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Abstract: Cervical cancer, a common chronic disease, is one of the most prevalent and curable cancers
among women. Pap smear images are a popular technique for screening cervical cancer. This
study proposes a computer-aided diagnosis for cervical cancer utilizing the novel Cervical Net deep
learning (DL) structures and feature fusion with Shuffle Net structural features. Image acquisition
and enhancement, feature extraction and selection, as well as classification are the main steps in our
cervical cancer screening system. Automated features are extracted using pre-trained convolutional
neural networks (CNN) fused with a novel Cervical Net structure in which 544 resultant features are
obtained. To minimize dimensionality and select the most important features, principal component
analysis (PCA) is used as well as canonical correlation analysis (CCA) to obtain the best discriminant
features for five classes of Pap smear images. Here, five different machine learning (ML) algorithms
are fed into these features. The proposed strategy achieved the best accuracy ever obtained using
a support vector machine (SVM), in which fused features between Cervical Net and Shuffle Net is
99.1% for all classes.

Keywords: pap smear; cervical net; shuffle net; canonical correlation analysis (CCA); support vector
machine (SVM); random forest (RF); k-nearest neighbour (KNN); artificial neural network (ANN)

1. Introduction

According to the World Health Organization (WHO), cervical cancer is the fourth
most common cancer among women globally, with an estimated 604,000 new cases and
342,000 deaths in 2020. About 90% of the new cases and deaths in 2020 occurred in low-
and middle-income countries worldwide [1,2]. Cervical cancer begins with no overt signs
and has a long latent period, making early detection through regular checkups important.
Cancer is a disease in which the body’s cells grow rapidly, generally termed after the
part where it originates, even if it spreads to other parts of the body [3-5]. Cervical
cancer denotes cancer that begins in the cervix [6,7]. In the year 2018, an estimation of
more than 500,000 women worldwide were diagnosed with cervical cancer, resulting in
approximately more than 300,000 women dying due to cancer. Infection with high-risk
human papillomaviruses (HPV), an immensely prevalent virus spread via sexual contact,
is associated with almost all cervical cancer cases (99%). Therefore, cervical cancer may
be prevented via screening tests and getting a vaccine that defends against HPV infection.
In addition, cervical cancer is usually detected with a Pap smear test. It is a painless, fast
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screening test for precancer or cancer of the uterine cervix. Moreover, the regular Pap test
system lowers the cervical cancer incidence rate [8-11].

Cervical cancer is a fatal condition of which individuals who possess a low level of
awareness. Thus, although it is a life-threatening condition, early diagnosis and treatment
may assist in its prevention [12]. Nevertheless, most nations lack efficient screening tech-
niques to encounter this kind of cancer. Hence, in this study we provide a comparison of
performance indicators. For example, in terms of accuracy, several machine learning (ML)
and deep learning (DL) models for cancerous and normal cervical cells were categorised,
including their subtypes. The following literature reviews are related to prior studies on
classifying cervical cancer cells.

2. Review of Study

In 2015, Mbaga et al. [13] explained cervical cancer detection classification utilising a
support vector machine (SVM) classifier gaining around 92.961% accuracy. Furthermore,
Win et al. [14] suggested a technique for computer-assisted screening of Pap smear images
utilising digital image processing. They utilised texture, shape, and colour features to
classify Pap smear images with an accuracy of 94.09%. An investigation by Plissiti et al. [15]
found a new method for cervical cancer detection using handcrafted cell features and
deep learning (DL) features utilising multi-layer perceptron (MLP) and an SVM classifier,
which resulted in the best accuracy obtained, 95.35%. On the other hand, Basak et al. [16]
found that a fully automated framework that employs feature selection and DL utilising
evolutionary optimisation for cytology image classification obtains an accuracy of 97.87%.
With the same objective of recognising cervical cancer’s indications utilising cervicography
images, Park et al. [17] examined the performance of two distinct models, DL and ML.
Applying the ResNet-50 DL, Random Forest (RF), XGboot (XGB), and SVM and ML models,
4119 cervicography images were identified as negative or positive for cervical cancer
by employing square images by omitting the vaginal wall areas. Note that the ResNet-
50 model outperformed the average (0.82) of the three ML techniques by 0.15 points
(p < 0.05). Since this process necessitates segmentation and the acquisition of handcrafted
characteristics, a mix of ML and DL techniques is the most efficient. Furthermore, the
findings of Tripathi et al. [18] are congruent with the findings of this research. They
demonstrated DL classification methods utilising the SIPaKMeD Pap smear image dataset
to provide a foundation for new classification strategies. The ResNet-152 architecture
achieved the greatest classification accuracy of 94.89% utilising this technique.

