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Abstract: Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by
motor impairment, as well as tremors, stiffness, and rigidity. Besides the typical motor symptomatol-
ogy, some Parkinsonians experience non-motor symptoms such as hyposmia, constipation, urinary
dysfunction, orthostatic hypotension, memory loss, depression, pain, and sleep disturbances. The
correct diagnosis of PD cannot be easy since there is no standard objective approach to it. After the
incorporation of machine learning (ML) algorithms in medical diagnoses, the accuracy of disease
predictions has improved. In this work, we have used three deep-learning-type cascaded neural
network models based on the audial voice features of PD patients, called Recurrent Neural Networks
(RNN), Multilayer Perception (MLP), and Long Short-Term Memory (LSTM), to estimate the accuracy
of PD diagnosis. A performance comparison between the three models was performed on a sample of
the subjects’ voice biomarkers. Experimental outcomes suggested that the LSTM model outperforms
others with 99% accuracy. This study has also presented loss function curves on the relevance of
good-fitting models to the detection of neurodegenerative diseases such as PD.

Keywords: Parkinson’s disease; deep learning; neural networks; model fitting; early detection

1. Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized
by three main cardinal motor symptoms, namely, bradykinesia (slowness of movement),
rigidity, and resting tremors. PD represents the second most common neurodegenerative
disorder after Alzheimer’s disease [1,2]. Besides the characteristic motor symptoms, PD
presents several non-motor symptoms that contribute to increases in the overall disease
burden to different extents. The non-motor symptoms of PD include hyposmia, constipa-
tion, urinary dysfunction, orthostatic hypotension, memory loss, depression, pain, and
sleep disturbances [2]. The motor signs of PD are linked to nigral degeneration and striatal
dopamine depletion, whereas the non-motor symptoms are probably associated with the
neurodegeneration of other brain structures [1]. The cognitive impairment of PD represents
one of the most relevant non-motor correlates of this disorder, and may affect memory,
thinking, learning capacity, language, judgment, behavior, and daily living activities [1].

Today, the clinical diagnosis of PD is primarily based on the presence of motor symp-
toms, although the neurodegeneration responsible for PD starts long before the onset of
motor symptoms, and non-motor changes can occur during the earlier phases of neurode-
generation [3]. On the other hand, diagnostic misclassification of PD is not uncommon,
with error rates ranging from 15% to 24% reported by different studies. It is thought that,
even using very accurate diagnostic criteria, approximately 10% of people diagnosed with
PD by neurologists suffer from different pathologies [2,4].

To overcome these difficulties, an emerging field of machine learning (ML) that is
drawing considerable attention is deep learning. Deep learning is a subfield of ML, which
uses many layers of neural networks and learns features through the hierarchical learning
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process [5]. The traditional ML algorithm normally carries relevant features that act as
model input; however, the deep learning algorithm can work on raw data and derive
the features itself. Deep learning’s methods for classification or prediction are applied in
various fields including Natural Language Processing (NLP) and computer vision. Initially,
most deep learning applications in neuroscience focus only on the “downstream” of the
detection and segmentation of anatomical structures and scratches, such as hemorrhage,
stroke, lacunes, microbleeds, metastases, aneurysms, primary brain tumors, and nervous tis-
sue hyperintensities [6]. On the “upstream” side, we now realize that Artificial Intelligence
(AI) has other innovative applications in various technical aspects of medical imaging.

Various approaches to image generation and image enhancement through in-depth
learning have recently been proposed, including normalizing or harmonizing images,
removing patterns, improving quality, shortening the duration of image studies, and
reducing radiation and contrast doses. There are two sorts of neural networks mostly
used: Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs).
CNNs are frequently used for the tasks of image recognition and classification, whereas
RNNs are recommended for building up a sequential representation of data over time.
In [7], the authors presented deep-learning-based approaches to diagnosing Parkinson’s
disease among twenty individuals, presenting a thirteen-layer CNN model that showed
88.25% accuracy. Farhan et al. [8] proposed a deep learning model for PD diagnosis by
using medical images. They developed CNN-based models with 10-fold cross-validation
and produced a high accuracy of 99.34%. Similarly, the Long Short-Term Memory (LSTM)
network model for automatic and non-invasive PD diagnosis and multi-class classification
has achieved an average accuracy of 96.6% [9]. A novel Deep Neural Network (DNN)
classifier for the automatic detection of PD with a 1D-CNN architecture is proposed in [10],
and presented a 98.7% accuracy. Another study of comparative ML approaches to assist
in the diagnosis of PD used MRIs for men and women individually, with an accuracy of
99.01% and 96.97%, respectively [11].

