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Abstract: Analyzing the electrical double layer (EDL) in electrical impedance spectroscopy (EIS)
measurement at low frequencies remains a challenging task for sensing purposes. In this work, we
propose two approaches to deal with the EDL in measuring impedance for particles and non-adherent
cells in an electrolytic suspension. The first approach is a simple procedure to compute a normalized
electrical impedance spectrum named dispersed medium index (DMi). The second is the EIS modeling
through an equivalent electric circuit based on the so-called effective capacitance (Cef), which unifies
the EDL phenomena. Firstly, as an experiment under controlled conditions, we examine polymer
particles of 6, 15, and 48 µm in diameter suspended in a 0.9% sodium chloride solution. Subsequently,
we used K-562 cells and leukocytes suspended in a culture medium (RPMI-1640 supplemented) for a
biological assay. As the main result, the DMi is a function of the particle concentration. In addition, it
shows a tendency with the particle size; regardless, it is limited to a volume fraction of 0.03 × 10−4

to 58 × 10−4. The DMi is not significantly different between K-562 cells and leukocytes for most
concentrations. On the other hand, the Cef exhibits high applicability to retrieve a function that
describes the concentration for each particle size, the K-562 cells, and leukocytes. The Cef also shows
a tendency with the particle size without limitation within the range tested, and it allows distinction
between the K-562 and leukocytes in the 25 cells/µL to 400 cells/µL range. We achieved a simple
method for determining an Cef by unifying the parameters of an equivalent electrical circuit from
data obtained with a conventional potentiostat. This simple approach is affordable for characterizing
the population of non-adherent cells suspended in a cell culture medium.

Keywords: effective capacitance; equivalent circuit; electrical double layer; impedance spectroscopy;
non-adherent cell suspension

1. Introduction

Electrical impedance spectroscopy (EIS) is a powerful technique for characterizing
suspensions of charged surfaces, e.g., particles and biological cells. The electrical double
layer (EDL) is a phenomenon that occurs at low frequencies, and it appears on any electri-
cally charged surface that interacts with a medium of free ions (electrolyte). The charged
surface is developed for the particle when immersed in the electrolyte solution owing to
the adsorption of ions onto the surface and/or ionization of dissociable groups on the
surface [1–3]. In the presence of the EDL phenomenon, when an external electric field (E)
is applied, the charge distribution surrounding the interface is distributed accordingly to
the signal. As a result, when using an E at low frequencies, an electrical dipole moment
is induced due to the EDL polarization [4], thereby causing dielectric dispersion, named
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α dispersion [5]. Since this occurs in cells and particles (dispersed medium) suspended
in an electrolytic medium (liquid medium), these samples produce a similar α dispersion.
Consequently, the particles suspended in an electrolyte develop a surface charge and can
analog suspended cells in a biological medium by having an analog α dispersion [6].

The EDL also occurs as an undesirable effect known as electrode polarization (EP) that
can overshadow the measured signal [7], and it obscures the bulk dielectric relaxation in
the studying of dipolar motions in biological solutions [8]. In dielectric spectroscopy at low
frequencies, the EDL of the electrodes (EEDL) is common to separate from the relaxation of
the EDL of the sample. Compensating the EP effect by an algorithm is used to determine
the sample’s dielectric constant [9] and the zeta potential [10]—another approach to reduce
the EP is via the four-electrode technique implying high specific instrumentation [11]. Fur-
thermore, relaxation times have been used to characterize particles in aqueous suspensions,
establishing a relation between the particle size and concentration with the characteristic
time [12–14]. One of the models used to describe the EDL is the Gouy–Chapman–Stern
model, which establishes that an internal region (Stern layer) has firmly bound ions and
an outer region (diffuse layer) with ions less associated, generating a disturbance in bulk
properties [15]. Two capacitors in series model the EDL; therefore, the electrical impedance
measurements have allowed studying the dependence between the signal potential, ions
size, and temperature with the EEDL capacitance [16]. Furthermore, the EDL capacitance
has been analyzed through the equivalent electrical circuit technique [17].

