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Abstract: The aim of this study was to compare the topographical, chemical and osseointegration
characteristics of sandblasting and acid-etching (SLA) surfaces and dental implants treated by boron
compounds. Titanium (Ti) disks (n = 20) were modified using boron (B) and boric acid (H3BO3)
and then compared with the conventional SLA surface via surface topographic characterizations.
Dental implants (3.5 mm in diameter and 8 mm in length) with the experimental surfaces (n = 96)
were inserted into the tibias of six sheep, which were left to heal for 3 and 7 weeks. Histologic,
histomorphometric (bone–implant contact (BIC%)) and mechanical tests (removal torque value
(RTV)) were performed. The boron-coated surface (BC group) was smoother (Rz: 4.51 µm ± 0.13)
than the SLA (5.86 µm ± 0.80) and the SLA-B (5.75 µm ± 0.64) groups (p = 0.033). After 3 weeks,
the highest mean RTV was found in the SLA group (37 N/cm ± 2.87), and the difference compared
with the BC group (30 N/cm ± 2.60) was statistically significant (p = 0.004). After 7 weeks, the
mean RTV was >80 N/cm in all groups; the highest was measured in the H3BO3-treated (BS) group
(89 N/cm ± 1.53) (p < 0.0001). No statistically significant differences were found in the BIC%s during
both healing periods between the groups. H3BO3 seems to be a promising medium for dental
implant osseointegration.

Keywords: boric acid; boron; dental implant; mechanical tests; sheep; titanium

1. Introduction

Following the discovery of osseointegration, numerous types of dental implant surface
treatment and modification modalities have been introduced [1–3], which aim to enhance
the osseointegration process and decrease or ideally eliminate the time for which the patient
is asked to live without masticatory function in the corresponding edentulous region [4]. In
general, surface modification methods requiring distinctive approaches and completed in
intricate steps are not preferred for industrial production due to feasibility and affordability
concerns [5]. The majority of the market employs the familiar method of sand-blasting and
acid-etching (SLA) [6]; the latter step is used to eliminate the undesired residues from the
first [7]. Nevertheless, the so-called SLA surface implants provide a high rate of success
and survival in treating all types of edentulism. Yet, some early or late-term failures remain
unresolved in the clinical implantology practice [8].

Boron (B) is a bioactive trace element widespread in nature [9]. It plays critical roles
in metabolic pathways, such as in calcium interaction and vitamin D and magnesium
metabolism, which ultimately affects the activity of osteoblasts, osteoclasts and bone
apposition [10,11]. Various forms of B compounds (i.e., H3BO3, BN, CaB, TiB and NaB)
are used for treating recurrent or chronic infections [12], alveolar bone regeneration [13]
and surface modifications [14]. Human exposure to B occurs via nutrition, air and various
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consumer products, and a maximum daily dose of 2 mg is recommended for safety [10].
Nonetheless, human oral exposure to high levels of boric acid has resulted in negligible
observable toxicity, as seen in accidental poisonings of up to 88 gr, of which 90% of the
cases were asymptomatic [10–12].

In a previous in vitro investigation, B- [15] and particularly boric acid (H3BO3)-treated
Ti surfaces demonstrated improved proliferation and viability for human osteoblast cells
and diminished the adherence of pathogen bacteria onto the corresponding substrates [16].
This may yield a positive clinical effect on tissues around the dental implant [17].

This study was performed to evaluate the topographical, chemical and osseointegra-
tion characteristics of Ti surfaces and dental implants treated with B compounds.

2. Materials and Methods
2.1. Power Analysis

Bone-to-implant contact (BIC%) and removal torque value (RTV) were designated
as the primary outcomes, and relevant data were obtained from similar previous stud-
ies [18,19]. The power of the study was expressed as 1–β (β = probability of type II error),
and an effect size of 1.978 and 1.484 was found for the BIC% and RTV, respectively. Referring
to parametric pairwise comparisons, a minimum of 5.7 and 5.6 implants for each surface
group were calculated to obtain a statistical power of 80% at the α = 0.05 for the BIC%
and RTV, respectively. Regarding the proposed two-interval healing periods, 48 implants
were decided on for the histomorphometric BIC% analysis. An additional 48 implants
were employed for the quantification of the RTV in the corresponding healing intervals;
therefore, finally 96 implants were decided necessary. A dedicated software was used
(GPower, Düsseldorf, Germany), and the unit of the statistical calculations was the implant.

