowledge, augmented reality on a hands-free, head-mounted display has
not been utilized and studied on burn patients for tele-mentoring and tele-medicine. The
Hololens (Microsoft©, Redmond, WA, USA) is a ‘hands-free’ display with processing
speeds equivalent to a computer with a processor of 1.1 GHz and minimum hard drive
space of 3.0 GB and RAM of 4.0 GB. Real-time conferencing requires Wi-Fi speeds of around
100 Mbps, with an average 1080 p video requiring 1.5 Mbps. These elements are essential
to real-time and high-quality triage.

3. Discussion

At many teaching hospitals, the junior resident may observe several burn wounds
under faculty supervision before they achieve competency. This learning paradigm has
been negatively affected by a reduction in trainee work hours, which are now limited
to 80 hours despite a subjective decrease in clinical performance [21]. Despite efforts to
improve surgical training [22], human error from trainees and non-experienced surgeons
can pose risks of burn over- or under-triage, including over- or under-resuscitation and their
subsequent complications including infection, secondary organ failure and hypertrophic
scarring. Thus, supervision must be high-yield and high-quality.

In response, the teaching paradigm has evolved to include not only basic, in-person
supervision, but also virtual simulation and remote-assist with augmented technology.
Virtual simulation, however, while immersive, is not interactive and does not allow the
trainee to transfer skills and communicate in real time with others [23]. Augmented reality
combines the immersive aspect of virtual reality with real-time application, including the
onlay of images [24] and viewing of multiple platforms—anatomic modules [25], live-
streaming video, and other resources.

4. Conclusions

Telementoring and tele-health have come a long way in technology, quality, time to
diagnosis and delivery of care, with a decrease in patient transfers, bed days and costs
associated with unnecessary transfers [26]. Several reviews on this subject exist that
summarize the utilization and outcomes of telehealth in burns [4,27] and telehealth in
surgery [28] without clear consensus on standardized modalities or a standard of care.

The implementation of augmented reality in burn care is the future in this era of virtual
conferencing and communication, and to our knowledge has not been implemented or
studied on a large scale. Two major areas should be addressed to successfully translate
augmented reality technology to telementoring and tele-triage, including: (1) ensure real-
time, remote-assist feedback during procedures, and (2) improve accuracy and diagnosis
with the ultimate goal of improving patient care, increasing efficiency and decreasing costs
to the patient and system.
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