The EIS provides physiological information about the cell membrane and the intra-
and extracellular medium [18]. From mHz to a few kHz, there is α dispersion associ-
ated with ionic species diffusion processes related to the cell membrane potential and the
displacement of surrounding counterions. In the kHz and up to tens of MHz range, β
dispersion occurs generated by the membrane polarization due to the charge distribution
between the intracellular and extracellular medium, creating an electric dipole. Finally,
the γ region between MHz and GHz is associated with water molecules and some pro-
teins [19]. From α dispersion, it is possible to determine parameters associated with the
physicochemical characteristics of the cell. When the cell is excited by an electrical field at
low frequencies, its membrane behaves like a capacitor [20,21]. Hence, the electrical current
does not travel through the intracellular medium and surrounds the cell, giving information
about its shape and size [22]. The α dispersion significantly influences cell suspension in a
culture medium: an EDL is formed around every cell since free ions of opposite charge are
available, having a distribution of ions in the membrane and one in the surrounding region.
The membrane is a negatively charged surface for almost all cells due to the predominance
of negatively charged groups such as carboxylates and phosphates [23]. Consequently, the
membrane attracts positive charges, resulting in the formation of the EDL.

The evaluation of dynamic changes induced by cytotoxic agents can be studied by
electrical characterization [24,25]. Typically, such assays are performed through an elec-
trochemical technique known as electrical cell-substrate impedance sensing (ECIS) [26],
which implies cells grow as adherent monolayers at the surface of the electrodes and
real-time measurement. In general, ECIS cytotoxicity assays are carried out by monitoring
the cell detachment from the surface of the electrodes through a parameter called cell
index (CI) [27]. The CI normalizes the cell monolayer electrical impedance with the culture
medium measurement. The methods based on cell attaching and spreading out on the
electrode have more significant limitations in non-adherent cells, such as blood cells, cancer
cells, stem cells, etc. Monitoring non-adherent cells by techniques such as ECIS requires
the use of substrates made with complex materials and procedures, such as graphene
oxide [28], carbon nanotubes [29], or magnetic nanoparticles [30]. Another disadvantage
is the evaluation under inadequate physiological conditions since dynamic interactions
are not allowed, and interactions mediated by ions, proteins, and phospholipids, among
others, are modified [31].

Our previous work showed EIS characterization of particle suspensions in a saline
buffer in the spectral band of 1 kHz to 1 MHz for the excitation signal (β dispersion). We
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analyzed the spectra using an equivalent electrical circuit based on the Randles configu-
ration [32]. The findings showed changes in the electrical parameters depending on the
particle concentration [33], thereby establishing an attractive way to evaluate dispersed
particles in an electrolyte; nevertheless, we did not examine the EDL phenomena. To go
further, in the present work, we introduce the characterization by EIS in α dispersion,
which remains a challenging task in assessing interfaces at low frequency. To show the
performance of the proposal, we test suspensions of Poly (methyl-methacrylate) (PMMA)
particles in a commercial saline solution (physiological serum), with the cell line K-562
(chronic myeloid leukemia cells) and leukocytes, both non-adherent cells, suspended in
RPMI-1640 culture medium. The spectral range of measurements is 10–1000 Hz, where
the EDL phenomenon is predominant, and, therefore, multiple EDLs are formed in the
dispersed medium modifying the EEDL and bulk properties. We analyze EIS data with two
methods; the first is directly computed data, determining a normalized impedance magni-
tude to observe only the electrical response of the dispersed medium. The second way is a
parametric analysis, using the so-called effective capacitance (Cef), which is analytically de-
rived from the elements of a proposed electrical circuit. The advantages and disadvantages
of both methods are shown. Finally, we used the Cef as a unified parameter for estimating
the concentration and size of the dispersed medium, such as micrometric particles in a
mimetic experiment or non-adherent biological cells. Contrary to the conventional methods,
we show that EEDL could be exploited to extract valuable information from the dispersed
medium, using a parameter that unifies several electrical data determined with a common
potentiostat. In summary, the main contribution of this work is to provide an attractive and
affordable method for characterizing, at low frequencies, non-adherent cells suspended in
a cell culture medium. This method allows estimating the cell concentration, which could
be helpful in several applications, such as monitoring cell growth, mobility, or death in
biological assays.