2.2. Surface Preparation

Twenty Ti disks (10 mm in diameter and 3 mm in height) and 96 Ti dental implants
(3.5 mm in diameter and 8 mm in length) were machined by a commercial manufacturer
(Noble Implant Technology, İstanbul, Turkey) (Figure 1). Four different surface modifi-
cations were applied: (a) large grit (250 µm) sandblasted with aluminum oxide (Al2O3)
particles, followed by acid-etching with hydrochloric and sulfuric acid (HCl and H2SO4)
(SLA surface group); (b) large grit (250 µm) sandblasted with Al2O3 particles and H3BO3
particles (1–5 µm) (Sigma-Aldrich, St. Louis, MO, USA), followed by acid-etching with
hydrochloric and sulfuric acid (HCl and H2SO4) (SLA-B surface group); (c) SLA-B surfaces
coated with 99.5% amorphous boron powder (B) (<1 µm) (Sigma-Aldrich, St. Louis, MO,
USA) by heating at 900 ◦C (Lenton Furnaces, Hope, UK) for 10 h (BC surface group); and
(d) SLA surfaces submerged in H3BO3 saline solution (BS surface group). The BS group
implants were taken out of the H3BO3 saline solution at the stage of surgical insertion
(Table 1). Samples were sterilized using 25 kgW gamma rays and ultraviolet-C light (UV-C).

2.3. Surface Characterization

Surface morphology was examined using a scanning electron microscope (SEM; FEI
Versa 3D Dual Beam, Hillsboro, OR, USA), and the surface roughness was quantitatively
evaluated using an atomic force microscope (AFM-XE 100 SPM System; Induspia 5F,
Suwon, Korea; scan size 50 × 50 µm2). To determine the three-dimensional description
of the surfaces (developed interfacial area ratio (Sdr%) and texture aspect ratio (Str); scan
size 2 × 2 µm2 with 40×; optical zoom 10×) a confocal laser scanning microscope (CLSM;
Leica TCS SPE; Leica Microsystems, Heidelberg, Germany) was used. Energy-dispersive
X-ray spectroscopy (EDS; Octane Super SSD, EDAX Corp., Mahwah, NJ, USA) and X-ray
photoelectron spectroscopy (XPS) analysis (K-Alphatm; Thermo Scientific, Waltham, MA,
USA) were used to decide the chemical configuration of the surfaces.
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Figure 1. Manufactured disks and implants of the experimental surface groups. Figure 1. Manufactured disks and implants of the experimental surface groups.

Table 1. Surface modifications of disks.

Modifications/Surface Groups SLA SLA-B BC BS

Sandblasting Al2O3 Al2O3 + H3BO3 Al2O3 + H3BO3 Al2O3

Acid-etching HCl + H2SO4 HCl + H2SO4 HCl + H2SO4 HCl + H2SO4

Additional treatment - - B coating H3BO3 in saline solution

2.4. Animal Experiment

Animal ethical committee approval was obtained from Mehmet Akif Ersoy Experi-
mental Research and Development Center, İstanbul, Türkiye (approval no: 2018/19) with
an allowance of six sheep for this experimental study. All experimental procedures were
performed in compliance with the animal research guidelines of the Mehmet Akif Ersoy
Experimental Research and Development Center. Six Anatolian-breed sheep (2–3 years of
age, weight of 50–70 kg) were used. All animals were fasted 24 h prior to surgical proce-
dures. The tibia was selected as the experiment site to refrain from the risks of infection
and early implant loss. A block randomization list was obtained via a designated software
(Randlist, Datinf, Tubingen, Germany), accounting equal distribution of surface groups to
each tibia and animal for 96 implants.

All surgical procedures were performed with general anesthesia under sterile con-
ditions. Xylazine (0.1 mg/kg (intramuscular, i.m.); Rompun, Bayer, Switzerland) and
ketalar (3 mg/kg (intravenous, i.v.), Ketamin HCl, Vancouver, BC, Canada) were used for
sedation. General anesthesia was accomplished using an i.v. injection of pentobarbital and
maintained with 3–4% sevoflurane (Sevorane 100% Inhalation Solution, Abbvie, Istanbul,
Türkiye) and 100% oxygen.

