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Abstract: The systemic administration of paclitaxel (PTX)-based combinatorial therapies is signif-
icantly restricted due to the multidrug resistance. Curcumin (CUR) not only inhibits cancer-cell
proliferation but also reverses the PTX resistance. However, achieving codelivery of these two drugs is
a challenge due to their poor water solubility. Herein, we synthesized carrier-free PTX NPs by a facile
nanoprecipitation method with the help of CUR and other curcuminoids present in turmeric extract.
The prepared NPs demonstrated spherical morphologies with high conformational stability. Experi-
mental studies showed that the presence of both bisdemethoxycurcumin and demethoxycurcumin is
essential for the successful formation of spherical and monodisperse NPs. Computational studies
revealed that the presence of the more sterically available curcuminoids BMC and DMC makes the
self-assembly procedure more adaptable with a higher number of potential conformations that could
give rise to more monodisperse PTX-CUR NPs. Compared with PTX alone, PTX-CUR NPs have
shown comparable therapeutic efficiency in vitro and demonstrated a higher cellular internalization,
highlighting their potential for in vivo applications. The successful formation of PTX-CUR NPs and
the understanding of how multiple drugs behave at the molecular level also provide guidance for
developing formulations for the synthesis of high-quality and effective carrier-free nanosystems for
biomedical applications.

Keywords: hydrophobic anticancer drugs; curcumin; paclitaxel; carrier-free nanoparticles;
self-assembly; molecular modeling

1. Introduction

Cancer caused the loss of approximately 10 million lives in 2020 alone and it remains
the second leading cause of death [1]. The administration of anticancer drugs, chemother-
apy, remains as the most common therapy for breast cancer to this day [2]. However,
many anticancer drugs are hydrophobic, and this requires the use of organic solvents for
their clinical administration, resulting in inefficient therapies and side effects, including
cardiotoxicity, nephrotoxicity, neurotoxicity, and hypersensitivity when injected into the
bloodstream. To tackle these issues, there has been tremendous research on a variety
of carrier-based nanoparticles (NPs), but such strategies often fail to encapsulate drug
molecules efficiently and require significant amounts of inorganic and/or organic nanocar-
riers with potential long-term toxicity. Preparations of carrier-free nanoformulations for the
delivery of anticancer drugs with poor water solubility are thus desired [3]. Paclitaxel (PTX,
Figure 1), one of the most-prescribed FDA-approved chemotherapeutic agents, prevents mi-
crotubule depolymerization and arresting mitosis at the G2/M stages of the cell cycle [3,4].
Despite its effective mechanism, the clinical application of PTX has significant issues due
to its low water solubility (0.3 µg/mL) and multidrug resistance (MDR) [5–7]. It was
reported that the long-term exposure of PTX induced drug resistance via the activation of
nuclear factor-κB (NF-κB), resulting in cancer-cell proliferation, invasion, and metastasis [8].
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Many studies have demonstrated that the coadministration of curcumin (CUR, Figure 1)
with PTX could suppress PTX resistance. CUR, derived from turmeric, Curcuma longa,
is an anti-inflammatory, antibacterial, and anticancer agent [9]. CUR is known to have
synergistic effects when it is combined with anticancer agents [4]. It has been demonstrated
that CUR increased the sensitivity of MCF-7 and MDA-MB-231 cells to PTX [10]. In 2020,
Saghatelyan et al. reported a phase II clinical study where they investigated the efficacy
of CUR in combination with PTX in patients with advanced metastatic breast cancer. The
combination treatment was found to be superior compared to PTX and placebo groups
in terms of objective response rate and physical performance [11], maintaining its effect
even three months after the termination of treatment. Therefore, it would be useful to
develop a safe and effective system that could simultaneously deliver PTX and CUR to
treat cancer. However, similar to PTX, CUR also has poor water solubility (0.6 µg/mL) and
poor bioavailability, which pose a challenge for its clinical application.
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To solve the problem, nanotechnology has been studied for the delivery of these two
hydrophobic anticancer drugs to reduce their side effects and toxicity and increase the effi-
ciency of the treatments. Such formulations often included carrier-based delivery systems. In
2009, Amiji et al. reported a flaxseed-oil-containing nanoemulsion formulation to encapsulate
PTX and CUR to overcome the MDR in ovarian cancer [12]. There have been many carrier-
based formulations for the codelivery of PTX and CUR, including polymeric systems [13–15],
liposomes, niosomes [16], cyclodextrins [17], and graphene oxide [18], but these all suffer
from low drug loadings and could pose challenges due to the nontherapeutic carrier mass
compositions and the unknown long-term toxicities of the carrier components [3].