Deep learning algorithms have been applied to analyses of raw neuroimaging data,
even in the lack of feature selection processes, as well as to PD diagnostic classifications.
MRI imaging that uses these deep learning algorithms can be more accessible from many
perspectives, including cost, patient safety, and patient satisfaction. CNNs process images
from the base. The neurons that are located earlier within the network are in control of
examining the small windows of pixels and detecting simple, small features such as edges
and corners. These outputs are then sent into neurons within the intermediate layers, which
search for larger MRI features such as cysts, tumors, bleeding, swelling, developmental
and structural abnormalities, infections, inflammatory conditions, or problems with the
blood vessels. This second set of outputs is used to form a due process as to whether the
image contains features of dementia. RNNs can store previous network outputs and use
those as inputs for future computations. Information from these steps helps the network to
make smarter and more accurate decisions. LSTMs can add more future uses to RNNs by
recollecting important information and forgetting irrelevant values.

Therefore, in this work, we explore the three cascaded deep learning techniques,
namely, multi-layer perception (MLP), RNN, and LSTM, in the classification of the voice
biomarkers for PD diagnosis. For dealing with imbalances in the dataset, minority class
oversampling was applied. Furthermore, the performance of each model was validated in
terms of model accuracy, loss, precision, recall, and F1 score.

2. Methods
2.1. Data Collection

We consider a Parkinson’s disease patient dataset consisting of voice biomarkers from
the UCI machine learning repository [12]. The dataset has a combination of 23 people
with Parkinson’s disease and 31 biomedical voice measurements. The columns represent
a special voice measurement and relate to a voice recording of each subject that attended
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at least six speech sessions. Subject demographics including sex, age, and PD status are
presented in Table 1.

Table 1. Subject demographics.

Subject Code Age Sex Status Years of Diagnosis

S01 78 M PD 0

S02 60 M PD 4

S04 70 M PD 5.5

S05 72 F PD 8

S06 63 F PD 28

S07 46 F Healthy N/A

S08 48 F PD 2

S10 46 F Healthy N/A

S13 61 M Healthy N/A

S16 62 M PD 14

S17 64 F Healthy N/A

S18 61 M PD 11

S19 73 M PD 7

S20 70 M PD 1

S21 81 F PD 5

S22 60 M PD 4.5

S24 73 M PD 1

S25 74 M PD 23

S26 53 F PD 1.2

S27 72 M PD 15

S31 - - PD -

S32 50 M PD 4

S33 68 M PD 3

S34 79 F PD 0.25

S35 85 F PD 7

S37 76 M PD 5

S39 64 M PD 2

S42 66 F Healthy N/A

S43 62 M Healthy N/A

S44 67 M PD 1

S49 69 M Healthy N/A

S50 66 F Healthy N/A

The main aim is to classify the 31 subjects as either healthy or having PD accord-
ing to their biomedical voice measurements. To do that, speech data were used in this
study. The variable named “status” was set to healthy and the PD variable to values of
0 and 1, individually. This is the target variable or dependent value for our model to clas-
sify. Others features: average vocal fundamental frequency (MDVP: Fo (Hz)), maximum
vocal fundamental frequency (MDVP: Fhi (Hz)), minimum vocal fundamental frequency
(MDVP: Flo (Hz)), several measures of the variation in fundamental frequency (MDVP:
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Jitter (%), MDVP: Jitter (Abs), MDVP: RAP, MDVP: PPQ, Jitter: DDP), several measures
of the variation in amplitude (MDVP: Shimmer, MDVP: Shimmer (dB), Shimmer: APQ3,
Shimmer: APQ5, MDVP: APQ, Shimmer: DDA), two measures of the ratio of noise to tonal
components in the voice (NHR, HNR), two nonlinear dynamical complexity measures (D2),
signal fractal scaling exponents (DFA). Three nonlinear measures of fundamental frequency
variation (spread1, spread2, PPE) are independent values [13].