The proximal tibia region was shaved and disinfected with povidone–iodine (Batticon®,
Adeka, Samsun, Turkey). An incision of approximately 25 cm was made, skin and fascia
were incised, respectively, and muscles were dissected. The implants were placed in the
proximal tibia referring to the previously established block randomization order. A pe-
riodontal probe was used to maintain 10 mm distance between the implants. A total of
16 implants (8 implants for each tibia) were inserted into the right and left tibia of each
animal (Figure 2). The highest achieved insertion torque value (ITV) was measured using
a surgical handpiece (Saeyang Microtech Co., Ltd., Daegu, Korea), which was manually
calibrated via a torque meter.
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Cover screws were inserted into the implants, and flap closure was performed by the
repositioning of the muscles, the fascia and the skin, respectively. Antibiotics (Novosef
1 g, 20 mg/kg (i.m.); Zentiva, İstanbul, Türkiye) and analgesics (Melox 0.1 mg/kg, (i.m.);
Nobel Drug, İstanbul, Turkey) were administered during postoperative care for 1 week.
For the representation of the early and late-term healing, the six sheep were separated into
two groups.

2.5. Fluorochrome Labeling

Fluorescence labeling was used for evaluating the dynamic bone mineralization and
deposition according to the healing schedule in accordance with the guidelines proposed by
van Gaalen et al. [20]. Three different-colored labels were used: (1) calcein green (GK2524
Calcein; 10 mg/kg (i.v.); Glentham Life Sciences Co., England) was administered to both
healing groups on the 21st day; (2) oxytetracycline yellow (Primamycin/LA, 20 mg/kg
(i.m.); Zoetis, İstanbul, Turkey) was administered to the late-healing group on the 35th day;
and (3) alizarin red (GT6383—Alizarin Red S; 10 mg/kg (i.v.); Glentham Life Sciences Co.,
Corsham, UK) was administered to the late-healing group 3 days prior to the scarification
(46th day). Fluorochrome labels were assembled according to the producers’ instructions,
and the pH was established at 7.1.

2.6. Sacrifice and RTV Measurement

Using a high dosage of anesthesia, three animals were sacrificed after 3 weeks, and
three were sacrificed after 7 weeks. The corresponding tibia region was exposed, and
the implants were examined using X-rays (Faxitron OR Specimen Radiography System,
Hologic, Marlborough, MA, USA). The RTV was measured immediately following the
stabilization of the tibia in a dedicated bench clamp. A digital torque meter (TSD-400;
Electromatic Co., Inc., Lynbrook, NY, USA) was used for precise measurement. Reversal
torque was enforced, and the maximum torque (N/Cm) was registered.

2.7. Histologic and Histomorphometric Evaluation

After the animals were euthanized, the tibia of the sheep were removed at the specified
time periods for histomorphometric analysis. Sections were prepared with nondecalcified
histologic slicing system (Exact 300 CL; Exakt Apparatebau, Norderstedt, Germany). The
sections were analyzed using a light microscope (Olympus BX60, Tokyo, Japan) to measure
the BIC%. All measurements were made using an image analysis software (Olympus
Image Analysis System; Olympus Soft Imaging Solutions GmbH, Münster, Germany). The
implant surfaces were analyzed in three adjoining microscopic images. The BIC% was
measured at a magnification of 40×. The calculation was performed by dividing the length
of the attached bone by the length of the complete implant surface (including the whole
threads, but the platform surface was excluded). All measurements were made by an
independent examiner on two separate days (M.S.T), and the mean values were recorded
as final. A confocal scanning laser microscope (CLSM) (Leica TCS SPE; Leica Microsystems,
Heidelberg, Germany) was used for fluorescence evaluation.