Alternatively, Al Mubarak et al. [19] used a hybrid, fusion-based, localised imag-
ing and DL technique to categorise squamous epithelium into cervical intraepithelial
neoplasia (CIN) grades, utilising a dataset of 83 digitised histology images. For each
segment, 27 handmade image features and a rectangular patch comprising sliding window-
based convolutional neural network (CNN) features were computed after partitioning
the epithelium region into ten vertical segments. Meanwhile, the DL and imaging patch
characteristics are merged and utilised as inputs to a secondary classifier for the individual
segment and total epithelium classification. With an accuracy of 80.72% in terms of the
whole epithelium CIN classification, the hybrid technique outperformed the imaging and
DL techniques alone by 15.51% and 11.66%, respectively. On the other hand, Alyafeai and
Ghouti [20] discovered variances, proposing that the suggested pipeline comprises two
pre-trained DL models for cervix identification and cervical tumour categorisation. The
first model discovers the cervix region 1000 times quicker compared to current data-driven
algorithms, with a detection accuracy of 0.68 with respect to the intersection of the union
(IoU) scale. The second model utilises self-extracted characteristics to categorise cervi-
cal cancers. Here, two lightweight models relying on CNN are employed to learn these
characteristics. Moreover, the suggested DL classifier outshines prior models in terms of
speed and classification accuracy. The area under the curve (AUC) score of our classifier is
0.82, classifying every cervical region 20 times more quickly. In the most recent published
research, Alquran et al. [21] proposed an automated system to classify cervical cancer into



Bioengineering 2022, 9, 578

3 0f20

seven classes on the Harvel dataset. Their approach exploited the benefits of DL with a
model of a cascading SVM classifier to achieve the highest accuracy among all previous
studies working on a similar dataset, namely, up to 92% for seven classes. Moreover, their
method is fast because the image preprocessing step is skipped.

Missed diagnoses and misdiagnoses often occur due to the high similarity in pathologi-
cal cervical images, the large number of readings, the long reading time, and the insufficient
experience levels of pathologists. In addition, existing models have insufficient feature
extraction and representation capabilities, and they suffer from insufficient pathological
classification. In 2021, Park et al. [17] mentioned the significant differences between two
different models, ML and DL, in identifying signs of cervical cancer using cervicography
images. They concluded that the ResNet-50 DL algorithm could perform better than current
ML models in identifying cervical cancer using cervicography images. This is supported by
Dhawan et al.’s [22] study, which reveals improved techniques for cervical cancer predictive
models based on DL and transfer learning techniques. They classify the cervix images
into three classes (Typel/Type2/Type3) by creating a Con-vet structure from combinations
between pretrained models (InceptionV3, ResNet-50, and VGG19) were used to create
ConvNet that can classify the cervix images. The result of the experiment revealed that the
InceptionV3 model performs better than VGG19 and ResNet-50, with an accuracy of 96.1%
on the cervical cancer dataset.

In another study, Huang et al. [23] suggest extracting deep convolutional features
by fine-tuning pre-trained deep network models, including ResNet-50V2, DenseNet-121,
InceptionV3, VGG19 Net, and Inception ResNet, and then local binary patterns and a
histogram of the oriented gradient are used to extract traditional image features. The serial
fusion effect of the deep features extracted by ResNet-50V2 and DenseNet-121 (C5) is the
best, with the average classification accuracy reaching 95.33%, which is 1.07% higher than
ResNet-50V2 and 1.05% higher than DenseNet-121. Furthermore, the recognition ability
is significantly improved to 90.89%, which is 2.88% higher than ResNet-50V2 and 2.1%
higher than DenseNet-121. Thus, this method significantly improves the accuracy and
generalisation ability of pathological cervical whole slice image (WSI) recognition by fusing
deep features [23]. Mulmule and Kanphade [24] proposed method that employs adaptive
fuzzy k-means clustering to separate cell from the unwanted background of the pathological
Pap smear image. The 40 features are extracted from the segmented images based on the
shape, size, intensity, orientation, colour, energy, and entropy of the nucleus and cytoplasm
individually. Finally, the performance of the supervised classification approach utilising an
MLP with three kernels and an SVM with five different kernels as the classifiers to predict
the cancerous cells is on par with the existing techniques. The classifier is trained and tested
on a benchmark database with 280 Pap smear images. Furthermore, the performance of
these two classifiers are evaluated and it is found that the MLP classifier with hyperbolic
tangent activation function outperforms the SVM classifier in all the performance criteria,
with a classification accuracy of 97.14%, sensitivity of 98%, specificity of 95%, and positive
predictive value (PPV) of 98% [24].