2.2. Data Pre-Processing and Visualization

We used a Pandas DataFrame to visualize the data set. Data info such as data type
and the null value of any column was checked by using the info function. The data pre-
processing step involved two methods, including the handling of missing data and data
normalization. In this given PD dataset, there were no missing value for any columns. We
did not handle null/missing values in this experiment. The next step was data normaliza-
tion. Here, we normalized the voice features using min-max normalization, which involves
the method of rescaling the data to [0, 1]. This standardization was used feature-wise and
helps to improve the numerical stability of the model.

The dataset contains information on 195 sustained vowel phonations with binary
status classification (healthy: 0 and PD: 1), with the “status” of binary values 0 and 1
corresponding to 48 and 147 individual records, respectively. To deal with the imbalance, we
used the Synthetic Minority Oversampling Technique (SMOTE) resampling technique [14].
The motivation behind this study is the classification of voice signals of PD subjects based
on status of PD and health (target variable). Here, we are not doing patient sampling, but
instead sampling of the voice biomarkers variable data was done. The analysis conducted
data resampling by SMOTE to make a balanced dataset using minority class oversampling.

On the other hand, the correlation matrix [15] can be useful in the visualization
of variables highly correlated with PD status classification. This helps to visualize the
summarization of data and understand the relationship between the independent variables
and the targeted outcomes. The correlation between different columns, and especially with
our target column “status”, is depicted in Figure 1. There are only 24 variables, including
the target value. The first column “name” is an object and not correlated with our model,
so we excluded the name variable. We used 23 variables to remain in our model input,
except “status”, which was used to predict the results.

2.3. Description of Methods

In this paper, we applied ML algorithms to understand the link between PD diagnosis
and model building for early disease diagnosis. Performance analysis of the three different
deep learning algorithms multi-Layer perception (MLP), Recurrent Neural Networks
(RNN), and the Long Short-Term Memory (LSTM) model were studied in the detection of
PD detection.

2.3.1. Multi-Layer Perception

MLP is a neural network algorithm for supervised learning that can learn nonlin-
ear function approximators for regression and classification from a given set of features
X = x1, x2, . . . , xn and a target y. Here can be one or more of the hidden layers (nonlinear)
between the input and output layers. MLP algorithms train on the dataset to learn function
f (.) : Rn → Ro with n number of input dimensions and o number of output dimensions.

Figure 2 shows MLP for a scaled output with one hidden layer.
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The leftmost layer is the input layer, with a set of neurons {xi|x1,x2, . . . , xn} which
represent the features of the input. Those input features transform in the hidden layer by a
weighted linear summation w1x1 + w2x2 + . . . + wnxn, followed by a nonlinear activation
function (.) : Rn → Ro . The output layer receives values from the previously hidden layer
and converts them into outputs.

Mathematically, for a given training set (x1, y1), (x2, y2), . . . , (xn, yn) where xi ∈ Rn
and yi ∈ {0, 1}, a hidden layer or a hidden neuron MLP layer learns from the function
f (x) = W2g

(
WT

1 x + b1
)
+ b2, where W1 ∈ Rn and W2, b1, b2 ∈ R are model parameters. W1

represents the weights of the input layer and W2 is the weights of the hidden layer. The
bias added to the hidden and output layer is represented as b1 and b2 , respectively. The
activation function g(.) : Rn → Ro is set as the default for the hyperbolic tangent, and is
given as

g(z) =
ez − e−z

ez + e−z (1)

To obtain output values between zero and one, binary classification f (x) passes
through the logistic function g(z) = 1/(1 + e−z), also called a sigmoid function. If the output
values of the samples are larger or equal to a threshold (set to 0.5), are assigned to the
positive class and the rest to the negative class.