2.8. Statistical Analysis

Data were analyzed using Statistical Packages of Social Sciences (SPSS) 25.0 software.
Descriptive statistics, including mean, standard deviation (SD), median, range of quartiles
and 95% confidence interval were calculated. The distribution of data was evaluated using
the Shapiro–Wilk normality test. Homogeneity of variances was evaluated using Levene’s
test. Analysis of variance (ANOVA) was used to compare the measurements that fit the
normal distribution between the groups and provide the assumption of homogeneity of
variances. The Tukey test was used for post hoc comparison. The Kruskal–Wallis test was
used to compare the measurements that did not fit the normal distribution between the
groups. The Mann–Whitney U test was used for pairwise comparisons of the groups, and
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Bonferroni correction was applied to p values. Group-by-time interaction was evaluated using
the two-way ANOVA test. A p value < 0.05 indicated a statistically significant difference.

ARRIVE guidelines were referred to while preparing the manuscript.

3. Results
3.1. In Vitro Findings

In the low-magnification SEM imaging (×2000), the SLA surface revealed the typically
recognized topographical features [5]. The remnants of H3BO3 particles were observed
on the SLA-B surface. Nanowire-shaped dense crystallized B areas (high magnification,
×20,000) were visible on the BC surface. H3BO3 particles were visible on the surfaces in
both the BS and SLA-B groups, which were distributed homogenously in the SLA-B group
but were rather disordered in the BS surface group (Figure 3).
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Figure 3. Scanning electron microscope images of the experimental surfaces. SLA surface revealed
the typically known topographical features. Remnants of H3BO3 particles (arrows) were observed on
the SLA-B (low magnification; ×2000). Nanowire-shaped crystallized B areas (high magnification;
×20,000) were visible on the BC surface due to the coating process at high temperatures. The BS sur-
face was found to have nonuniformly distributed H3BO3 particles leftover from the H3BO3 solution
(arrows). The region with H3BO3 particles indicated by arrows is also shown at higher magnification.

The Shapiro–Wilk test revealed non-normal distribution of the Rz values (p = 0.015).
The differences in the Rz values between the groups were statistically significant (Kruskal–
Wallis test, (chi-square (χ2): 10.53, p = 0.015)). The BC group had significantly lower
Rz values (mean: 4.51 µm ± 0.13) than the SLA (mean: 5.86 µm ± 0.80) and the SLA-B
(mean: 5.75 µm ± 0.64) groups (Mann–Whitney U, Bonferroni corrected p = 0.033 for both
comparisons); (Figures 4 and 5 and Table 2).
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Table 2. AFM measurements of the surface roughness parameters on the experimental disks.

Surface Groups
Mean (SD)

Ra (µm) Rz * (µm) Rq (µm)Median (IQR)
95% CI

SLA
Mean (SD) 0.90 (0.79) 5.86 (0.80) a 1.13 (0.08)

Median (IQR) 0.90 (0.13) 5.89 (1.22) 1.13 (0.15)
95% CI 0.80–1.00 4.85–6.86 1.03–1.23

SLA-B
Mean (SD) 0.96 (0.27) 5.75 (0.64) b 1.14 (0.31)

Median (IQR) 0.94 (0.75) 5.77 (1.25) 1.14 (0.50)
95% CI 0.61–1.30 4.95–6.55 0.75–1.53

BC
Mean (SD) 0.87 (0.11) 4.51 (0.13) a,b 1.02 (0.11)

Median (IQR) 0.85 (0.20) 4.45 (0.18) 1.02 (0.21)
95% CI 0.73–1.00 4.33–4.68 0.88–1.16

BS
Mean (SD) 1.007 (0.18) 5.52 (0.50) 1.21 (0.19)

Median (IQR) 0.94 (0.32) 5.23 (0.92) 1.14 (0.33)
95% CI 0.78–1.23 4.89–6.15 0.97–1.45

* Kruskal–Wallis test p = 0.015. a Mann–Whitney U test. Bonferroni corrected p = 0.033. b Mann–Whitney U test.
Bonferroni corrected p = 0.033.

The normal distribution of the Str and Sdr% values was confirmed using the Shapiro–
Wilk normality test (p > 0.05). The highest mean Str (0.36 ± 0.02) and Sdr% (76.32% ± 4.41)
were measured in the SLA surface, and the lowest was in the BC surface (Str: 0.19 ± 0.01
and Sdr%: 62.84% ± 3.57). The differences in the Str and Sdr% values were statistically
significant between the groups (ANOVA, F = 82.62, p < 0.0001 and F = 15.45 p < 0.0001 for Str
and Sdr%, respectively). The SLA surface revealed significantly higher Str and Sdr% values
compared with the remaining groups (Tukey test, p < 0.0001). The BC group demonstrated
a significantly lower Str value than the remaining groups (Tukey test, p < 0.004) and a lower
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Sdr% value than the SLA group (Tukey test, p < 0.0001) and BS group (Tukey test, p < 0.04)
(Figures 6 and 7 and Table 3).
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Table 3. Spatial (Str) and hybrid (Sdr%) surface roughness values measured using CLSM.