2. Theoretical Framework

The Gouy–Chapman–Stern (GCS) model states that the EDL ion distribution is divided
into two regions, the compact layer (Stern layer) and the diffuse layer that extends to the
bulk solution (Figure 1). The inner Helmholtz plane (IHP), given by the water molecules,
and the outer Helmholtz plane (OHP), drawn from the center of the closest solvated ions,
form the Stern layer. This layer does not depend on the potential at the charged surface,
while the diffuse layer varies as a potential function [17].
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According to the GCS model, the compact layer and the diffuse layer can be interpreted
as two capacitors in series:

1
CDL

=
1

CS
+

1
CDif

, (1)

where CDL is the EDL capacitance, CS is the Stern layer capacitance, and CDif is the diffuse
layer capacitance.
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The EDL capacitance is given by [34]:

1
CDL

=
xOHP

εε0
+

1(
2εε0z2e2n0

kBT

) 1
2 cosh

(
zeψ
2kBT

) , (2)

where xOHP is the distance between the charged surface and the OHP, ε is the relative
permittivity of the medium, ε0 is the permittivity of vacuum, n0 is the ionic concentration,
z is the valence of the ions, e is the electron charge, kB is Boltzmann’s constant, T is the
absolute temperature, and ψ is the potential at xOHP with respect to the bulk solution.
This model predicts that as the surface has a higher charge, the diffuse layer will be more
compact, and the total capacitance will increase, assuming ε is constant along x. Treating
ε as a constant may be incorrect since its value in the Stern and diffuse layers may differ.
The dipoles in the Stern layer are highly aligned with the electric field, and, thus, ε may
have a strong decrease [35]. In the case of the diffuse layer, the dipoles have a less aligned
arrangement with respect to the electric field, so ε has a smaller decrease.

The EDL may not have an ideal capacitor behavior because the charged surface may
be porous, rough, and heterogeneous, resulting in a surface dispersion of the EDL around
the dispersed medium [13]. An electrical element called a constant phase element (CPE) is
usually used to model this non-ideal behavior [36,37]. The electrical impedance of a CPE is
defined as:

ZCPE =
1

T(jω)P =
1

T(ω)P

(
cos

(
πP
2

)
− j sin

(
πP
2

))
, (3)

where T [FsP−1] is the CPE constant, j =
√
−1 is the imaginary number,ω is the angular

frequency, and the variable P is 0 ≤ P ≤ 1. The case where P = 1 describes an ideal capaci-
tor, while the case where P = 0 describes an ideal resistor [13]. The proposed equivalent
electrical circuit to model the electrical impedance spectra for particle or cell suspensions
is shown in Figure 2a. The CPEs represents the properties of the bulk suspension, and
Ce represents the capacitance associated with the electrolyte-electrode interface. Finally,
Rd and CPEd represent the resistance and capacitance of the multiple EDLs around the
dispersed medium. Several methods allow the CPE impedance to be associated with a
capacitance value by unifying the CPE constant and exponent. This capacitance is so-called
effective capacitance [15,38–41].
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In the proposed circuit (Figure 2a), the effective capacitance associated with the
dispersed medium (Cd) is in parallel with the capacitance of the electrodes Ce, resulting in
a total effective capacitance (Cef) given by:

Cef = Ce + Cd (4)
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The capacitance Cd is determined using an analogy with the Cole-Cole model [42,43],
resulting Cef as:

Cef = Ce +
(

Td∗R
1−Pd
d

) 1
Pd (5)

where Td and Pd are the constant and exponent of the CPEd, respectively.