A particular image can be used by computer-aided diagnosis (CAD) systems that
are trained using artificial intelligence (AI) algorithms to predict the possibility of cervi-
cal cancer, which has been highlighted in several cervical cancer studies. For example,
Nikookar et al. [25] found that a cervical cancer predictor model, which incorporates the
result of different classification algorithms and ensemble classifiers, is more effective for
cervical cancer stages. They investigated different aggregation strategies to find the best
formula for the aggregation function. They then evaluated our method using the quality
assessment of the digital colposcopies dataset. Our approach, performing with 96% sen-
sitivity and 94% specificity values, yields a significant improvement in the field. It can
now be used in a supporting clinical decision-making strategy by providing more reliable
information to the clinical decision makers. With the same objective, Yaman and Tuncer [26]
performed a comprehensive review to classify cervical cells in Pap smear images based on
two datasets, SIPaKMeD and Mendeley Liquid Based Cytology (LBC). The 1000 features



Bioengineering 2022, 9, 578

4 0f 20

selected by neighbourhood component analysis (NCA) were classified with the SVM algo-
rithm. Both five-fold cross-validation and hold-out validation (80:20) have been utilised as
validation techniques. The best accuracies for the SIPaKMeD and Mendeley LBC datasets
have been computed as 98.26% and 99.47%, respectively. The obtained results illustrate
that the proposed exemplar pyramid model successfully diagnoses cervical cancer using
Pap smear images [26].

According to literature reviews, cancer detection in the early stages is crucial for the
treatment process. Therefore, early diagnosis/detection is essential for the treatment of
cervical cancer. Note that the gold standard for diagnosing cervical cancer is the Pap
smear test. In recent years, there has been an increasing interest in artificial intelligence
approaches in medical imaging, such as ML, DL, and CNN [27]. ML is a good solution
to automatically diagnose cervical cancer, and many computer vision/DL-based models
have been presented in the literature. However, the morphological changes and their
entanglement in the structural sections of the cells is one of the constraints. DL and ML
algorithms possess a substantial improvement in the healthcare industry. Furthermore,
advances in deep learning have led to the development of neural network algorithms that
today rival human performance in vision tasks, such as image classification or segmentation.
The translation of these techniques into clinical science has also significantly advanced
medical image analysis [28]. Research has shown that machine learning can improve the
effectiveness of medical image analysis. Algorithms can be developed and trained to
remove image noise, improve quality, and gather image data in greater quantities and
at a faster rate than standard techniques [29]. Moreover, these algorithms enhance the
consistency and accuracy of cancer diagnoses. They also aid medical practitioners in terms
of work complexity, minimising labour time, and prognosis.

This study aimed to build a highly accurate computer-aided diagnosis model for
cervical cancer. We obtained features from pre-trained CNN models utilising Shuffle Net,
applying different classifiers to discriminate the Pap smear images. Subsequently, we
created our DL model called Cervical Net with a simple and light structure, in which its
features are passed to different ML classifiers. The key point of this paper is not only the
novel DL model but the fusion features between the DL descriptors from various structures
to obtain a high level of accuracy. The remainder of this article is structured as follows:
Section 3 is devoted to the materials and methods, Section 4 focuses on the results and
discussion, and the last section concludes.

3. Materials and Methods

The proposed method of cervical cytology is displayed in the system flow diagram in
Figure 1.

3.1. Image Acquisition

For multi-cell classification, SIPaKMeD datasets were utilised for image acquisi-
tion [13]. There were 966 photos in the multi-cell dataset, while 4049 cells were cropped
from these images. Note that cells were separated into three stages: normal, benign, and
abnormal. Dyskeratotic cells, metaplastic cells, parabasal cells, superficial-intermediate
cells, and koilocytotic cells were the five cell types. Table 1 has been created to describe
the specifics of each dataset. Table 1 and Figure 2 represent a Pap smear image from the
SIPaKMeD dataset.



Bioengineering 2022, 9, 578 50f 20

Pap Smear Cell
image
Image
Enhancement
Shuffle Net Novel Cervical Net
544 features

1024 features

i o P A\ 4
~ B _ R
Ny
S\LM/ \_ﬂE/> @ @/’9 ‘/\@) Principle Component
Analysis
544 features

QJ’F\ @g <@>

~

> £ k
¥ <sVM> Q
&

Feature Fusion

)

Figure 1. Design of the proposed method.