Surface Groups Texture Aspect Ratio
(Str) *

Developed Interfacial Area Ratio
(Sdr%) *

SLA
Mean (SD) 0.36 (0.02) a,b,c,d 76.32 (4.41) x,y,z

Median (IQR) 0.36 (0.04) 77.54 (8.28)
95% CI 0.33–0.39 70.84–81.80

SLA-B
Mean (SD) 0.24 (0.009) a,e 66.42 (1.69) x

Median (IQR) 0.24 (0.01) 66.14 (2.68)
95% CI 0.22 –0.25 64.31–68.52

BC
Mean (SD) 0.19 (0.01) b,d,e,f 62.84 (3.57) y,t

Median (IQR) 0.19 (0.03) 63.43 (5.86)
95% CI 0.17–0.21 58.40–67.28

BS
Mean (SD) 0.24 (0.01) c,f 68.78 (2.64) z,t

Median (IQR) 0.25 (0.03) 68.66 (4.81)
95% CI 0.22–0.26 65.50–72.06

* ANOVA, p < 0.0001. a,b,c Tukey test, Pa, b, c < 0.0001. d,e,f Tukey test, Pd < 0.0001, Pe = 0.004, Pf = 0.002. x,y,z Tukey
test, Px = 0.001, Py < 0.0001, Pz = 0.01. t Tukey test, Pt = 0.04.

The B, Al, C, T, N and O elements were observed on the SLA, SLA-B and BS surfaces
in the EDS analysis. Ti was not detected on the BC surface due to a dense coating of B
with a nanowire-shaped morphology. The atomic percentage of the B element was 7.6% on
SLA-B and 18.71% on the BC surfaces.
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The O, C and Ti elements were detectable using XPS on all surfaces (except Ti on the
BC surface). Cl was detected on the SLA surface only (2.6%). The B element was found
only on the BC surface (14.96%). The highest amount of O was measured on the SLA-B
surface (43.74%), while the lowest amount of C was measured on the SLA surface (35.55%)
(Figure 8).

Figure 8. Energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS)
analysis of the SLA, SLA-B, BC and BS surfaces.

3.2. In Vivo Findings

Healing was uneventful in all animals, with no adverse reactions or inflammation or
implant loss in any of them. Proper healing of all experimental sites was confirmed by the
X-rays (Figure 9).
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Figure 9. Radiographic view of the tibia and the inserted implants after 7-week healing.

Mechanical Test Results

The normal distribution of the mechanical test values was confirmed using the Shapiro–
Wilk normality test (p > 0.05). All implants achieved primary stability with an approximate
mean ITV of 40 N/cm, and the differences in ITV were not statistically significant in or
between any of the surface groups.

The RTV tests were successfully completed in the designated 48 implants. Two-way
ANOVA revealed statistically significant differences in time (F = 4468.28, p < 0.0001), surface
groups (F = 6.04, p = 0.002) and surface group x time interaction (F: 14.60, p < 0.0001). After
3 weeks of healing, the highest mean RTV was found in the SLA group (37,68 N/cm ± 2.87),
and the differences compared with the BC group (30,15 N/cm ± 2.60) were statistically
significant (Tukey test, p = 0.004).

After 7 weeks, the mean RTV was more than 80 N/cm in all groups, and the highest
was measured in the BS group (89.46 N/cm ± 1.53). The lowest mean RTV values were
measured in the SLA group (80.45 N/cm ± 2.46) with statistically significant differences
with the remaining groups (Tukey test, p < 0.01). The BS surface demonstrated the highest
mean RTV values (89.46 N/cm ± 1.53), and the differences compared with the remaining
groups were statistically significant (Tukey test, p < 0.0001) (Figure 10 and Table 4).
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Table 4. Descriptive statistics of the measured insertion and removal torque values (ITV and RTVs).