To address these issues, mixing two or more hydrophobic drugs together may enable
the self-assembly of the drugs into stable NPs without using any carrier components [19–21].
Mechanistically, the hydrophobic parts of the molecules interact with each other through
noncovalent interactions, such as van der Waals, electrostatic, and induction interactions,
which enable the organization of the drug molecules into NPs [3,22,23]. Similar approaches
were adopted to facilitate the preparation of carrier-free PTX-containing NPs [24–28]. How-
ever, it is highly challenging to produce good-quality carrier-free NPs. The synthesized NPs
often have very poor uniformity, irregular shapes, and low stability. Herein, we report an
effective formulation for the synthesis of high-quality carrier-free PTX-CUR NPs and then
study the mechanism of the successful self-assembly with complimentary experimental and
computational studies. The quality of the resulting NPs was explored by changing different
variables, including the PTX:CUR weight ratio and the purity of CUR. The prepared NPs
were characterized using dynamic light scattering (DLS), transmission electron microscopy
(TEM), and ultraviolet visible (UV-Vis) spectroscopy. The computational studies explored
the importance of CUR purity in the self-assembly process and provided an understanding
of the underlying mechanisms enabling carrier-free NP formation. To the best of our
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knowledge, this is the first study on the role of curcuminoids in the self-assembly of NPs.
The presence of sterically more available bisdemethoxycurcumin (BMC) and demethoxy-
curcumin (DMC) plays a vital role in the self-assembly process. This study provides a
new way to develop CUR-containing nanomedicine formulations, which tackles the water
insolubility issue of anticancer drugs and generates synergistic anticancer effects.

2. Materials and Methods
2.1. Chemicals and Reagents

CUR (purity >98%, >65%), DMC and tetrahydrofuran (THF) were obtained from Sigma
Aldrich, UK. PTX and BMC were purchased from Fluorochem (U.K.). 1,2-Distearoyl-sn-
glycero-3-phosphoethanolamine-N-[(polyethylene glycol)]-fluorescein (DSPE)-PEG-COOH
(5k) was purchased from Creative PEGworks, USA. Dulbecco’s Modified Eagle Medium
(DMEM), fetal bovine serum (FBS), trypsin, and penicillin–streptomycin (10,000 U/mL)
were obtained from Gibco, UK. Hoechst 33342, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-
2H-tetrazolium bromide (MTT), and dimethyl sulfoxide (DMSO) were obtained from Sigma
Aldrich, UK. All reagents were used without further purification.

2.2. Preparation and Characterization of Various PTX-CUR NPs

Carrier-free NP suspensions were prepared using the nanoprecipitation method. First,
predetermined solutions of CUR and PTX were prepared in THF, separately, at different
concentrations, to achieve the weight ratios stated in Table 1. Next, 100 µL was withdrawn
from each of these solutions and mixed to form a 200 µL drug solution with the desired
weight ratio, containing 0.2 g of PTX and/or CUR in total. The mixture was then quickly
added to 5 mL of deionized water under vigorous stirring to trigger self-assembly. The
drug mixture was stirred for 5 min, where 200 µL DPE-PEG-COOH solution in water
(0.1 mg/mL) was added one minute before the end of stirring as a surfactant. The NP sus-
pension was sonicated for 20 min. The prepared NPs were stored at 4 ◦C until further use
and characterized by DLS and TEM (JEOL JEM-1400 Plus at Wellcome Trust of Biology Im-
age Centre of Edinburgh). CUR-PTX NPs were purified with ultracentrifuge tubes (MWCO:
5k). The mass spectrometry (MS) analysis of the CUR obtained from turmeric powder was
performed using Bruker UK MicroTOF LC MS Neg 50-1000. Standard solutions of PTX and
CUR were prepared using stock solutions of 1 mg/mL for each drug molecule in THF. These
solutions were then further diluted with water to reach the required concentrations. Nan-
odrug concentrations were calculated using calibration curves (Supplementary Figure S1)
constructed with NanoDrop™ 2000 Spectrophotometer, Thermo Fisher.