Table 1. Specification of five classes of cells obtained from the SIPaKMeD (multi-cell) dataset.

Class Number of Images Number of Cells
Normal Class
1. Superficial-Intermediate Cells 126 831
2. Parabasal Cells 108 787
Benign Cell
3. Metaplastic Cells 271 793
Abnormal Cells
4. Dyskeratotic Cells 223 813
5. Koilocytotic Cells 238 825
Total 966 4049

(a) (b) (c) (d) (e)

Figure 2. Example images from each class: (a) superficial, (b) parabasal, (c) metaplastic, (d) dyskera-
totic, (e) koilocytotic.

3.2. Image Enhancement

As shown in Figure 3a, most Pap smear images were low-contrast and noisy. As a
result, image processing was required to reduce noise and raise contrast [30]. To eliminate
the noise, a median filter was utilised. The median filter used here is more effective than
convolution filters because it removes the noise while preserving the edges. The kernel
size in this paper was 3 x 3. Figure 3b shows the image after applying a median filter.
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Histogram equalisation and normalisation are some of the most common techniques used
to enhance the contrast of images, which stretches the histogram of the intensity values into
wider ranges. Increasing the contrast leads to extracting more representative features for
each class. Figure 3c shows the image after median filtering and histogram equalisation.

(a) (b) (c)

Figure 3. Image enhancement: (a) original image, (b) noise removal via the median filter, and
(c) contrast enhancement via histogram equalisation.

3.3. Cervical Net

Cervical Net is a novel DL structure that was designed in this study. Figure 4 shows
the layout of its layers with distinguished group convolutional layers. The structure starts
with an input layer of an image size of 224 x 224 x 3. Consequently, the coloured image
is passed to a convolutional layer with 64 filters, kernel size 7 x 7 and stride 2 x 2. The
output is passed to the rectified linear unit (ReLU) layer, which maps the resultant output
from the convolutional layer into 1 or -1. To downsample the image feature, it is passed
to the average pooling layer with size 3 x 3 and stride 2 x 2. The output is passed to a
two-dimensional (2D) grouped convolutional layer, which separates the input into groups
and then is applied to slide convolutional filters. The convolution is performed vertically
and horizontally, combining the layer of each group independently. In this layer, two
groups are used and 94 filters with size 5 x 5 and padding size 2 x 2 x 2 x 2 for all groups.
Note that the main goal behind grouping convolutional layers is to obtain higher accuracy
than traditional ones. The grouped output is then passed to the ReLU layer and average
pooling layer to downsample it with kernel size 3 x 3 and padding 2 x 2. The output
is passed to the second convolutional neural network (CNN) for extracting more depth
features using 128 filters, kernel size 3 x 3, and padding size 1 x 1 x 1 x 1. Subsequently,
the output is passed to the ReLU layer to map it into 1 or —1. The grouped convolutional
network is applied to the resultant output with two groups of convolutions using 196 filters,
and the kernel size is 3 x 3. The combined output from the depth-wise separable channel
is mapped to -1 and 1 using another ReLU function. For extracting depth features and
obtaining a higher accuracy, another two groups of the convolutional layer are applied
to the mapping output with 128 filters and kernel size 3 x 3. The output is passed to the
ReLU layer. The downsampling is performed on the resultant mapping output using the
global average pooling layer. The fully connected layer is added to the last output with
five neurons compatible with the number of classes, and the softmax layer ends the fully
connected layer. This can be defined by the corresponding equation [31-33].

exp(xi)
f(xi) T exp(x;)’
where x refers to the input vector of the layer with size K, denoted by j, in the range of
1: K. Further, x; indicates the iy, individual input. The output of this layer is expressed as
probabilities commonly used in multi-classification tasks. Here, the proposed network is
terminated by the classification layer. The detailed information regarding the proposed
Cervical Net is displayed in Table 2.
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Table 2. Structure summaries of Cervical Net.