2.3.2. Recurrent Neural Networks (RNN)

Recurrent neural networks (RNNs) are a class of neural networks. In RNNs, the
connection between nodes forms a directed graph along a temporal sequence. It allows for
the use of their internal state (memory) to store previous outputs to be used as inputs for
hidden states. The basic idea of unfolding RNN architecture is presented in Figure 3.
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Here, X is the input variables, h is the hidden layer vector, and Y is the output layer vec-
tor. W and U are parameters. The loss functionL of RNN is defined asL(̂y, y) = ∑

ty
t=1 L

(̂
yt, yt).

The most common activation functions used in RRN are Sigmoid, Tanh, and RELU. The
sigmoid activation function is used for binary classification with a range of (0, 1). The
tanh activation function is like the sigmoid, but the range is different (−1, 1). RELU pro-
duces an output of zero if the input is less than zero, otherwise it produces x, and can be
represented as:

f (x) =
{

0, i f x < 0
x, Otherwise

(2)

2.3.3. Long Short-Term Memory (LSTM)

Long Short-Term memory (LSTM) is a neural network algorithm for deep learning
applications augmented by a recurrent neural network. LSTM is a special kind of RNN that
is designed to avoid long-term dependency problems. Its default behavior is remembering
information for long periods. Like all other recurrent neural networks LSTM takes the form
of a chain of repeating modules of a neural network.
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An LSTM has three gates to protect and control the cell state. It could add or remove
information, which is carefully controlled at the gate, as a way to optionally let information
pass. The first step or gate is called the forgotten gate level, where the sigmoid decides
whether any information is kept or discarded. The gates are composed of a sigmoid layer
and a pointwise multiplication operation. The output of the sigmoid layer is between 0
and 1, where 1 means the information needs to be stored for the next use and 0 means
it does not need to store. The next step, consisting of two parts, is to decide what new
information is going to be stored in the cell state. First, the input gate layer consists of
a sigmoid that decides which value will be updated. A vector of new values is created
by the tanh layer, which could be added to the state. In the final step, both are combined
to update the state. Finally, the output will be filtered and based on the cell state. The
first sigmoid layer decides which part will be the output and then passes it through the
tanh layers. The tanh layers’ value will multiply with an output of the sigmoid gate to
obtain the desired output. According to [16], every LSTM layer expects a 3D array of data
during model fitting when predictions were performed, although specific array dimensions
contain a single array value. Therefore, we need to reshape our input dataset into 3D. The
basic architecture of the LSTM model is presented in Figure 4.
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2.4. Experiments

The experiments were conducted in three cascaded deep neural networks that encoded
the hidden information inside the audio features, and interpreted the PD elements that
trigger the audio features to complete patient classification. The presented deep neural
networks were designed in this experiment by using the Keras and TensorFlow libraries. A
linear unit activation function (ReLU) was used through the layer. The ReLU allowed us to
modify default parameters and to use non-zero thresholds. This function also changed the
max activation value and used a non-zero multiple for the input value which was lower
than the threshold value. A sigmoid activation function, sigmoid(x) = 1/(1 + exp(−x)),
was used through the output layer. The sigmoid function was applied to the small values
and it returned a value close to zero, and approached one for the large value.

For MLP, we used 24 dense layers as inputs and “ReLU” as the activation function. For
the hidden layer, we used 32 dense layers and the ReLU activation function. We used the
sigmoid activation function on the single dense-layer output. In RNN, we used 32 flattened
dense layers as the input layer and 16 dense layers for the hidden layer. This model also
used the ReLU activation function. The sigmoid activation function is used for obtaining
output from a range of 0 to 1. In the LSTM model, we maintained 100 input and hidden
layers, and the activation function ReLU is the same as other models. Here we also added
a dropout of (0.5). We obtained the output with the sigmoid function.

2.5. Implementation and Validation Details

We split our dataset for training and testing so that we could measure the accuracy,
loss, precision, recall, and F1-score of these three ML algorithms in PD detection. This
unbalanced dataset has been split stratified by utilizing class labels to determine the number
of samples from each target class in each subset. In a stratified style, each subset contains
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approximately the same number of samples from each target class as the complete dataset.
The data was split into 67% training data and 33% testing data.