Table 1. The effects of different weight ratios of PTX and CUR on the preparation of NPs. PTX and
CUR stand for paclitaxel and curcumin.

Weight Ratio Average Size
(nm) PDI Appearance at Day 2

CUR PTX

1 0 189 ± 2.56 0.13 ± 0.003 Clear
0 1 679 ± 87 0.52 ± 0.18 Large aggregation
1 1 162 ± 11.2 0.18 ± 0.002 Clear
1 2 119 ± 18 0.21 ± 0.003 Clear
1 3 300 ± 34.7 0.45 ± 0.04 Large aggregation
2 1 124 ± 28.2 0.15 ± 0.1 Clear
3 1 222 ± 48 0.30 ± 0.14 Some aggregation

2.3. Computational Simulations
2.3.1. System Setup of Molecular Dynamics Simulation

PTX-CUR (proportion of molar ratio: 12:27) and PTX-CUR-BMC-DMC (12:19:3:6) sys-
tem were constructed to mimic the experimental methods of NP formation with 98% and
65% CUR, respectively, and to observe relevant conformation and stability in pure water.
All molecular dynamics simulations (MD) were performed using GROMACS 2021.5 [29,30]
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package under generalized amber forcefield (GAFF) and accelerated high-performance com-
puting center with GPU NVIDIA RTX 3090 and CPU Intel® Core™ i9-10900K @ 3.7 GHz.
Restrained ElectroStatic Potential was used as the charges of PTX, CUR, BMC, and DMC
from Multiwfn [31] and Gaussian16 with B3YLP/6-311G** level [32–34], and relevant
topology parameters were generated using Sobtop [35].

2.3.2. Unbiased MD Simulation

An unbiased MD method was employed to describe the self-assembly process of
the two NP systems. Initially, molecules were put in a 7.5 × 7.5 × 7.5 nm3 box with a
water model of tip3p. In the energy minimization step, the conjugate gradient and steep
descent algorithm [36] were used to eliminate the irrational contacts of intermolecules
and converge the maximum force <100 kJ mol−1 nm−1. Next, each task was performed
in the isothermal−isobaric (NPT) ensemble at 1.0 bar and was coupled isotropically with
4.5 × 10−5 compressibility and a coupling constant of 12.0 ps under the Parrinello−Rahman
algorithm [37]. The temperature was set at 298.15 K and coupled with a coupling con-
stant of 1.0 ps under v−rescale algorithm [38]. We set 1.0 nm as the cut-off distance for
short-range interactions and used the particle-mesh Ewald algorithm [39] to compute the
long-range interaction.

NPT simulation (100 ns) for each system in water was executed to generate the
trajectory of NP motion and to obtain a stable cluster model. Subsequently, 200 ns sim-
ulated annealing [40] of five time- and temperature-points (0 ps, 8 ns, 10 ns, 18 ns, and
20 ns; 0 K, 320 K, 320 K, 0 K, and 0 K) to inspect the structural stability and obtain ra-
tional NP conformations in water. Visual molecular dynamics (VMD) [41] and Qtgrace
(https://sourceforge.net/projects/qtgrace/, accessed on 1 May 2022) were employed to
visualize the MD results.

2.4. In Vitro Cytotoxicity Assessment

The cytotoxicity of PTX-CUR NPs was measured by the MTT assay. In general,
MCF-7 and MDA-MB-231 cells were cultured in the 96-well plates in medium (200 µL) at
10 × 103 cells/well and 15 × 103 cells/well, respectively, and incubated overnight. Then,
the medium was substituted with medium composed of free PTX, CUR, the mixture of PTX
and CUR, and PTX-CUR NPs with the final concentrations of 1, 10, 100, and 1000 nM. After
incubating for either 48 h or 72 h, cells were incubated with MTT (20 µL, 5 mg/mL) for
another 4 h at 37 ◦C. Hereafter, supernatant was removed, and blue formazan crystal was
dissolved by DMSO (150 µL). The absorbance of each well was determined via a microplate
reader at 490 nm, and the following formula was used to evaluate the cell inhibition:

Cell inhibition ratio (%) =
Apositive − Asample

Apositive − Ablank
× 100%

The medium without cells or treatments was regarded as a blank group, and cells
without drugs were taken as a positive group. For all samples, the cytotoxicity experiment
was repeated three times.