Layer

Information

Input Layer
convl
Activation Layer

Pooling Layer

Grouped Convolutional Layer
Activation Layer

Pooling Layer

Convolutional Layer

Activation Layer
Grouped Convolutional Layer
Activation Layer
Grouped Convolutional Layer

Activation Layer
Pooling Layer
Fully connected Layer
Softmax Layer
Classification Layer

Size: 224 x 224 x 3
Number of Filters: 64
Kernel Size: 7 x 7
Stride: 2 x 2
Padding: 0
ReLU
Type: Average Pooling
Kernel size: 3 x 3
Stride: 2 x 2
Padding: 0
Number of Groups: 2
Number of Filters: 94
Kernel Size: 5 x 5
Padding: 2 x 2 x 2 x 2
ReLU
Type: Average Pooling
Kernel Size: 3 x 3
Stride: 2 x 2
Padding: 0
Number of Filters: 128
Kernel Size: 3 x 3
Padding: (1 x 1 x1 x 1)
ReLU
Number of Groups: 2
Number of Filters: 192
Kernel Size: 3 x 3
Padding: (1 x 1 x 1 x 1)
ReLU
Number of Groups: 2
Number of Filters: 128
Kernel Size: 3 x 3
Padding: (1 x 1 x 1 x 1)
ReLU
Type: Global Average Pooling
5 neurons

images
224x224x3

=m
ey |

Classification
Layer

Figure 4. Cervical Net structure.

Average
Pooling
Layer
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3.4. Pre-Trained Shuffle Net

Convolutional, pooling and fully linked layers are components of traditional CNN
models. The use of large pooling layers and convolution kernels increases the computa-
tional complexity of the model. The model’s size and depth increase to enhance the model’s
accuracy [34]. Because of the limited performance of some specific applications, the model
demands a small size and high accuracy.

Shuffle Net V2 tackles the aforementioned issues without resorting to large pooling
layers or convolution kernels. A depth-wise convolutionand a 1 x 1 tiny convolution kernel
replace the traditional convolutional layer. Since one convolution kernel is accountable
for one input channel with a depth-wise convolution kernel size of 3 x 3, the number of
convolution kernels is the same as the number of input channels. To combine characteristics
of the depth-wise convolution output, a 1 x 1 convolution is utilised. This increases the
network’s expressiveness and nonlinearity without increasing the size of the output feature
graph. Furthermore, Shuffle Net downsamples the feature via modifying the depth-wise
convolution step instead of utilising the traditional pooling layer [34]. Figure 5 describes
the structure of the Shuffle Net basic unit.

k A
F 1x1 Conwv
3x3 DWConv ~
(=tride=2) BN Relu
3x3 DWConv
4 (stride=2)
1x1 Conw L BN
1x1 Conwv
I BN Helu
¥
Concat

k

Channel Shuffle

Figure 5. Shuffle Net basic unit [28].

After the convolutional layer, a new layer known as a pooling layer is added. Specifi-
cally, after a nonlinearity is employed for the feature map output via a convolutional layer,
the pooling layer functions on each feature map independently to construct a new set of
pooled feature maps with the same number of characteristics. Moreover, global pooling [35]
is another type that occasionally utilises downsamples of the entire feature map to a single
value rather than downsampling sections of the input feature map. In our study, we extract
features from global pooling and employ them in the classification task.



Bioengineering 2022, 9, 578

9 of 20

3.5. Deep Features Extraction

Traditional machine learning (ML) algorithms for handcrafted or manual feature ex-
traction have limitations in terms of the correlations and their feature number. With the
introduction of artificial intelligence (AI) and deep learning (DL) in the domains of health-
care and the medical sciences, it has become rather common to rely on the findings projected
via this decision support system to prevent issues of observer bias. Backpropagation is
utilised in DL models to determine the key features, which removes the time-consuming
procedure of employing handmade features [36,37].

We utilised both our own structure—Cervical Net—and the pre-trained model to alter
the CNN by employing our data, allowing each image to propagate across the layers in a
forwarding manner, finishing at the pre-final layer and extracting the output of this layer
as the feature vector. Because biological data are inadequate and sparse for DL models
to perform effectively if trained from the beginning, we employed pre-learned weights
(transfer learning) in this research. For the present study, we have used Cervical Net and
Shuffle Net for feature extraction from the model’s global average pooling layer.

3.6. Feature Selection

The major goal of utilising a feature selection approach was to determine the crucial
features while improving the classifier’s accuracy. Note that the feature selection technique
may help ML algorithms train faster by reducing the complexity of the classification
model [14]. There are plenty of feature selection algorithms to choose from, and principal
component analysis (PCA) is one of them. It is known as a linear dimensionality reduction
technique that maximises the variance of the lower dimension into higher dimensional
data [16]. PCA is used in this paper to reduce the extracted features of Cervical Net from
1024 to 544 most significant features.

The number of components in the down-selection stage is chosen based on the number
of extracted features from the pre-trained Shuffle Net structure. This procedure is performed
using PCA with 95% variance between the selected components.