3. Materials and Methods
3.1. PMMA Particle Suspensions (Biological Phantom) Preparation

PMMA particles (p) of different diameter (∅) were used to make three sets of sus-
pensions (s∅1, s∅2, s∅3) in physiological serum (PS). We considered three particles size of
∅1 = 6 µm, ∅2 = 15 µm, and ∅3 = 48 µm. These sizes were chosen to encompass a similar
range to those reported for leukocytes, between 6 and 20 µm in diameter [44,45], and for
K-562 cells, between 12 and 28 µm in diameter [46–48]. The PS is a NaCl solution with a
concentration of 0.9% corresponding to the molarity of 0.154 mol/L. Serial dilutions were
made starting from an initial suspension of 400 p/µL, resulting in five concentrations (ci
for i = 1,2,3,4,5) of 25, 50, 100, 200, and 400 p/µL for each particle size. The suspensions
were stabilized with 0.5% sodium dodecyl sulfate to avoid agglomeration of the particles.

3.2. Non-Adherent Cell Suspensions Preparation

Human cell suspensions were made with non-adherent cells, the first with a cancer
cell line and the second with leukocytes. The cancer cell line was chronic myeloid leukemia
K-562 (ATCC® CRL-1593.2) that was cultured in RPMI-1640 culture medium supplemented
with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin at 37 ◦C and 5% CO2. It
was propagated when reaching a confluence of approximately 85%, renewing the medium
twice a week. Leukocytes were obtained from a human peripheral blood sample. Erythro-
cytes were removed using a lysis buffer (15.5 mM NH4Cl, 1 mM KHCO3, and 0.01 mM
EDTA). We prepared a mixture of 200 µL of blood and 2 mL of lysis buffer. After 5 min,
the mixture was centrifuged at 300× g for 10 min and resuspended in PBS 1X, doing this
twice to remove the lysis solution. The separated leukocytes were suspended in RPMI-1640
medium with 10% decomplemented FBS and 1% penicillin-streptomycin and left for 24 h
at 37 ◦C and 5% CO2.

Cell suspensions were made in RPMI-1640 supplemented with 10% FBS and 1%
penicillin-streptomycin for EIS measurements. Following the methodology of half-fold
serial dilution, starting from an initial suspension of 400 cells/µL, we obtained five concen-
trations (ccelli) for each non-adherent cell. The cell suspensions were maintained at 37 ◦C in
Eppendorf tubes.

3.3. Numerical Simulations

The analysis of the Cef electrical behavior was carried out through the equivalent
electrical circuit numerical simulation. We set up values of the electrical elements (see
Table 1), Rd and Td have fixed values, and we test three combinations for values of Ce and
Pd, being the variables that cause a significant change in Cef involved with the EEDL and
the dispersed medium EDL. The electrical impedance spectra for the different cases are
represented as Bode and Nyquist diagrams (see the Section 4).

Table 1. Electrical values for the equivalent circuit (Figure 2a) with Ts = 0.1 FsP−1, Ps = 0.3,
Rd = 10 kΩ, Td = 1× 10−6 FsP−1 and the retrieved effective capacitance Cef.

Case Ce[µF] Pd Cef[µF]

a 1 0.7 1.1
b 1 0.8 1.3
c 1 0.9 1.6
d 2 0.9 2.6
e 4 0.9 4.6
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3.4. EIS Measurements and Analysis

EIS measurements were made with a commercial potentiostat (PalmSens4) in a
10–1000 Hz frequency range, with an excitation signal of 0.05 [V]. We used DropSens™
DRP-G-IDE555 electrodes embedded in a poly (dimethylsiloxane) (PDMS) chamber made
by soft molding with an area of 35 mm2 and a height of 3 mm (Figure 2b). The samples
were thermalized to 37 ◦C. The chamber was filled with 100 µL of the sample, previously
re-suspended, and the impedance spectrum was obtained immediately, taking about 1 min.
We cleaned the chamber with the PS solution at the end of each measurement. Three
aliquots for each concentration were measured, reporting the average impedance spectra.
We started with the liquid medium, followed by the suspension with i = 1 until we finished
with i = 5. For EIS analysis; the impedance magnitude spectrum is normalized according
to [49,50]:

DMi =
|Z|S − |Z|LM
|Z|LM

(6)

where DMi is the dispersed medium index, |Z|S and |Z|LM are the impedance magnitude
of the suspension and the liquid medium, respectively.