2.5. In Vitro Cellular Uptake

To investigate the cellular uptake of the released CUR molecules, MCF-7 cells were
incubated with the prepared PTX-CUR NPs or free CUR at 37 ◦C for 4 h. Fluorescence
images of the incubated cells were taken using a confocal laser scanning microscope, in
which Hoechst 33342 was used to specifically stain the nucleus.

3. Results and Discussion
3.1. Synthesis of PTX-CUR NPs

The CUR-PTX NPs were prepared using a single-step nanoprecipitation method. The
CUR used in these initial studies were obtained from curcuma longa powder (>65% by

https://sourceforge.net/projects/qtgrace/
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HPLC). As a starting point for controlling the NP characteristics, we first studied the
effect of different weight ratios of PTX and CUR to be able choose the most successful NP
formulation. First, standard solutions of CUR and PTX were prepared in THF, separately,
at different concentrations to achieve the weight ratios stated in Table 1. Next, 100 µL was
withdrawn from each of these solutions and mixed to form a 200 µL drug solution with the
desired weight ratio. The mixture was then added dropwisely to 5 mL of deionized water
under vigorous stirring to trigger self-assembly. As this study aims to prepare carrier-free
NPs, a minimal amount of the PEG was used and the weight ratio between PTX and PEG
was kept at 1:0.2, respectively. This is done to make sure that PEG acts as a surfactant, rather
than a carrier platform. In addition, if the molecular weight of the DSPE-PEG polymer
is considered, 5000 g/mol, relative to PTX’s 853.9 g/mol, the difference in molar ratio
comes to 1:0.03 (PTX to PEG). In the formulation, PEG acts as a surfactant to improve the
stability of the carrier-free NPs, rather than as a carrier platform. It is worth noting that
the PEG molecules were added into the solution after the formation of the pure-drug NPs.
Therefore, they are not expected to play any roles in the self-assembly process but at the
stabilization of the formed NPs. The NP suspensions were sonicated for a further 20 min
and stored at 4 ◦C for future use.

The initial DLS results (Table 1) suggested an increase in PTX amount relative to CUR,
and vice versa, can rapidly disrupt the self-assembly process. For example, while 1:1, 2:1,
and 1:2 weight ratios of CUR:PTX formed relatively narrowly dispersed NPs, increasing
either the CUR or PTX weight ratios (1:3 or 3:1) resulted in the formation of visible aggregates
on Day 2. Of the successful formulations, the NPs with a 1:1 weight ratio of PTX and CUR
exhibited an average size of 162 nm with 0.18 PDI (Figure 2c) and were further characterized
using TEM (Figure 2a), where largely symmetric and spherical NPs were imaged. The zeta
potential value of 1:1 (w/w) PTX-CUR NPs was −35.4 mV. When compared to the similar
examples from the field of carrier-free nanomedicines, the spherical symmetry of the PTX-
CUR NPs is among the best obtained NP morphologies. As a control study, an attempt was
also made to prepare PTX NPs with DSPE-PEG-COOH as the surface stabilizer, but without
the addition of CUR, using the same method as described above. An average size of 679 nm
was observed using DLS, and the subsequent TEM characterization (Figure 2b) revealed the
formation of needle-shaped aggregates of the similar size range inside the solution, showing
the inability of PTX to self-assemble into NPs in the absence of carrier molecules/platforms.
In the literature, dimer molecules of covalently linked PTX were synthesized via dicarboxylic
acid linkers to overcome this problem, which contained either an aliphatic carbon chain or a
disulfide bond (R: C4, C6, C8, C9, S-S). The prepared dimers (PTX2) were then used to form
PTX2 NPs in an aqueous solution without using any carriers [42].

The stability of the PTX-CUR NPs with a 1:1 weight ratio of PTX and CUR was also
monitored using DLS (Figure 3), in which a fresh batch of NPs were prepared and tested
for their average sizes and PDIs over a period of 15 days. The samples were stored at
4 ◦C. While there was a small gradual increase in the NP size, the rise was from ~185 nm
to ~195 nm, which can be regarded as a small change. In addition, the PDI values remained
low (<0.2) throughout the whole monitoring period.