3.7. Feature Fusion

Canonical correlation analysis (CCA) is a standard tool in statistical analysis that mea-
sures the linear relationship between two datasets. CCA is an unsupervised representation
learning technique for correlating multi-view data by learning a set of projection matri-
ces. The analysis and methods based on CCA are often used in traditional feature fusion
methods. It only considers the correlated information of the paired data but ignores the
correlated information between the samples in the same class. Furthermore, these methods
generally have great deficiencies in exploring the influence of non-negative constraints,
feature dimensions, sample size, and noise power. Being complementary to CCA, many
discriminant methods have been proposed to extract discriminative features of multi-view
data by introducing the supervised class information. However, the learned projection
matrices in these methods are mathematically constrained to be of equal rank to the class
number and thus cannot represent the original data comprehensively [38]. Canonical
correlation analysis (CCA ) considers intraclass and interclass correlations and solves the
problem of computation and information redundancy with simple series or parallel feature
fusion [39]. Deep CCA based on the encoder—decoder network is designed to extract
cross-modal correlations by maximising the relevance between multimodal data [40]. More-
over, CCA is an important method for multiple feature extraction and fusion in which the
canonical projective vectors in the classical CCA method satisfy conjugated orthogonality
constraints. Class information is useful for CCA, but there is little class information in the
scenarios of real applications.

3.8. Machine Learning Classifiers

DL features extracted from Cervical Net are passed to various ML classifiers to obtain
the best classifier’s accuracy. The same experiment is performed using the pre-trained
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Shuffle Net features. The combined features between the novel Cervical Net and Shuffle
Net are fused using CCA. The resultant fused features are passed to various ML classifiers
to obtain the highest level of accuracy. Subsequently, a comparison is performed between
different classifiers for the same features and methods, such as Cervical Net features, Shuffle
Net features, or using CCA techniques.

3.8.1. Support Vector Machine (SVM)

A support vector machine (SVM) refers to a supervised learning model that appropri-
ately labels distinct classes in a set of training samples. The feature plane plot representation
of the training data in the SVM model denotes a distinction between the prominent in-
stances representing various classes. A curve that fits in the space between two classes and
maintains maximum distances from each class point and SVM can be seen [41,42].

3.8.2. Artificial Neural Networks (ANN)

An artificial neural network (ANN) is a well-known ML technique based on the
biological neural network found in the human brain. For example, feedforward neural
networks are a typical form of ANN. Once the inputs from neurons are processed in
the previous layer, it yields the weight values of each artificial neuron to the proceeding
layer. Note that the backpropagation algorithm is the most extensively utilised multi-layer
perceptron (MLP) training technique. To reduce inaccuracy, the weights between neurons
are altered. Hence, when it comes to learning patterns, this model performs excellently. It
can quickly adjust to new data values, but it might be sluggish to converge and runs the
risk of a local optimum [43,44].

3.8.3. Naive Bayes

The Naive Bayes technique is a basic probability classifier that calculates probabilities
by counting the number of different value and frequency combinations in a dataset. The
technique focuses on Bayes’ theorem and assumes that all variables are unaffected by the
class variable’s value. Since this conditional independence assumption is hardly valid in
real-world applications, it is labelled Naive. Nevertheless, the algorithm learns swiftly in
various controlled classification situations [45].

3.8.4. k-Nearest Neighbour (KNN)

Fix and Hodges invented the supervised k-nearest neighbour (KNN) classification tech-
nique in 1951 [46], which categorises a data point depending on the class of its neighbours.
Moreover, the classification findings are provided depending on the nearest neighbour’s
k-value, which was set to 1. Here, the closest k-samples from the training set are cho-
sen to categorise the new sample depending on its attribute vector. As a result, the new
vector is directed at it via examining the classes into which the candidate’s samples are
categorised [47].

3.8.5. Random Forest (RF)

The random forest (RF) classifier comprises numerous decision trees [48], where every
node in the tree contains a set of training cases and a predictor. At each attribute split,
a random selection of features is chosen depending on the bagging approach. The trees
continue to grow until they attain a certain depth, where a class voting system is established
when a large number of trees have been generated [47].

4. Results and Discussion

The SIPaKMeD (multi-cell) dataset was utilised to test the efficiency of our suggested
method. There was a total of 996 images, with 4049 cells cropped. These cells were
categorised into five classes: class 1, superficial-intermediate cells; class 2, parabasal cells;
class 3, metaplastic cells; class 4, dyskeratotic cells; and class 5, koilocytotic cells. After
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processing the images using the convolutional neural network (CNN) architectures, deep
features were extracted from global pooling layers.