The training dataset is used to train the ML model and the test dataset is used to predict
the cases with and without PD with the trained model. We train deep learning models
in small batches of 16 samples with cross-entropy as a loss, by applying the stochastic
gradient descent (SGD) algorithm.

The splitting is repeated for a maximum of 100 epochs to avoid infinity loop iterations.
We stopped at the 30th iteration to prevent the model from overfitting. To evaluate each
model, we tested different numbers of epochs to pick the best epoch value; batch size = 1,
since the dataset was not large, 131 (67% of 195). For the loss function, we used binary cross-
entropy [17] and an Adam optimizer [18]. The reason behind the selection of cross-entropy
is it was the simplest approach to the probability measurement of the model. It can be
useful because of its capability in model description in the likelihood of error functions for
every datapoint, and in describing predicted outcome compared with the actual outcome.
We reported model performance in terms of model accuracy and loss.

2.6. Performance Metrics

Accuracy and loss metrics are used to calculate the model performance. These metrics
create two local variables, “total” and “count”, to calculate how often the predictions are
equal with the labels. These local variables match with the target prediction (y_pred) and
true (y_true) classes to compute frequency, which is returned as a binary accuracy. The
model accuracy can be defined as the percentage of correct predictions, or it can also be
written as the ratio of correct predictions to total predictions, such as:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

where TP is true positives; TN, true negatives; FP, false positives; and FN, false negatives.
As mentioned, all models used the binary cross-entropy loss function, calculating

the cross-entropy loss between the predicted classes (y_pred) and the true classes (y_true;
either 0 or 1) in the model prediction, either represented as a logit or probability. The loss
function is defined as

Loss = True classes− Predicted classes (4)

Other performance metrics such as precision, recall, and F1 score also define the model
performance. The definition of those metrics is given below.

Precision is the percentage of true positives and is mathematically represented as

Precision =
TP

TP + FP
(5)

Recall is the calculation of a percentage of true predicted positives among total posi-
tives, and is also called true positive rate (TPR)

Recall =
TP

TP + FN
(6)

F1 score is the harmonic mean of precision and recall and considers both false positives
and false negatives. This metric performed well in imbalanced datasets.

F1 score =
2× (Precision× Recall)

Precision + Recall
(7)
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3. Results

Our three developed models classify the healthy and PD patients according to these in-
dependent values. To calculate the performance of the adopted models, confusion matrices
were considered, and Figure 5 presents the confusion matrix outcomes for these models.
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Figure 5. Confusion matrix outcomes for three deep learning models.

Table 2 provides an overview of experimental outcomes; from this, we obtain our
model’s training and testing accuracy, as well as loss score, and we can easily identify the
best model from it.

Table 2. Performance metrics of training and testing datasets with three neural network models.

Model Test Accuracy Test Loss Training Accuracy Training Loss Precision Recall F1 Score

MLP 96.93 8.55 99.48 2.50 100 93.87 96.84
RNN 95.91 9.20 99.48 3.01 100 91.83 95.74
LSTM 98.97 3.46 100 0.34 100 97.95 98.96

Figure 6 represents the accuracy curves of both the training and testing datasets. The
testing dataset accuracy produced almost 98% accuracy with the LSTM model and 100%
accuracy on the training datasets. RN and MLP generated 95.91% and 96.93% accuracy in
testing, respectively, and both generated a 99.48% classification accuracy on the training
datasets.Table 2 shows the detailed result of those three ML models with test and training
accuracy, loss, precision score, recall score, and F1-socre.
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On the other hand, model fitting is a parameter that explains how well an ML model
is generalized according to the same data on which training has been completed. The goal
of good fit for the learning algorithm exists between the underfitting and overfitting of the
model. The model’s good fit is recognized by a training and testing loss that reduces to
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the stability point with a small gap between both curves [19]. Similar to accuracy curves,
we present the loss curves for the three adopted models in Figure 7. Observing them, the
plots of the testing and training losses decrease to the stability point and have a small gap
with the training loss, which proves that the models are well fitted with the dataset. The
lowest training (3.5%) and testing (0.35%) loss was produced by the LSTM model, followed
by the MLP and RNN models. Through these experiments, it is concluded that the LSTM
performed better in the classification of voice signals.
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4. Discussion

The current work presented cascaded deep learning frameworks for the classification
of voice markers in PD diagnosis. Different data pre-processing techniques were applied be-
fore training of three deep-learning-based cascaded neural networking models. The results
demonstrated that LSTM outperforms the other two models, MLP and RNN, respectively.

