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Abstract: Pluripotent stem cells (PSCs) are important for future regenerative medicine therapies.
However, in the production of PSCs and derivatives, the control of culture-induced fluctuations in
the outcome of cell quality remains challenging. A detailed mechanistic understanding of how PSC
behaviors are altered in response to biomechanical microenvironments within a culture is necessary
for rational bioprocessing optimization. In this review, we discuss recent insights into the role of cell
behavioral and mechanical homeostasis in modulating the states and functions of PSCs during culture
processes. We delineate promising ways to manipulate the culture variability through regulating cell
behaviors using currently developed tools. Furthermore, we anticipate their potential implementation
for designing a culture strategy based on the concept of Waddington’s epigenetic landscape that may
provide a feasible solution for tuning the culture quality and stability in the bioprocessing space.

Keywords: pluripotent stem cells; cell behaviors; culture microenvironments; stem cell bioprocessing;
Waddington’s epigenetic landscape

1. Introduction

Pluripotent stem cells (PSCs), which can be isolated from embryos as embryonic
stem cells (ESCs) or reprogrammed from somatic cells as induced pluripotent stem cells
(iPSCs), are remarkable for their unlimited self-renewal in vitro and ability to differentiate
into all cell types of the three embryonic germ layers, including the ectoderm, mesoderm,
and endoderm [1]. These cellular capacities make them highly attractive candidates for
regenerative medicine. They have been investigated for various clinical complications
associated with globally high morbidity rates, including age-related macular degeneration,
neurological disorders, and type 1 diabetes [2–4]. Despite an extensive exploration of the
therapeutic potential of PSCs, there remain challenges toward real-world implementation
of these cells in terms of cell bioprocessing and manufacturability.

Cell-based therapies require a high cell density for downstream differentiation and
transplantation. Therefore, the development and optimization of robust, scalable, and
cost-effective bioprocessing systems are needed to provide an adequate quantity of cells
with stable quality [5,6]. Different cell culture systems have emerged for propagating
and differentiating PSCs to generate various target cell types. However, the cell variabil-
ity and suboptimal quality observed within and between batches reflect the existence
of fluctuation in the bioprocessing of PSCs (Figure 1) [7–10]. Typically, the variation in
cell quality has been identified to be dependent on the cell origin (origin-induced) and
the culture environment (culture-induced) [11]. During in vitro culture adaptation, PSCs
accumulate epigenetic changes and potentially undergo phenotypic transition, influencing
their clonal self-renewal and lineage differentiation propensity [9,12,13]. It has been shown
that variable input factors applied to the culture process, including raw culture materials,
culture conditions, and operational parameters, determine the actual microenvironments
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of the growing cells and how they behave in culture [14]. The dynamic alteration of the
cell–microenvironment interactions can profoundly impact many intracellular biological
events and cell pluripotency features [10,15,16]. Previously, cellular characteristics and
functional variation were investigated among culture platforms. The growth-dependent
self-organization within cell colonies under two-dimensional (2D) culture conditions is
associated with inter- and intra-colony heterogeneity and spatial differences in the transcrip-
tion of genes involved in cell cycle regulation, pluripotency, and epithelial function [17–19].
The distinct patterns of cell behaviors and growth phase transition during expansion have
been further linked with the subsequent preferential differentiation [18,20]. Moreover, in
a three-dimensional (3D) aggregate culture system, the growth and survival of PSCs, as
well as the cell aggregate structural integrity, are variable, depending on their intercellu-
lar interactions and endogenous extracellular matrix (ECM) secretion capability [21–23].
After prolonged expansion, the increasing local heterogeneity in ECM accumulation and
cytoskeletal alignment, in concert with the uneven distribution of nutrients and essential
biochemicals, likely exacerbates growth limitation and spontaneous cell differentiation
within 3D cell aggregates [22,24,25]. These prior studies demonstrated that multifactorial
variables over courses of culture processes play a role in modulating cell behaviors and reg-
ulating the PSC properties and potential. From the perspective of bioprocess engineering,
how to efficiently stabilize this fluctuation during PSC culture has become a key challenge
in boosting process performance and final cell product quality.
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Figure 1. Culture-induced fluctuation in the cell preparation bioprocess. The expansion process
contributes to producing an adequate quantity of undifferentiated cells with stable quality for further
differentiation and clinical translation. The existence of cell quality variability has been recognized to
be influenced by intrinsic cellular properties and extrinsic variables in the cell culture, including raw
material adaptability, culture conditions, and the operator’s skills and sense. Differences in the culture
inputs and spatiotemporal changes in the cell structural organization during culture determine the
biomechanical properties of the cellular microenvironments. The interactions between cells and their
microenvironments may result in fluctuations in the phenotypic features of the PSC products.
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In this review, we aimed to underscore the crucial role of cell behavioral regulation
in minimizing the culture-induced fluctuation in PSC bioprocessing. Firstly, we address
recent advances in understanding mechanisms by which the cell behavioral dynamics
in response to culture microenvironments act to reorganize intracellular mechanics and
orchestrate the stem cell states and potential. Next, we delineate how to regulate the cell
behaviors using developed culture tools and culture microenvironments to modulate the
cell mechanical homeostasis and pluripotency functions during culture. Finally, we discuss
principal considerations in culture strategy design for tightly controlling the PSC expansion
and derivation processes based on the conceptual Waddington’s epigenetic landscape.