We fitted the experimental EIS data with the proposed electrical circuit (Figure 2)
using the Levenberg–Marquardt optimization algorithm (Table 2), and through its electrical
parameters, we calculated the Cef. Finally, we analyzed the DMi and Cef behavior in
function of the suspension concentration.

Table 2. Fitting results with the proposed electrical circuit (Figure 2) using the Levenberg–Marquardt
optimization algorithm.

ci [p/µL] Diameter Ts × 10−3 Ps Ce [µF] Rd [Ω] Td × 10−7 Pd

c1

∅1 0.86 0.31 0.57 3815 9.9 0.73
∅2 1.86 0.24 0.74 6412 7.1 0.74
∅3 0.62 0.36 0.84 7284 6.9 0.75

c2

∅1 1.54 0.26 0.62 3868 9.4 0.75
∅2 1.43 0.26 0.82 3570 6.9 0.71
∅3 0.54 0.37 0.85 6753 6.7 0.75

c3

∅1 0.89 0.31 0.66 3863 9.3 0.76
∅2 8.50 0.44 0.72 1186 8.6 0.8
∅3 1.05 0.3 0.86 7078 7.2 0.75

c4

∅1 1.44 0.27 0.71 4561 8.2 0.78
∅2 5.18 0.15 0.76 1741 8.3 0.8
∅3 0.16 0.29 0.88 7875 7.7 0.76

c5

∅1 3.32 0.19 0.76 5049 8 0.75
∅2 6.63 0.12 0.77 1827 8 0.81
∅3 0.97 0.28 0.90 10692 6.6 0.74

4. Results and Discussion
4.1. Numerical Simulations

The data for the five cases simulated are depicted in Table 1. In cases a, b, and c, Ce
is a constant, and Pd value is 0.7, 0.8, and 0.9, respectively, implying the increase in the
dispersed medium capacitance and, therefore, the increase in Cef. In cases c, d, and e, Pd
is a constant and Ce value is 1, 2, and 4 [µF], respectively. These three last cases imply
that an increase in the electrode capacitance, either due to a change in electrolyte ionic
concentration or specific adsorption [42], causes an increase in Cef.

Figure 3a,b shows the impedance spectra for cases in Table 1 from 10 to 1000 Hz,
for magnitude (|Z|) and phase angle (θ), respectively. For cases, a, b, and c, an increase
in Pd causes an increase in Cd. Below 102 Hz, the increase in Cd causes a decrease in
impedance magnitude. Regarding the phase, there is an increase in the angle visualized as
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a crest whose maximum value increases with Cd. For cases c, d, and e, Ce increases cause
a decrease in both the magnitude and the phase angle. The maximum value of the peak
in the phase angle decreases when Ce increases. Another graphical representation of an
impedance spectrum is a Nyquist plot; each point represents the magnitude, and phase
corresponding to a particular frequency, consequently, is a more compact representation.
The diagram is in the complex plane, having the negative of the imaginary part versus
the real part, considering the frequency as an implicit variable. In Figure 3c, the Nyquist
diagrams for cases depicted in Table 1 are represented. For cases a, b, and c, on the right
side (lower frequencies), an inclined spike changes when Cd increases, which is associated
with the species diffusion from the bulk solution to the interface electrode–electrolyte [32].
There is an increase in the real part (Re(Z)) and a decrease in the imaginary part (Im(Z)). On
the left side (higher frequencies), there is a depressed semicircle that describes the kinetic of
the species close to the electrode–electrolyte. Thus, an increase in the capacitance associated
with the dispersed medium causes an ionic redistribution synthesized as an increase in the
Cef parameter. For cases c, d, and e, on the right side, a shortening of the inclined spike
is observed when Ce increases. There is a decrease in both the real and imaginary parts.
On the left side, the tendency to form a semicircle prevails; if Ce increases, the size of the
semicircle increases. Therefore, an increase in the capacitance associated with the electrode
is also synthesized as an increase in the parameter Cef. From these simulations, we can
observe that diverse behaviors in the impedance diagrams, which imply changes in the
capacitive effects, can be summarized through the effective capacitance extracted from
unifying the electrical parameters of the equivalent circuit using Equation (5).
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4.2. EIS Analysis for PMMA Particle Suspensions (Biological Phantom)