SLA SLA-B BC BS

ITV

Mean (SD) 42.37 (13.39) 39.05 (8.45) 42.44 (10.48) 41.63 (11.18)
Median (IQR) 40.45 (10.15) 38.65 (7.75) 40.45 (11.01) 41.85 (17.40)

Min–Max 27–66 18.3–69.7 29.7–68 20.9–53.2
95% CI 36.72–48.03 35.47–42.62 38.01–46.87 36.98–46.28

RTV 3 weeks

Mean (SD) 37.68 (2.87) a 34.48 (3.00) 30.15 (2.60) a 34.03 (4.48)
Median (IQR) 36.55 (5.40) 34.00 (5.47) 30.55 (5.35) 34.25 (8.98)

Min–Max 34.6–41.8 30.7–38.4 27.7–32.9 28–39.6
95% CI 34.66–40.70 31.32–37.63 27.42–32.87 29.32–38.73

RTV 7 weeks

Mean (SD) 80.45 (2.46) b,c,d,e 83.65 (1.30) b,f 84.35 (0.49) c,g 89.46 (1.53) d,e,f,g

Median (IQR) 81.05 (4.30) 84.05 (2.60) 84.25 (0.60) 89.05 (2.58)
Min–Max 76.4–83.1 81.9–84.8 83.7–85.2 87.6–91.9

95% CI 77.86–83.03 82.28–85.01 83.83–84.86 87.85–91.08

Two-way ANOVA; time (F = 4468.28, p < 0.0001), surface groups (F = 6.04, p = 0.002) and surface group x time
interaction (F: 14.60, p < 0.0001). a Tukey test, Pa = 0.004. b,c,d Tukey test, Pb = 0.013, Pc = 0.002, Pd < 0.0001.
e,f,g Tukey test, Pe,f,g < 0.0001.

3.3. Histology and Histomorphometry
3.3.1. Light Microscopic Observations

No signs of inflammatory response, foreign body reaction or necrosis were noted in
any histologic slices. The active osteoid formation was visible around all groups and all
implants during both healing periods. An increased fill of new bone in between the threads
was visible in all groups, especially in the 7th week. The process of osseointegration was
ongoing during the early healing period (3 weeks), while it was concluding in the late-term
healing (7 weeks) sections (Figure 11).
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Figure 11. Representative histologic images of toluidine blue-stained sections in each group. Images
obtained from the middle region of the implants. (a) The osteoid layer deposited between the old
matrix and the implant surface (arrow). (b) The bone matrix deposition in direct contact with the
surface was observed (arrow). (c) Active osteoid depositions were detected (arrow). (d) The new
matrix deposition was completed; the arrow pointed to the contact line between the old and new
bone matrices (arrow). (e) Line of osteoid deposition is also shown (arrow). (f) An organized bone
matrix (arrow) with new matrix deposition (arrowhead) was determined. (g) Bone matrix deposition
was evident on the implant surface (arrow). (h) New bone formation almost completely filled within
the implant threads (arrow) (toluidine blue, original magnification ×200).
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3.3.2. Fluorescence Microscopic Observations

Compared with the BC groups, the intensity of the early term fluorochrome staining at
the bone–implant interface and in the surrounding bone area appeared to be higher in the
SLA, SLA-B and BS groups. Orange and light yellow staining indicating active late-term
mineralization was especially discernable in the SLA-B, BC and BS groups.

Highest fluorescence intensity in the late-term healing period was observable in the
BS surface group (Figure 12).
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3.3.3. Bone Histomorphometry

The normality of the BIC% measurements was confirmed using the Shapiro–Wilk
normality test (p > 0.05). The range of BIC% was 23.13–33.0% during the early healing period
and 52.49–68.58% during the late-term healing period. The change in BIC% measurements
from 3 to 7 weeks was statistically significant (ANOVA, F = 74.25, p = 0.003).

The highest mean BIC% values in the early and late-term healing were observed in the
BS (mean: 33.0% ± 5.86) and SLA-B groups (mean: 68.58% ± 11.76), respectively. However,
the differences in BIC% between the groups were statistically not significant during both
healing periods (Table 5).

Table 5. Bone–implant contact percentages (BIC%) in the early and late-healing periods.