2. Mechanistic Roles of Cell Behavioral Dynamics in Modulating Cell Fate Decision

Recent evidence has indicated that complex reciprocity between cells and culture mi-
croenvironments produces dynamic changes in cell behaviors and intracellular mechanics,
contributing to the spatiotemporal variations in cell state and functional regulation within
culture [26–29]. In addition to biochemical cues, cultured cells continually perceive extrinsic
stimuli through direct interactions with their surroundings and relay them intracellularly
to regulate the multitudes of molecular pathways and gene transcriptional networks. This
process is called mechanotransduction (Figure 2) [28,30]. At the cell surface, the anchorage
of cells to the local ECM components and the neighboring cells, mediated by specialized
adhesion molecules, such as integrin and cadherin, conjointly exerts a mechanosensation
role and coordinates cell migration [31–33]. The strength of the cell adhesion interactions
depends on the magnitude of mechanical constraints sensed by the cells, eliciting a graded
mechanosignaling output from the adhesion sites [34,35].

The binding of cell adhesion molecules promotes the recruitment of multiple struc-
tural and signaling proteins at the cytoplasmic domains. The association of adhesion
protein complexes primarily facilitates a direct force transmission from adhesion contacts
towards internal cell compartments and nuclei via physical cytoskeletal connections [36,37].
Moreover, the exerted forces on cell adhesion can be converted into biochemical signals
by altering the compositions and activities of regulatory proteins at the adhesion com-
plexes, which generates a sequence of signaling pathways and changes in the cytoskeletal
alignment and tensional dynamics [38,39]. The adhesion-mediated activation of Rho A, a
member of the Rho GTPase family, and ROCK signaling promotes the phosphorylation of
motor protein myosin II and inhibits the activity of myosin II phosphatase [40,41]. The ki-
netics of the assembly between the phosphorylated myosin II and filamentous actin termed
actomyosin complex produces alternating cycles of actin cyto-skeletal contraction and
relaxation [42]. Active Rho protein at cell–cell adherens junctions produces signals through
its effectors to establish apical actomyosin networks [17,38]. Whereas the localization of
p120-catenin elicits the recruitment and activation of other Rho GTPases, Rac and Cdc42,
inducing actin polymerization and suppressing the Rho/ROCK-dependent actomyosin
contractility [43]. The antagonism of the Rho GTPase members in controlling contraction
or elongation of actin bundles serves as a molecular switch to manipulate the balance
between cell adhesive and migratory behaviors and direct the intra- and intercellular
tensional homeostasis.

The actomyosin-induced contraction propagates mechanical cues to the nucleus, which
are directly transmitted to the chromatin domains via a linker of nucleoskeleton and cy-
toskeleton (LINC) complexes and further modulates the cytoplasmic-to-nuclear transloca-
tion of epigenetic modifiers and transcription regulators [27,44,45]. The direct tethering
of actomyosin to the nucleoskeleton and associated chromatin influences the dynamics of
nuclear deformation and nuclear lamina–genome interactions based on increased or de-
creased actomyosin activities [46]. Studies demonstrated that actomyosin-induced nuclear
flattening and chromatin condensation in the mechanical stress-applied cells involve the al-
teration of histone methylation and the transcriptional upregulation of mechanoresponsive
and quiescent genes [27,47,48].
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Figure 2. The plausible interplay between cell behavioral dynamics and intracellular mechanical
regulation in cell fate modulation. In the culture microenvironments, cells sense and respond
to extrinsic mechanical stimuli from the culture substrate, surrounding cells, and fluid dynamics
exerted on cellular membranes and different biomechanosensors, such as integrins and E-cadherins.
The alteration of the integrin-mediated cell–substrate and E-cadherin-mediated cell–cell adhesion
behaviors triggered by the extrinsic forces can stimulate a wide range of intracellular biochemical
signaling cascades and induce intrinsic force generation by regulating the actomyosin cytoskeletal
contractility. The distribution of the intrinsic cytoskeletal tension mediates the nuclear structural
remodeling and cytoplasmic-nuclear shuttling of several mechanosensitive transcription regulators,
influencing the intranuclear events, such as epigenetic modifications and gene transcriptional activity,
and consequently altering cell fates and functions.