There is still no particular diagnostic process for PD detection, but there are different
diagnostic tests and symptoms used in combination for diagnosis. Various biomarkers
have been investigated by scientists for early PD identification. Current treatments improve
PD symptoms without halting or slowing the disease process. The early detection of PD
with better accuracy is important because of its ability to offer critical information to slow
down disease progression. For many years, different data-driven methods were developed
to advance PD detection. Compared to PD detection modeling techniques where the
analytical model is a prerequisite, in data-driven methods only accessibility to historical
data is required.

Deep learning techniques have the highest probability in the detection of PD. In
recent times, deep-learning-type neural networks have emerged as a prominent source
for research in the diagnosis of PD, both in industrial and institutional applications [20].
Due to their data-driven modeling techniques, neural networks have brought a paradigm
shift to the process of analyzing relevant data in PD biomarkers. ML-based PD diagnosis
with feature selection and classification modeling, and support vector machines (SVM)
combined with recursive feature elimination, showed the highest accuracy of 93.84%, with
a smaller number of voice biomarkers for PD [21]. Three different neural networks, namely
RNN, MLP, and LSTM, were used in this study and showed different accuracy values
for each classifier. The LSTM classifier outperforms the other two models and produced
a maximum classification accuracy of almost 99%, as well as the best F1-score (98.96%),
precision score (100%) and recall score (97.95%).

The present investigation has attempted to early prediction of the patient condition
at the different disease severity levels over time. Previous studies proposed a model for
predicting and diagnosing PD severity based on biomedical voice features. For instance, it
was reported in [22] that Gaussian classification with autonomous relevance estimation
has a 96.92% accuracy, which outperforms SVM and decision tree ensemble learning. It
also proved that deep learning models can outperform ML models in the early detection of
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PD [23]. Another study proposed a deep learning-based neural network architecture for
PD severity prediction [24].

However, this work is different from the previous literature on neural network imple-
mentation because of its simple classification and data normalization techniques. Maximum
classification accuracy in terms of the AUC parameter was achieved, and using the K-fold
validation technique helped very much in testing the model’s performance. When com-
pared to MRI or motion-based diagnosis methods, obtaining voice biomarkers are both
easy and cheap. These study outcomes suggest that LSTM with SMOTE oversampling can
produce the best classification accuracy in PD subject classification. Our proposed models
can be helpful neurological studies for disease diagnosis using biomarkers datasets.

Despite demonstrating the highest subject classification accuracy, this study has some
limitations. Firstly, the low subject sample can hinder the outcome assumptions with
respect to global PD patients. These advanced cascaded deep learning models can help
in the accurate classification of PD subjects based on vocal abnormalities and others, but
not confirm disease diagnosis. There is a need for further studies with consideration for
confirmation and better sample characterization.

5. Conclusions

By using non-invasive voice biomarkers as features of automatic ML architectures,
PD diagnosis and prediction are possible. In this paper, we compared the performances of
three cascaded deep learning models for PD diagnosis using voice signals. Because of the
use of SMOTE sampling in the assessment of neurological data to assess patient conditions,
the experiments produced promising results. The proposed deep learning LSTM cascaded
model showed excellent classification accuracy (~99%). LSTM models are desirable for
learning of nonlinear and linear features from a PD dataset without requiring handcrafted
feature-extraction techniques. Due to the higher accuracy of these models with simple
audio features containing spoken words, LSTM can help in the accurate classification of PD
subjects and the validation of future diagnostic approaches.
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