3.2. Curcuminoids and the Self-Assembly Process

With the success of high-quality PTX-CUR NP synthesis with 65% purity CUR, we
next decided to test how high-purity CUR (>98%) would behave when combined with PTX.
A series of experiments were performed to test the NP synthesis using PTX and high-purity
CUR (Table 2). While the nanoprecipitation procedure was kept the same as above, i.e.,
1 mg/mL standard THF solutions of both drugs into 5 mL water under vigorous stirring,
the results were sharply different. It was discovered that PTX and 98% pure CUR mixtures
did not self-assemble into well-controlled NPs in any of the samples. The synthesis led
to polydisperse suspensions with visible aggregates after Day 1, even when PEG weight
ratios were increased to improve the stability of any potentially formed NPs. The sizes
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of the formed NPs ranged from 1520 nm to 6150 nm and the PDI values were between
0.65 and 1.00, indicating very polydisperse microsized structures.
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Table 2. The size and PDI of PTX-CUR NPs synthesized from PTX and high-purity CUR (>98%). PTX
and CUR stand for paclitaxel and curcumin.

CUR
Purity WPTX/WPEG Average Size (nm) PDI

>98%

1:0.1 1520 ± 264 1.00
1:0.5 2160 ± 396 1.00
1:1 6150 ± 323 0.70 ± 0.15
1:2 2490 ± 100 0.65 ± 0.06
1:5 2900 ± 283 1.00

The results suggest that the impurities in the >65% CUR might have played roles in
the successful self-assembly of the PTX-CUR NPs. Therefore, the low-purity (>65%) CUR
product was characterized using MS to identify the components. The performed liquid-
chromatography mass spectroscopy (LC-MS) analysis (Figure 4) enabled the identification
of the two main impurities as DMC (m/z 337) and BMC (m/z 307), alongside CUR (m/z 367).
These identifications are also in line with the literature, where both DMC and BMC contents
were previously reported in some commercially available CUR [43]. DMC has one methoxy
group on the aryl group (Figure 4), whereas BMC lacks both methoxy groups, which may
make it less sterically hindered and more available for intermolecular interactions, such
as hydrogen bonding, with PTX and other curcuminoids. BMC is also known to have
improved stability in the physiological environment, cellular uptake, and antitumor efficacy
compared to CUR [43].
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In light of the MS analysis results, we synthesized NPs by mixing these two chem-
icals with CUR to understand their role on NP formation with PTX (Table 3), using the
same protocol used in the preparation of the above-described PTX-CUR NPs. As seen
in Table 3, Sample 1 was the best-performing formulation, where the average sizes and
the PDI values of the NPs were in agreement with the previous results. The UV-Vis mea-
surements showed the specific absorption peaks of PTX and CUR at 227 nm and 425 nm,
respectively (Supplementary Figure S2). In comparison, Samples 2–4 failed to form NPs
and visible aggregates were observed from these batches. These results hint that none of
the curcuminoids were capable of forming NPs on their own when mixed with PTX using
our nanoprecipitation procedure. To facilitate the NP formation, we subsequently tested
the formulations containing mixtures of curcuminoids. The results show that using two
or more of the CUR analogues could help the self-assembly process, thereby generating
NPs with much smaller sizes and significantly lower PDI values. Sample 9, which was
formulated to have a similar composition to the 65% CUR obtained from turmeric pow-
der, performed similarly to Sample 1, hinting that this composition is beneficial for the
self-assembly of the drug molecules.

Table 3. The hydrodynamic diameter of the NPs obtained from different drug formulations measured
by DLS. The weight ratios are stated in relative to PTX. PTX, CUR, BMC, and DMC stand for paclitaxel,
curcumin, bisdemethoxycurcumin, and demethoxycurcumin, respectively.