Moreover, changes in actin polymerization and contractility were implicated in the
spatial redistribution of histone deacetylases, leading to global changes in histone acety-
lation and the switching of gene-expression patterns in cells under different geometric
constraints [49]. The cellular tension has also been shown to regulate the nuclear shuttling
of mechanosensitive transcription regulators, such as YAP/TAZ and β-catenin, thus control-
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ling the transcriptional activity of their target genes [50]. Current evidence elucidates that
the YAP/TAZ nuclear translocation and epigenetic modifications might serve as possible
pathways through which the culture-induced cell mechanical tension could affect the self-
renewal and fate potential of PSCs [20,51–53]. Mechanistically, the nuclear YAP can bind to
and stimulate the transcription of diverse pluripotency-associated genes responsible for
maintaining pluripotent states and cell proliferation [54,55]. Strikingly, YAP-occupied genes
were found to overlap highly with the binding targets of the core pluripotent transcription
factors OCT3/4, NANOG, and SOX2, highlighting their collaborative role in tuning the
PSC properties [54]. In addition, the nuclear availability of YAP was found to be associated
with histone H3 modifications and the formation of site-specific transcriptional enhancers,
which dictate the lineage differentiation of PSCs [56]. Furthermore, a transition between
the two different states of pluripotency in vitro, commonly referred to naïve and primed
states that reflect different stages of embryonic development in vivo, can be influenced by
the nuclear-cytoplasmic shuttling of β-catenin protein [57,58]. The retention of cytoplas-
mic β-catenin promotes the self-renewal of ESCs in a primed pluripotent state through
interaction with cytoplasmic TAZ [57]. The activation of β-catenin maintains ESCs in the
naïve pluripotent state, while its inhibition induces a naïve-to-primed conversion [58]. The
complex networks of transcription factors and epigenetic regulators play a central role in
controlling cellular pluripotency. These studies manifest a range of pivotal intracellular
elements that ultimately mediate the intranuclear modulation of pluripotency-associated
gene regulation. Multistep mechanotransduction processes from the cell membrane to
intranuclear architectures elucidate how cell behavioral mechanics could regulate gene
transcription and cell phenotypic characteristics.