The Nyquist plots for s∅1 (Figure 4a) show a decrease in the real and imaginary part
of the impedance as the number of particles increases. For s∅2 (Figure 4b), impedance is
decreased between c1 and c2, and for c3, c4, and c5, the change is minor. Regarding s∅3
(Figure 4c), no significant changes are observed for all the suspensions, so to notice changes
directly from the Nyquist diagrams is quite challenging.
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Figure 4. The electrical impedance spectrum of PMMA particle suspensions in PS is represented
as Nyquist Plot (a–c) and as DMi (d–f) for ∅1 (a,d), ∅2 (b,e), and ∅3 (c,f). Concentrations are
represented by the symbols.

Figure 4d depicts the DMi spectra for particles of ∅1. DMi basal value is zero, which
corresponds to the physiological serum (PS). As can be seen, the DMi value increases as
the number of particles increases, following a consecutive order for the five concentrations.
For particles of ∅2 (Figure 4e), DMi is increased for the five concentrations; however, there
is a minor change between c3, c4, and c5. Finally, for particles of ∅3 (Figure 4f), there is an
increase in DMi value; nevertheless, it is a small change for the five concentrations relative
to each other.

A slight increase in DMi, when the particle is larger, can be explained by the difference
in the volume fraction (Vf) of the suspensions. The suspension c1 has 2500 particles and
a Vf × 10−4 of 0.03, 0.4, and 14 for particles of ∅1, ∅2, and ∅3, respectively. Therefore,
the dispersed medium volume increases with the particle size (Table 3). For particles of
∅1 (Figure 4d), the DMi spectrum for c1 is close to the PS, indicating it is the most part
liquid medium. Between c1 and c5 there is an increase from 0.02 to 0.19, at 50 Hz (the
frequency in which DMi has the most significant differences), for a Vf × 10−4 of 0.03 to 0.5.
For particles of ∅2 (Figure 4e), the increment in the DMi value persists as the number of
particles increases, going from 0.14 to 0.28, at 50 Hz, between c1 and c5. Compared to the
particles of ∅1, there is a more significant difference concerning the PS medium. However,
the samples c3, c4, and c5 have similar values, indicating that the sensitivity decreases after
a Vf =2 × 10−4. Finally, for particles of ∅3, the DMi increases from 0.22 to 0.25, at 50 Hz,
between c1 and c5. Between c1 and PS, there is a more significant difference compared to the
particles of ∅1 and ∅2. However, the differences for c1, c2, c3, c4, and c5 are not significant
because they are samples with a larger Vf, ranging from 14 × 10−4 to 230 × 10−4.
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Table 3. Volume fraction for suspensions with particles of ∅1, ∅2 and ∅3.

Vf × 10−4

Sample ∅1 ∅2 ∅3

c1 0.03 0.4 14
c2 0.06 0.9 29
c3 0.1 2 58
c4 0.2 4 120
c5 0.5 7 230

Figure 5a shows the DMi as a function of the particle concentration (ci) at 50 Hz. The
goodness of the fit is R2 = 0.98, R2 = 0.89, and R2 = 0.94 with a sensitivity of 0.15, 0.12,
and 0.03 µL/p for ∅1, ∅2, and ∅3, respectively. Nevertheless, for the most concentrated
suspensions c4 and c5, DMi has no consecutive values for the particle size since the plot for
∅3 is between the plots for ∅1 and ∅2.
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Figure 5b shows the Cef as a function of the particle concentration, the goodness of
the fit is R2 = 0.97, R2 = 0.95, and R2= 0.98 with a sensitivity of 1.7 × 10−7, 0.8 × 10−7,
and 0.5 × 10−7 µL × F/p for ∅1, ∅2, and ∅3, respectively. The Cef has a higher value
when there are more suspended particles, implying the effective capacitance of the EDLs
is greater due to the increase in the net charged surface. According to the results, for
a frequency of 50 Hz, DMi is a function of the particle concentration for ∅1, ∅2, and
∅3. Likewise, it is possible to recognize the particle size for more diluted suspensions,
showing limitations for more concentrated suspensions with a large Vf. On the other
hand, Cef allows a concentration-dependent fitting curve, and we can recognize the three
particle sizes for the five suspensions. In such a way, impedance spectra analysis by the
unified parameter Cef presents the advantage concerning the DMi of monitoring particle
concentration and size for suspensions with a large Vf.