Sample NP Composition (Weight Ratios) Average Size/nm PDI

1 PTX and 65% pure CUR (1:1) 126 ± 4.25 0.19 ± 0.002
2 PTX and 98% pure CUR (1:1) 4020 ± 84 1.00
3 PTX and BMC (1:1) 3870 ± 67 1.00
4 PTX and DMC (1:1) 5920 ± 195 1.00
5 PTX, BMC, and DMC (1:0.5:0.5) 208 ± 22.6 0.52 ± 0.1
6 PTX, 98% CUR, and BMC (1:0.5:0.5) 290 ± 36.84 0.48 ± 0.03
7 PTX, 98% CUR, and DMC (1:0.5:0.5) 207 ± 27.02 0.40 ± 0.02

8 PTX, 98% CUR, BMC, and DMC
(1:0.33:0.33:0.33) 223 ± 33.20 0.42 ± 0.1

9 PTX, 98% CUR, BMC, and
DMC(1:0.7:0.1:0.2) 160 ± 3.06 0.20 ± 0.007

3.3. Modeling Studies—Molecular Dynamic Simulation to Understand the Mechanism of
Self-Assembly of PTX-CUR NPs
3.3.1. Self-Assembly of NPs

Understanding the self-assembly process of small molecules into NPs is often achieved
via computational studies. Herein, MD was employed to illustrate the NP formation
process, to recognize the mechanistic details of the experimental observations, and to
reveal the self-assembly process of the nanosystem. MD is based on Newton’s equations
of classical mechanics to simulate the motion processes of molecules, where an integral
equation, including the description of bonded and nonbonded interactions, can be swiftly
computed using graphics processing units (GPUs) and the location, speed, and forces of
particles in the whole system can be calculated and simulated.

Initially, the starting systems were constructed by placing molecules randomly into
box systems, as shown in Figure 5. The root–mean–square deviation (RMSD) was then
used to measure the position deviations of specific particles during a 100 ns simulation.
RMSD is an indicator for the equilibrium state, and smaller RMSD values were observed
for the PTX-CUR-BMC-DMC system (Figure 5c) than for the PTX-CUR, indicating the more
stable nature of the formed NPs. In both systems, the radius of gyration (Rg), which is used
to probe size changes during the motion process, was calculated as ~1.65 nm (Figure 5d). In
addition, the solvent-accessible surface area (SASA) was used to evaluate the hydrophobic
interaction of the NPs. The smaller SASA again pointed towards the more stable nature of
the PTX-CUR-BMC-DMC NPs (Figure 5e,f). We further explored the fluctuations of each
molecule in systems (PTX-CUR: 1–12, 13–39; PTX-CUR-BMC-DMC: 1–12, 13–31, 32–34,



Bioengineering 2022, 9, 815 9 of 16

35–40) to describe the stability distribution in the presence of BMC (32–34) and DMC
(35–40) (Figure 5g). Apparently, the replacement of CUR with BMC and DMC reduced the
fluctuation of the system and made the remaining CUR more stable.
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Figure 5. The property representation of NPs, including the initial system state ((a) for PTX-CUR and
(b) for PTX-CUR-BMC-DMC), the profile of RMSD (c), Rg (d), potential energy (e), SASA (f), and
RMS fluctuation (g). PTX, CUR, BMC, and DMC stand for paclitaxel, curcumin, bisdemethoxycur-
cumin, and demethoxycurcumin, respectively (The black and red solid lines stand for the molecular
fluctuation in only PTX-CUR and PTX-CUR-BMC-DMC NPs, respectively. The dotted line defines
the number and range of each molecule).
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3.3.2. Representative Conformation Analysis