Perturbations in the cell adhesion balances and tensional homeostasis of the PSCs by
either intrinsic or extrinsic factors could modulate the molecular circuitry of pluripotency
and lineage-specifying signals, influencing stem cell features, such as pluripotent state
transition, lineage differentiation preference, and spontaneous differentiation [26,27,59,60].
In addition, changes in cellular mechanics, intracellular circuits, and epigenetic information
might be sustained over time and stored as memory, which could affect cell behavioral
adaptability and fate decision during prolonged culture or after the cells move to a new
environment [9,20]. Prior research demonstrated that functional inhibition of integrin α6
could cause a notable reduction in the core pluripotent gene expression while blocking
integrin β1 results in the priming of ESCs for a mesodermal fate [61,62]. The dysregulation
of cell–substrate and cell–cell adhesion in PSC colonies has induced abnormality in acto-
myosin formation and contraction by inducing the Rho/ROCK signaling cascades [63,64].
The impaired actomyosin contractility decreases cell colony integrity and YAP activity,
causing defects in pluripotency maintenance and cell survival [15,40,41,52]. During colony
formation and compaction in a 2D culture of PSCs (Figure 3), cell adhesion and cytoskeletal
reorganization occur in response to spatiotemporal changes in cellular conformation and
cell–microenvironment interactions. These changes correlate with the dynamic modifica-
tions of global histone methylation H3K4me3 and H3K27me3, which represent key active
and repressive marks acting in concert to regulate the epigenetic states of pluripotent and
developmental genes [20,65]. Within cell colonies, cell positions at the peripheral and cen-
tral regions show differences in kinematics and mechanical dynamics, including the apical
actomyosin reorganization and nuclear structural deformation, consequently inducing
distinct spatial transcription and protein expression of cell adhesion and pluripotency-
associated markers [17,18,66]. In prolonged culture beyond confluence, iPSCs exhibit
integrin downregulation, apical actin disorganization, and an increase in global H3K27me3
levels; moreover, some cells within densely packed colonies show the reformation and
alignment of nuclear lamin A/C, contributing to changes in nuclear stiffness [20,67]. Nu-
clear lamina remodeling in association with the anomalous cell migration and imbalance
between cell–cell and cell–substrate interactions in PSC colonies might trigger a switch
from the undifferentiated to a deviated state [68]. Moreover, a distinct mechanical tension
at the outer rim of the cell colony was shown to direct fate decision-making events upon
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differentiation [69,70]. For example, during the early mesendoderm induction in ESC
culture, the physical connection between E-cadherin, β-catenin, and the actin cytoskeleton
is responsible for mechanosensation and Wnt signaling restriction to the colony boundary,
particularly positioning mesendoderm formation [71].
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between the cells in different regions and different compressional constraints could distinctly induce
the reorganization of the actomyosin cytoskeleton and nuclear laminas, leading to differences in
nuclear structural deformation and epigenetic modifications [20,24]. The local heterogeneity within
growing cell colonies ultimately contributes to the spatial transcriptional regulation of pluripotency-
associated genes and possibly triggers deviation from the pluripotent state [17,19,67,68].

Compared with the cells in 2D culture, cells in 3D aggregate culture embrace a
com-plex regulation of cell–cell and cell–ECM adhesion along the three dimensions of
interactions and stimulate their endogenous ECM secretion (Figure 4) [21,72]. Emergent
self-organization in 3D aggregate structure causes the radial organization of the ECM and
actomyosin bundle alignment, which have been suggested to incorporate outside–inside
force transduction throughout the spheroid structure [24,66,73]. iPSC aggregates displayed
strikingly different time-dependent cell adhesion protein expression profiles and moder-
ation of myosin phosphorylation compared with the cells in 2D culture, indicating the
relaxation of cytoskeletal tension in a 3D culture [24]. During growth and expansion,
the cells in 3D aggregates remarkably kept both H3K4me3 and H3K27me3 at high levels
and maintained the expression of core pluripotency-associated genes. Interestingly, in re-
sponse to the 3D environment, the cells stimulate the transcriptional upregulation of naïve
pluripotency-associated genes and the downregulation of primed genes, which might be
interrelated with their distinct epigenetic memory and the modulation of mechanosensitive
YAP signaling pathways [24,74,75]. Furthermore, several studies demonstrate that the
directed differentiation of PSCs within the 3D aggregate culture platform could enhance
the differentiation and maturation efficiency of various target cell types, such as beating
cardiomyocytes and insulin-producing pancreatic cells [76,77]. These studies show that
mechanical asymmetry arising from growth-dependent structural reorganization and cul-
ture dimensionality locally regulates cell behaviors and intracellular tensional forces along
the culture duration, leading to a spectrum of cellular responses ranging from immediate
changes in cytoskeletal contractility to long-lasting epigenetic and transcriptional gene
modulation [17,18,24]. The effects of cell behavioral alteration induced by several other cul-
ture variables need further clarification. How to control the homeostasis of cell behavioral
and mechanical regulation among cell populations should be considered when developing
and optimizing the culture processes of PSCs.
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Figure 4. The impact of culture dimensionality on cell behavior-driven epigenetic memory. Cells
adapt to different 2D and 3D culture conditions by modulating cell adhesion interactions and the
balance of Rac/Rho GTPase antagonism [21,24,73]. In contrast to cells in 2D monolayers (A1,A2),
cells in 3D aggregates interact with the surroundings in all dimensions and modify the actomyosin
cytoskeletal contractility by altering myosin phosphorylation activity (B1,B2). The culture dimen-
sionality and changes in force distribution within 3D structure potentially influence the maintenance
of epigenetic memory and the distinctive transcriptional expression of naïve pluripotency-associated
genes, consequently attuning the cellular pluripotency [24,74,78].
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3. Emerging Methods for Enhancing PSC Expansion through the Regulation of
Cell Behaviors