4.3. EIS Analysis for Non-Adherent Cell Suspensions

Applying the same methodology described above, we obtained the DMi spectra for
cell suspensions in RPMI-1640 supplemented, both for the K-562 cells (Figure 6a) and
leukocytes (Figure 6b). Figure 6a shows a progressive increase for the five concentrations,
with a DMi higher value as there are more cells suspended. The maximum standard
deviation (σ) for K-562 cell suspensions was 3%. Regarding leukocyte suspensions, ccelli for
i = 1,2,3,4,5, the maximum standard deviation was 36%, 16%, 3%, 6%, and 1%, respectively
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(Figure 6b). Notice that σ increases while the leukocyte number decreases, which could
correspond to a concentration variation between aliquots due to a very low Vf. Figure 7a
shows DMi as a function of cell concentration at 50 Hz, having an R2 = 0.98, and R2 = 0.77
with a sensitivity of 0.06, and 0.19 µL/cells for K-562 cells and leukocytes, respectively. DMi
value is different between K-562 cells and leukocytes only for the most diluted suspension
(ccell1).
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Through the electrical circuit elements, we estimated the Cef for the cell suspensions
(Figure 7b). The goodness of the fit for K-562 cells is R2 = 0.95 with a sensitivity of
0.07 µL × F/cells, showing a clear relationship with cell concentration. For leukocytes,
R2 = 0.92 with a sensitivity of 0.28 µL × F/cells. The Cef function for K-562 cells and leuko-
cytes, in contrast with DMi, are curves that do not intersect. Therefore, with the unified
parameter Cef, we can analyze the impedance spectrum depending on cell concentration
and type.

5. Conclusions

This work could characterize the EIS of a dielectric medium suspended in an elec-
trolytic solution through a curve fitting depending on concentration. Two approaches were
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used for the EIS analysis. The first was to normalize the impedance magnitude with the
medium liquid measurement named dispersed medium index (DMi). The second approach
was to calculate the unified parameter named effective capacitance (Cef), which synthesizes
the electrical double layer of the electrode and the disperse medium by fitting an equivalent
circuit with Levenberg–Marquardt method. The main findings are:

• The normalized impedance is a function of particle concentration and size for diame-
ters of 6 and 15 µm, showing limitations for particles of 48 µm, starting with a volume
fraction of 58 × 10−4. The sensitivity of the curve decreases with the particle size;

• The effective capacitance is a function of particle concentration and size for diameters
of 6, 15, and 48 µm, evaluated in a volume fraction of 0.03 × 10−4 to 230 × 10−4. The
sensitivity of the curve also decreases with the particle size;

• For non-adherent cell suspensions, the normalized impedance is not significantly
different for K-562 cells and leukocytes. In contrast, the effective capacitance has a
well distinguishable curve depending on concentration for each cell type, evaluated in
a range of 25 cells/µL to 400 cells/µL with 100 µL of volume sample;

• The normalized impedance is a simple approach that only requires arithmetic treat-
ment of the data, having limitations for analyzing changes in the sample size, which
could be a drawback for a biological assay. On the other hand, effective capacitance is
a more robust approach, which requires an optimization algorithm to determine the
values of electrical circuit components. Nonetheless, it shows a better result for the
sample size analysis.

According to the EIS results, the electrode polarization influence is predominant.
Nevertheless, when we joined the phenomena present at low frequencies through the
effective capacitance determined by unifying the electrical parameters of an equivalent
circuit, the variations exhibited depend on the dispersed medium concentration and have
a linear behavior. In this way, the effective capacitance applied to non-adherent cell
suspensions could be a tool for monitoring changes in the population in proliferation or
cell death assays.
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