Generated NP conformations were then used to analyze the potential representative
conformations of the two kinds of NPs in water. When an RMSD cut-off of 0.40 nm was ap-
plied, the PTX-CUR-BMC-DMC (corresponding to the NPs from 65% CUR and PTX) system
generated a maximum of 568 structures in the representative cluster 1 (total of 12 clusters,
red line in Figure 6a) compared to the 458 structures in the representative cluster 1 (total
of 21 clusters, black line in Figure 7a) recorded with the PTX-CUR (corresponding to the
NPs from 98% CUR and PTX) system (Figure 6). The key point is to understand the success
and failure of NPs with different purities. From the perspective of a simulation, the self-
assembly (microscopic) of molecules is not equal to the generation of NPs (macroscopic),
but we can hypothesize that a more stable process of self-assembly of molecules indicates
NPs with better properties. Figure 6b1,b2 reveals the representative conformations (b1 and
b2 indicated the PTX-CUR and PTX-CUR-BMC-DMC NPs, respectively). Figure 6c1,c2
reveals clusters distribution in the self-assembly process (c1 and c2 indicated the PTX-CUR
and PTX-CUR-BMC-DMC NPs, respectively). The results suggest that the PTX-CUR-BMC-
DMC system is likely to generate more collective structures in the modeling studies due
to there being more structures in the representative cluster and a smaller number of total
clusters. Representative conformations can also be used to assess the formability of the NP
systems and given the higher number of possible structures in clusters, the NP system with
PTX-CUR-BMC-DMC is more formable compared to the PTX-CUR system. The higher
number of conformations may stem directly from the decreased steric hinderance on the
curcuminoids BMC and DMC, which can enable different confirmations to form and sustain
NPs. Therefore, from the process of micro-self-assembly, the PTX-CUR NP is not as stable as
the PTX-CUR-BMC-DMC NP. The rational extension to the process of macro-nanoparticle
generation indicates why the synthesis of PTX-CUR (>98%) NPs failed.
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Figure 6. Representative conformation analysis of PTX-CUR and PTX-CUR-BMC-DMC NPs.
(a) indicates the number of NP conformations (y axis) and clusters (x axis) from the total confor-
mations during the whole simulation process; (b) describes the representative structure of NPs
in water solvent ((b1,b2) indicated the PTX-CUR and PTX-CUR-BMC-DMC NPs, respectively);
(c) denotes the clustering matrix of NPs. PTX, CUR, BMC, and DMC stand for paclitaxel, curcumin,
bisdemethoxycurcumin, and demethoxycurcumin, respectively ((c1,c2) indicated the PTX-CUR and
PTX-CUR-BMC-DMC NPs, respectively).
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Figure 7. Simulated annealing method revealed the NP size and stability analysis of PTX-CUR and
PTX-CUR-BMC-DMC. (a) indicates the change in the system temperature from 0 to 320 K under
10-turn simulated annealing. (b–d) indicate the potential-energy fluctuation, Rg, and SASA during
the simulated annealing process, respectively. PTX, CUR, BMC, and DMC stand for paclitaxel,
curcumin, bisdemethoxycurcumin, and demethoxycurcumin, respectively. The arrows in figures
indicate the first time-point of whole system to reach the 0 K.

3.3.3. Evaluation of System Stability

The stability of the generated NPs was tested in unstable environments by introducing
the simulated annealing method. The temperature of the system was varied between 0 K
and 320 K in every 10 ns. The changes in potential energy, Rg, and SASA were observed for
both drug-combination systems with the temperature fluctuations (Figure 7). Both Rg and
SASA decreased at the minimum temperature point (blue arrows in the Figure 7), and this
reflects more stable NP structures at lower temperatures owing to a lower system potential.
When comparing the NP systems, PTX-CUR-BMC-DMC mostly resulted in lower Rg sizes
and a smaller SASA in the annealing simulations, further confirming the more stable nature
of these NPs.

3.4. In Vitro Cytotoxicity

The cytotoxicity of PTX-CUR NPs was measured via the MTT assay on MCF-7 and
MDA-MB-231 cells. As depicted in Figure 8, the cytotoxicity of PTX, PTX + CUR, and
PTX-CUR NPs increased in a drug-concentration- and incubation-time-dependent manner.
The PTX + CUR mixture showed a cell viability of 60% in MCF-7 cells at 48 h and PTX-CUR
NPs exhibited a relatively similar cell viability for the same PTX concentration (1000 nM
for PTX). The cell viabilities at 72 h decreased to approximately ~45% for the PTX + CUR
mixture and the PTX-CUR NP-treated groups. Similar results were also observed in MDA-
MB-231 cells. The similar cytotoxicities of the NPs and the drug mixture are attributed
to the ability of the free drug molecules to quickly enter cells by diffusion in in vitro
studies [19,28,44]. However, therapeutic efficacy is expected to be much better than the
mixture in vivo due to the advantages of nanomedicine. For example, in one particular
study, PTX-loaded NPs showed superior anticancer efficacy in vivo compared to free PTX
alone, but demonstrated weaker efficacy in vitro [44]. Moreover, the cells incubated with
free CUR alone showed little-to-no decrease in cell viability due to its low concentration.
Overall, it was demonstrated that PTX-CUR NPs showed comparable cytotoxicity to the
free PTX + CUR mixture, highlighting their strong potential for the codelivery of PTX and
CUR as carrier-free nanodrugs.
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Figure 8. In vitro anticancer activity of PTX, CUR, PTX + CUR mixture, and PTX-CUR NPs in MCF-7
and MDA-MB-231 cells. PTX and CUR stand for paclitaxel and curcumin. Data are presented as
means ± SD. * p < 0.05 vs. control. ** p < 0.05 vs. CUR.