Spatiotemporal differences in cellular microenvironments and structural self-organization
along the culture of PSCs potentially contribute to cell-to-cell phenotypic variability [14,16].
Fine-tuning three key components of cell mechanical transducers at the cell-microenvironment
interface (cell–substrate interaction, cell–cell interaction, and cell migration) by applying
alternative culture substrates and biochemical molecules has been recently introduced
by several groups (Table 1) [35,67,79–81]. The interaction of PSCs with their surrounding
ECM plays a role in coordinating the balances of force generation at the cell-ECM contacts
and the overall strength of the intracellular and intercellular contraction [27]. Recent ad-
vancements in the field of biomaterials provide a wide range of surface coating agents,
including recombinant ECM proteins and synthetic biomimetic matrices [35,82]. Differ-
ences in the biochemical composition, molecular structure, and mechanical characteristics
of culture matrices strongly influence cell behaviors and pluripotent capacity [53]. The
distinct structural isoforms of the ECM adhesion molecules, such as laminin-511, -521, -332,
-211, and -111, have been shown to affect the efficiency of proliferation and differentiation
of PSCs [53,83,84]. Previous research demonstrated that E8 fragments of laminin-511 and
-332, which are the minimal forms retaining the integrin-binding specificity, successfully
maintained iPSCs in an undifferentiated state with a normal karyotype and pluripotency
for more than 30 passages [83]. However, differences in the binding affinity to E8 frag-
ments of laminin-511, -332, and -211 determine the degree of cell colony compaction and
actomyosin contractility, consequently switching the differentiation propensity of cultured
iPSCs towards distinct ocular lineages involving Wnt and YAP signaling modulation [53].

The availability of synthetic polymer- and peptide-based matrices with tunable me-
chanical properties allows users to regulate an optimal strength of cell–substrate adhe-
sion in a target cell-specific manner, thereby promoting an efficient generation of desired
cells [35,79,85–88]. Stiffness represents a key mechanical property of coating material,
critically dictating the subcellular allocation and activity of the integrin-mediated adhesion
molecules, and further modifying the cell interactions with neighboring cells [89]. Cultivat-
ing ESCs on tunable decellularized fibroblast-derived matrices indicated that the extent
of substrate stiffness modulates their cell–substrate adhesive potential and cell motility,
mediating either induction or inhibition of the epithelial to mesenchymal transition pro-
gram and controlling the activity of pluripotent gene expression [28]. The ranges of optimal
stiffness should be considered when developing culture matrices to facilitate pluripotency
maintenance and long-term cell expansion [90]. Recent research on synthetic hydrogel
systems has introduced a concept of cell behavioral control through the in situ modifying
of structural and adhesive microenvironments [91]. Combined hydrogel matrices have
been optimized to switch between pluripotency-permissive and differentiation-permissive
states via ionic de-cross-linking [91]. Interestingly, controlling the timing of matrix switch-
ing can regulate the ESCs to differentiate into ectoderm or mesendoderm lineages [91].
These culture matrices have been used successfully to generate an integrated platform
for growing undifferentiated ESCs and subsequently differentiating them into terminally
specialized cells [91]. Additionally, hydrogel-based matrices have been applied to fabri-
cate labile substrates with patterned islands, which restrict the cell–substrate adhesion to
designated areas and induce the self-assembly cell aggregation for producing size- and
shape-controlled 3D cell aggregates [78]. Regulating the aggregation kinetics by adjusting
the labile substrate ligand density allows for the controlling of the porous structure of cell
aggregates and indirectly determining stem cell fate [78].