4.1. Shuffle Net Features

Utilising the extracted features from the global pooling layer, different classifiers were
used to classify the images into five classes, including support vector machine (SVM),
random forest (RF), k-nearest neighbour (KNN), Naive Bayes, and artificial neural network
(ANN). At the same time, we utilised 70% of the data as training and 30% as testing.
Figure 6 illustrates the confusion matrices result of classifiers, where the test accuracy
reaches 98.9%, 96.5%, 97.3%, 89.7%, and 98.7%, respectively, and the training accuracy
reaches 100% for all the different classifiers.
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Figure 6. Confusion matrix with respect to Shuffle Net features for different ML classifiers. (a) SVM,
(b) RF, (c) KNN, (d) Naive Bays, (e) ANN.
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In Figure 6a, the diagonal represents the correctly classified observations, whereas the
off-diagonal cells indicate incorrectly classified observations. Note that the column on the
far right of the plot shows the precision or positive predictive value (PPV). The row at the
bottom of the plot refers to the recall or true positive rate (TPR) or sensitivity. Meanwhile,
the cell in the bottom right of the plot shows the overall accuracy. The overall accuracy here
is 98.9%, and metaplastic benign cells obtain the highest sensitivity and precision of 100%.

The same Shuffle Net features are fed to the RF classifier. The overall accuracy reaches
96.5%, and parabasal malignant cells reach the highest PPV, which is 100%. However,
dyskeratotic normal cells obtain the highest sensitivity, which reaches 97.8%, as shown in
Figure 6b.

The accuracy of the hybrid model between Shuffle Net features and KNN does not
exceed 97.3%. Meanwhile, the highest precision is in parabasal malignant cells, and the
highest recall is in superficial malignant cells, which is represented in Figure 6c.

Naive Bayes is exploited to classify five cells whose highest accuracy does not exceed
89.7%, and the best sensitivity is obtained by metaplastic benign cells, reaching 95.2%. The
parabasal PPV is 99.5%. This is clearly shown in Figure 6d.

An ANN was used in this study and was fed with Shuffle Net features to obtain the
second highest accuracy, reaching 98.7%. Dyskeratotic cells have the highest sensitivity,
and parabasal cells the highest precision. This is shown in Figure 6e.

Previous confusion matrices have shown that the SVM has the highest accuracy for
all five classes. Other than that, numerous cervical cell classification models have been
developed in the literature using the same datasets. However, this study differs from
previous ones in that it focuses on handcrafted features, such as shape, texture, and colour,
to classify Pap smear images into five classes.

4.2. Novel Cervical Net Features

The proposed network was utilised to extract features from the global average pooling
layer, in which the number of extracted features was 1024 graphical features. These features
were fed to various machine learning (ML) classifier models to obtain the best model using
the novel features. Furthermore, the time taken to extract the features for all test images
did not exceed 60 s. The corresponding confusion matrices clarify the test phase for each
classifier using novel Cervical Net features.

An SVM was fed with 1024 features to discriminate between various classes. The
overall accuracy reached 96%, with higher sensitivity for parabasal normal cells and high
precision for parabasal malignant cells. The lowest sensitivity is appeared in malignant
cells, namely, dyskeratotic and koilocytotic malignant cells, and it is found in the cells that
are very similar in shape and colour, as well. Moreover, the same features were used to
design an RF classifier, and the results are clearly shown in Figure 7a. The overall accuracy
for the whole system does not exceed 94.2%. The sensitivity of the malignant cells is the
lowest in the case of the SVM and the highest in normal cells. Therefore, investigating other
methods to enhance the classification process is necessary to discriminate between various
classes, either normal or abnormal.

The KNN classifier was utilised in this study for testing its performance in distinguish-
ing between five classes using the extracted features from Cervical Net. Figure 7b shows
that the overall test accuracy is 93.7%. The highest sensitivity was obtained by superficial
normal classes. On the other hand, the lowest sensitivity appears in the koilocytotic abnor-
mal class. The highest precision appears in the parabasal normal class, and the lowest PPV
is in the koilocytotic abnormal cell. As shown in the KNN confusion matrix, the koilocytotic
cell has the lowest TPR and precision.
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Figure 7. Confusion matrix with respect to Cervical Net features for different ML classifiers. (a) SVM,
(b) RF, (c) KNN, (d) Naive Bays, (e) ANN.
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In Figure 7, the green color indicates to the correctly classified cells. Furthermore, the
red color represents the misclassified cases.