To be able to investigate the potential of PTX-CUR NPs for clinic use, we also at-
tempted to increase their concentration. The final nanodrug solution had an estimated
concentration of 20 µg/mL PTX and 20 µg/mL CUR as they were prepared using 1 mg/mL
drug-stock solutions with 5 mL water. To increase the concentration and make the NPs
more suitable for clinical applications, a dialysis-based procedure was performed using
Amicon® ultra centrifugal filter tubes (cut-off 10 kDa). The prepared PTX-CUR NP sus-
pensions were added into the Amicon tubes, and they were spun at 3000 rpm for 20 min.
After the centrifugation, the concentration of the nanodrug solution increased by 2.6-fold
(52 µg/mL), as characterized by the UV-Vis spectrophotometer quantification method.
The concentrated NPs showed good stability. Furthermore, as an alternative to the usual
maximum-tolerated-dosage chemotherapy plan, a metronomic method with a lower and
more frequent dosing schedule has recently emerged. In a 2022 article, it was demonstrated
that low and more-frequent doses of Doxil (doxorubicin-loaded liposomes), compared
to high and less-frequent doses, exhibited enhanced antitumor effects either alone or in
combination with immunotherapy, decreased tumor stiffness, and improved perfusion [45].

3.5. Cellular Uptake

Sufficient cell internalization is desired to achieve an effective therapeutic agent. There-
fore, the cellular-uptake behavior of PTX-CUR NPs was evaluated by confocal microscopy.
After the incubation of MCF-7 cells with PTX-CUR NPs for 4 h, the nuclei were labeled
with Hoechst dye. Compared with the cancer cells treated with free CUR, the PTX-CUR
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NP-treated group exhibited a stronger fluorescence intensity (Figure 9). This indicates a
higher internalization efficiency of PTX-CUR NPs by cancer cells, further demonstrating
the potential of the prepared NPs for future in vivo application.
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Figure 9. Confocal laser scanning microscopy images of MCF-7 cells after incubation with PTX-CUR
NPs for 4 h. Scale bars are 54 µm.

4. Conclusions

A nanoprecipitation method was developed to obtain pure-drug PTX-CUR NPs,
formed solely by intermolecular physical interactions. Upon studying the self-assembly
process, the role of curcuminoids in the CUR mixture was discovered. Experimental
studies showed that the presence of both BMC and DMC is essential for the successful
formation of spherical and monodisperse NPs. Computational studies further revealed
that the presence of the more sterically available curcuminoids BMC and DMC makes the
self-assembly procedure more adaptable, with a higher number of potential conformations
that could give rise to NPs. PTX-CUR NPs showed comparable therapeutic efficacy in vitro
compared to free drugs. Further studies are needed to determine the stability and release
profiles of the drugs in biologically relevant media. Curcuminoids are well-known for
their accessibility, low cost, safety, and anticancer properties. Various scientific and clinical
studies, however, have revealed that curcumin has a limited efficacy because of its low
solubility, rapid rate of metabolism, poor bioavailability, and pharmacokinetics. Both BMC
and DMC are naturally present in turmeric extract and can be used to improve the quality
of many existing curcumin-containing nanoformulations. Our developed method may
aid in tunable drug formulations to form nanomedicines with different anticancer drugs,
solving their water insolubility issue and contributing to synergistic anticancer effects.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering9120815/s1, Figure S1: UV-Vis spectra of PTX and
CUR molecules in water at different concentrations and the resulting standard curves; Figure S2. The
UV-Vis absorption spectra of free PTX and the synthesized NPs from mixtures of PTX and 65% CUR (1),
PTX, BMC, and DMC (5), PTX, 98% CUR, and BMC (6). PTX, CUR, BMC, and DMC stand for pacli-
taxel, curcumin, bisdemethoxycurcumin, and demethoxycurcumin, respectively.
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