The exogenous regulation of integrin- or E-cadherin-mediated adhesion can attune
the properties and functions of cultured PSCs [27,31,92]. Applying a uniform mode of
integrin- or E-cadherin-based adhesion regulation attenuates the spatial cell heterogeneity
in culture [31]. A non-colony culture system based on recombinant E-cadherin-immobilized
surfaces has been proposed to grow undifferentiated PSCs in a more homogeneous mi-
croenvironments with moderation of cell–cell contacts [93]. The cultures of ESCs and iPSCs
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on an E-cadherin-coated substrate, which retain their E-cadherin-based interaction, have
been found to increase cell proliferation and maintain cell viability and pluripotency dur-
ing subculture [93,94]. Furthermore, to modulate the cell–cell interaction, the E-cadherin
function-blocking agent botulinum hemagglutinin (HA) has been used as a culture tool to
selectively remove cells that deviate from an undifferentiated state during the expansion
of iPSCs [67]. Due to the weakened E-cadherin-mediated cell–cell adhesion in deviated
cells, HA-induced E-cadherin disruption causes the detachment of deviated cells from cell
colonies; however, the undifferentiated cells can restore the E-cadherin-mediated cell–cell
interaction and retain their pluripotency following HA removal [67]. Moreover, routine HA
treatment in serial passages has been shown to facilitate the long-term maintenance of the
iPSC population in an undifferentiated state [81]. It has been suggested that the temporal
relaxation of cell–cell junctions by HA can stimulate cell migratory behaviors and cytoskele-
tal rearrangement, resulting in a relatively uniform dispersion of cells in colonies [81]. In
addition, the HA-mediated temporal cell–cell adhesion disruption has been adopted to
establish an in situ cell aggregate break-up method for high-density suspension expan-
sion [95]. In cell aggregate growth in conventional culture, large-size aggregates enhance
collagen type I accumulation on the aggregate periphery, restricting the homogeneous
microenvironments and consequently resulting in undesirable cell proliferation and cell
necrosis within the aggregate. The HA-mediated dissociation of cell–cell adhesion facil-
itates the break-up of aggregates into small sizes, allowing a significant increase in the
expansion fold of cells with no adverse effect on maintaining pluripotency [95]. These
studies represent current progress in tailoring cell behaviors in PSC cultures. The use of
emerging culture strategies that integrate the precise control of culture microenvironments
and cell behavioral dynamics may ultimately contribute to regulating the maintenance of
undifferentiated state and pluripotent ability of cultured PSCs along the expansion process.

Table 1. Developed culture tools for PSC expansion and downstream differentiation.

Classification Tools References

Laminin-based culture substrates
� Full-length laminin-511, -521, -332, -211, and -111 [53,83,84]

� E8 fragments of laminin-511, -332, and -211 [53,83]

Synthetic polymer- and peptide-based culture substrates

� PMVE-alt-MA, PMEDSAH, and PVB * [85–87]

� Hydrogels [35,79,90,91]

� Chitosan-alginate polymers [75]

� Synthemax™ [88]

E-cadherin-based culture substrates � E-cadherin-Fc chimera [93,94]

E-cadherin function-blocking agents � Botulinum hemagglutinin [67,81,95]

* PMVE-alt-MA: Poly(methyl vinyl ether-alt-maleic anhydride); PMEDSAH: Poly [2-(methacryloyloxy)ethyl
dimethyl-(3-sulfopropyl)ammonium hydroxide]; PVB: Poly(vinyl butyral).

By considering the cellular plasticity and regulatory complexity in the stem cell de-
velopment as visualized by Waddington’s epigenetic landscape (Figure 5), the control
of cell behaviors and cell mechanics might be further implemented to direct a cellular
transition from an undifferentiated state to a desired cell fate [96–100]. From the top of
the rearranged epigenetic landscape, the determination of a specific path conceptually
manifests the regulation of cell fate specification and differentiation direction towards a
target cell type. It has been denoted that the morphogenetic and molecular status of the
initial undifferentiated cells crucially determines the fate decision [98,100,101]. During
early differentiation induction, the well-organized transformation of the cell behavioral
and mechanical phenotypes is coupled with the responsiveness of cells to biochemical
differentiation stimuli in reinforcing the pluripotency exit and fate commitment [102,103].
Conversely, the delay or dysregulation in cell behavioral modulation can result in dif-
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ferentiation resistance and non-target cell generation [39,104]. Manipulation of cell–cell
interaction and cellular mechanics has been shown to improve the mechanosensation of
cells to the differentiation signals and prime the transcriptional initiation of lineage-specific
genes, promoting cell differentiation efficiency [31,71,101]. Altogether, culture approaches
that allow optimal interactions between cells and microenvironments might serve as the
foundation for developing robust cell culture platforms that can enhance and stabilize the
preparation of PSCs and target specialized cells for downstream applications.
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Figure 5. Prospects in designing culture strategy for controlling cell quality based on Waddington’s
epigenetic landscape concept. (A) Considering Waddington’s landscape, the progression of the
PSC fate decision has been depicted intuitively as a cell resting and traveling on a compound
metaphor. Valleys on the landscape where the cells are retained imply the states where the cellular
potency is maintained. Upon receiving the extrinsic stimuli, cells are induced to move downhill,
pass through a cascade of branching ridges and valleys, and finally reach their destinations as
specialized cells. The topography of the ridges and valleys, which modulates path choices and fate
decisions, is conceptually fine-tuned by a complex interplay between the extracellular stimuli and the
intracellular gene regulatory networks. (B) Regarding PSC bioprocess engineering, the robust and
precise regulation of the undifferentiated state maintenance and cell fate specification is a prerequisite
to ensuring the resultant quality of intermediate and final cell products. The current understanding
of the impact of cell–culture microenvironment interactions on the modulation of PSC states and fate
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potential indicates a significance of cell nurturing strategy design. The balance between cell behaviors
and mechanics has an important role in orchestrating the intracellular signaling and the epigenetic and
transcriptional regulation of pluripotency- and development-associated genes, which mechanistically
influence the states and functions of the cultured PSCs. The rational implementation of culture
environments and cell behavioral regulation tools may help instruct such intracellular regulatory
processes and minimize the occurrence of undesired cells and cell-to-cell variability, eventually
facilitating an effective production of PSCs and their derived cells.