BIC% SLA SLA-B BC BS

3 weeks

Mean (SD) 25.82 (5.31) 23.13 (7.11) 25.95 (10.37) 33.0 (5.86)
Median (IQR) 24.82 (5.38) 24.77 (12.61) 25.59 (18.61) 35.29 (7.74)

Min–Max 20.19–35.94 11.35–29.56 11.28–38.97 21.76–37.38
95% CI 20.24–31.39 15.67–30.60 15.07–36.84 26.85–39.15

7 weeks

Mean (SD) 52.49 (11.51) 68.58 (11.76) 61.34 (12.07) 64.02 (9.64)
Median (IQR) 49.37 (20.38) 64.96 (12.23) 61.43 (16.91) 65.20 (16.42)

Min–Max 36.84–67.79 57.18–91.26 46.91–82.30 49.32–74.54
95% CI 40.40–64.57 56.23–80.92 48.67–74.01 53.89–74.14

Two-way ANOVA; time (F = 74.25, p = 0.003).

4. Discussion

In this study, the surfaces with distinctive B-based modifications were analyzed and
compared with SLA—the surface that has been used widely in modern implantology [6].
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Detailed quantification of the deployed surface characteristics was further analyzed using
in vivo mechanical and histomorphometric analyses, which finally allowed the objective
comparison of the designed surfaces.

The height descriptive two-dimensional parameter Ra (or Sa for the three-dimensional
counterpart) is regarded as a reference when comparing the dental implant surfaces [6]. In
the present study, Ra and Sa values (0.87–1.007 µm and 1–2 µm, respectively) were similar
in all groups providing that the desired moderate surface roughness was achieved. In
general, all surfaces demonstrated a typical SEM geometry except the BC group, which
demonstrated a distinctive manifestation. Wu et al. [21] investigated the effect of growth
temperature on B morphology and reported that high growth temperature resulted in
nanowire formation of B on Au-coated Si and MgO, which is in agreement with the present
observation. It appeared that the presently employed high-temperature coating facilitated
B nanowire formation on the Ti surface. The surface roughness value (Sz) was found to be
enhanced on the SLA-B and BS surfaces as a result of the treatment with H3BO3. As for
the BC surface, a dense B-film formation with nanowire-shaped morphology might have
caused a significant drop in the Rz, Sdr% and Str values on the BC surface compared with
others and particularly with the SLA.

The B amount detected using EDS and XPS was low most probably as a result of
the poor binding energy of the B element, which complicated the detection of B. This
incident was reported in previous studies that revealed peaks of low magnitude at a level
around 187 eV corresponding to the bonding energy of B and B-oxides at 187–189 eV [16]
and 188.5–190.2 eV [22]. Hence, the presently measured percentage of B (0.2–18.71%) was
similar to that in other reports [14,22]. Based on these results, it was concluded that the
chemical binding energy of B-treated surfaces yielded identical output. The absence of B
on the BS group in the XPS and EDS investigations might be a consequence of the rigorous
drying of the surface as a requirement of the measurement processes [16].

Removal torque forces applied in the counterclockwise direction have been used as
a tool for the objective quantification of the strength of osseointegration. Furthermore, in
clinical implant dentistry, resistance to rotational forces was regarded as critical, especially
in implants that were early or immediately loaded [4,23]. In the present study, the highest
RTV was measured in the SLA group after healing of 3 weeks. This positive feature was
observed in previous studies, in which SLA-surface implants achieved a high reverse
torque resistance (mean 49.84 and 115.2 N/cm after 3- and 6-week healing, respectively)
in the early stages of osseointegration [18,24]. It was remarkable that the B-coated surface
group (BC) characterized by a lower spatial and hybrid surface roughness demonstrated
the lowest early term RTV in this study. It was proposed that a moderate Ti-surface
roughness (Sa: 1–2 µm) might reinforce the micro retention and organization of the blood
clot, subsequently increasing the resistance to rotational forces (RTV) in the early term
healing [25,26]. Accordingly, the relatively smoother surface parameters (Rz, Str and
Sdr%) measured on the BC surface might have caused a diminished mechanical lock and
consequent measure of the lowest RTV.