4. Concluding Remarks and Future Perspectives

Crosstalk between cell behavioral dynamics and intracellular mechanical regulation
has been elucidated to incorporate extrinsic cues exerted on the cell–microenvironment
interfaces to direct short-term and long-term stem cell phenotypic and functional alterations
during culture [39,40,64]. Increasing considerations on cell culture design principles drawn
from the association between cell–microenvironment interactions and the stem cell devel-
opmental mechanisms have now set the stage for improving the bioprocess preparation of
PSCs and derivatives.

To control the PSC quality during culture process, it is critical for bioengineers to
comprehend the properties of the cells they are using and to construct optimal in vitro
culture environments. The boundary of cell expansion conditions must be determined
specifically for each culture system that involves different input variables, such as different
culture media and culture platforms, and distinctly influences the patterns of cell behavioral
dynamics and growth phase transition [14]. More importantly, throughout the culture
period, cellular environmental factors should be quantitatively examined and regulated
with standard criteria to prevent a detrimental impact of mechanical and biochemical
perturbations on the cells. To evaluate the status of cultured cells, in addition to the
routine offline analysis including the examination of positive and negative pluripotency
biomarkers, effective in-process monitoring and culture control methodologies are required
for tracking the cell behavioral kinetics and minimizing an aberrant alteration of cell
behaviors as well as an undesirable emergence of suboptimal cell populations [105,106].
In the translation from small-scale settings to large-scale cell production, a meticulous
validation of a redesigned and scale-up process is essential to verify its performance and
the stability of cell products. Within recent decades, a variety of culture platforms, such as
a multi-layered cell factory, microcarrier-based bioreactors, and cell aggregate bioreactors,
have been proposed for large-scale use. Compared with conventional culture, the effect of
geometry, substrate, and mechanical dynamics within those culture platforms on the cell
behavioral regulation and pluripotency preservation must be thoroughly elucidated.

In addition to bioprocessing considerations, the further exploration of the biological
nature of the cultured PSCs, particularly their in vitro-state plasticity and developmental
mechanisms, is still needed to bridge remaining knowledge gaps and aid the culture de-
velopment and optimization. Recent advancements in single-cell multi-omics profiling
technologies might help dissect the transcriptomic, epigenetic, and phenotypic heterogene-
ity of bulk cell populations and promise to deepen the understanding of the intracellu-
lar regulatory network associated with the modulation of the PSC state at a single-cell
level [107,108]. Along with cell expansion and differentiation, the growing complexity
and spatiotemporal dynamics of cell structure regarding the culture dimensionality and
stem cell developmental stages are considered to hinder the in-depth investigation of cell
behavioral and mechanical kinetics. As such, more integrative and time-resolved analysis
tools are necessary. Comprehensive mechanistic insights into the molecular basis of cellular
interactions with specific components of the culture microenvironments would open an
avenue for identifying the design space in the culture processes of PSCs and their deriva-
tives. The continuous development and improvement of bioprocess systems by harnessing
the combined power of biology and engineering may help diminish the culture quality
stochasticity and reinforce a shift of PSC technologies from the realm of bench research to



Bioengineering 2022, 9, 669 13 of 17

the domain of cell manufacturing and clinical uses. This will allow the full exploitation of
the therapeutic potential of PSCs.
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