It was apparent that the biologic effect of B on the osseointegration seemed to be
initiated no earlier than the third week, thereby achieving significantly higher RTV than the
SLA surface in the seventh week. This might be a result of the biologic effect of B, including
increased osteoblastic activity [16], angiogenesis [27] and cell mitogenesis [11].

The positive effect of B was also noted in the BIC% measurements. Although the differ-
ences were not significant, the highest BIC% during both healing periods were measured in
the BS and SLA-B groups. The fluorescence microscopic observations were also indicative
of a higher bone mineral deposition in BS group for late-term healing. In a study by Witek
et. al., a lower amount of BIC% (16.44% ± 7.9) was reported from the boronized-machined
(a thermochemical process in which boron atoms diffuse into metals, revealing a nanocrys-
talline surface) implants left to heal in sheep tibia for 3 weeks [15]. It is not possible to
comment about the negative outcome due to the lack of data on surface characterization
(EDS, XPS and AFM) and mechanical tests (RTV or ISQ) [15]. Most probably, the B molecule
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was scarcely bonded onto the machined Ti surface (as observed in this and the previous
studies) [16], causing an uprisal in the outcome typical of machined surfaces. A reduced
amount of BIC% pertinent to machined Ti-surfaced implants is known [28], and this type
of implant is not routinely used in modern implant dentistry. Therefore, they were not
tested in this study. The present in vivo study was novel in exploring the BIC% and RTV of
implants with a B-treated surface; therefore, the results cannot be directly justified by the
previous reports.

Despite an expected increase in the BIC% in accordance with the RTV values, BIC%
and RTV did not reveal any correlation in this study. A similar outcome was reported by
Sennerby et al. (1992) who used screw-type implants left to heal in rabbit tibiae for 6 weeks,
3 months and 6 months, which revealed no significant associations with the recorded BIC%
at relevant healing intervals. The amount of compact bone surrounding the titanium fixture
was shown to be related to the resistance of the reverse torques [29]. It was proposed that
the corroboration of RTV and BIC% might be related to factors other than those currently
investigated, such as the site of application (tibia vs. ilium vs. jaw bone) and experimental
model (sheep, dog and rabbit) [30,31].

Contrary to the positive outcomes of the B-treated surfaces for RTV in the late term,
no significant differences were found in the BIC%, despite a slightly higher percentage of
measured BIC% values in the B-modified groups after 7 weeks. Such incidents were merely
reported by some studies [13], and this might be due to the location of the axial sections
corresponding to a weak or compromised site, finally resulting in a low or discordant
BIC% value. However, the lack of any inflammatory reactions or any adverse event in
the histologic slices and the X-ray images of all B-treated surface groups proved the high
biocompatibility of B in its present form and application [32–34].

It should be emphasized that the implants on the sheep tibia may not appropriately
represent the outcomes in the human jaw bone due to the biologic and topographic dif-
ferences [27]. Owing to the regulation of the ethical committee, the unit of the statistical
calculations was the implant, but a subject-based calculation might yield different outcomes
due to the clustering of multiple implants on the same sheep [35]. The sustainability of the
B element on the implants following surgical insertion and healing should also be analyzed
in further studies. Hence, distinct surface characteristics of the employed experimental
implants—particularly BC—may have been subjected to topographical changes upon the
screwing and removal stages. The popular resonance frequency analysis (RFA) measure-
ments were not undertaken in this study as RFA seems to be highly variable, related to the
platform level of the implant shoulder and cortical bone thickness [36,37].

5. Conclusions

Within the limits of this study, it was concluded that the presently employed surface
modifications via B yielded a smoother surface than the conventional SLA, which seemed
to cause a reduced resistance to reverse rotational forces (RTV) in the early term healing
(3 weeks). No adverse reactions were observed in the B-treated surfaces. Nevertheless,
B treatment, especially the B coating, did not provide a significant advantage over the
conventional SLA in the early term healing but provided a significant resistance to rotational
removal forces in the late term (7 weeks). H3BO3, as employed in the BS group, seems to be
a promising medium for dental implant osseointegration and warrants further investigation
to optimize the dose and the method of application onto the blasted Ti surfaces.
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maxillary sinus floor augmentation in rabbits. Oral Maxillofac. Surg. 2018, 22, 443–450. [CrossRef] [PubMed]
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