The lowest accuracy and sensitivity, and even precision, are obtained using the Naive
Bayes classifier, in which the accuracy does not exceed 85%. The sensitivity is poor in all
classes, as well as the precision. Figure 7c clarifies the confusion matrix generated using
test features with the lowest sensitivity appearing among malignant cells. On top of that,
the precision of malignant cells is also low.

An ANN was used in this paper to evaluate the efficiency of the extracted features
from the global average pooling from Cervical Net for classifying the five classes. The
highest accuracy obtained here does not exceed 90.4% for all classes. Figure 7d describes
the test confusion matrix, showing that the two abnormal classes have the lowest sensitivity
and PPV.

Utilising the extracted features from Cervical Net shows that the SVM has the highest
accuracy for all five classes and behaves the best among all classifiers.

4.3. Feature Fusion (CCA)

Feature fusion is a technique used for combining features from various structures,
which strengthens the capability of the designed classifier to discriminate between different
classes. The extracted features from the global average pooling layer are reduced to
544 features using the principal component analysis (PCA) algorithm to find the most
significant features and then combine the resultant descriptors with the graphical features
extracted from the global average pooling layer in Shuffle Net. Note that the total number
of features after fusion is 544. These features are used to design different ML classifiers.
Figure 8 illustrate the confusion matrices for the most known classifiers (SVM, RF, KNN,
NB, ANN). Figure 8a shows the maximum accuracy obtained using the SVM'’s fusion
features, 99.1%. The sensitivity for all classes is elevated to almost 100% for all classes,
which helps clinicians in diagnosing even abnormal classes.

The same features are used to design the RF classifier, and the overall accuracy is
94.7%. The achieved accuracy is higher using the fusion features than the DL descriptors
alone. Figure 8b shows that the sensitivity and precision for abnormal classes are enhanced.

The maximum accuracy obtained using fusion features and the KNN classifier is
91.1%, as shown in Figure 8c. Nevertheless, the sensitivity in the normal superficial class is
the lowest among all cell types, and abnormal koilocytotic cells have the lowest precision
among all classes.

The same procedure is applied to design the Naive Bayes classifier, and the overall
accuracy for the test phase is 93.3%. Although the accuracy is not high, it is better than using
DL features solely. Figure 8d shows that the highest recall appears in metaplastic benign
cells, which reaches 95.5%, and the highest PPV value appears in koilocytotic abnormal
cells. However, the TPR for all abnormal and normal classes exceeds 90%, and the precision
is also higher for abnormal and normal classes.

An ANN classifier was designed with the proposed fusion features, and the accuracy
was enhanced to 94.9%, with the best precision obtained is in parabasal normal cells almost
100%. The sensitivity is the best for normal classes discrimination. Note that the sensitivity
for all classes exceeds 90%, as shown in Figure Se.

Figure 9 illustrates the accuracies of all the ML classifiers using various scenarios (Shuf-
fle Net features only, novel Cervical Net features only, and the feature fusion from Shuffle
Net and Cervical Net). The highest accuracy is obtained by the SVM with feature fusion.
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Figure 8. Confusion matrix with respect to CCA features for different ML classifiers. (a) SVM, (b) RF,
(c) KNN, (d) Naive Bays, (e) ANN.
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Figure 9. Comparison between various scenarios.

When the proposed method is compared with all previous studies, the obtained results
are significant because 99.1% is the highest accuracy achieved using the same dataset. This
accuracy was obtained using the CCA method with an SVM classifier. Even though the
literature has focused on traditional methods, this study proposed a new structure and
utilised the existing method to enhance the resultant accuracy, sensitivity, and precision
for all classes. Moreover, the proposed method is fast and accurate. The time needed
for testing one new image does not exceed milliseconds, which is acceptable in medical
applications, and the proposed structure is simple, unique, and accurate. Table 3 and
Figure 10 summarise the results for all the methods.

Table 3. The results obtained for all proposed methods.

Shuffle Net Cervical Net Feature Fusion (CCA)

SVM
RF
KNN
Naive Bayes
ANN

98.90%
96.70%
97.40%
90.20%
98.60%

96.00%
94.20%
93.70%
84.30%
90.40%

99.10%
94.70%
91.10%
93.30%
94.90%
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Figure 10. The proposed method with the highest accuracy that has been obtained.
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This method is now compared with previous studies. The proposed method is distin-
guished from literature due to its simplicity beside to exploiting new features to obtain the
highest accuracy for the SIPaKMeD dataset for five classes. Table 4 summarises the results
of all previous studies.

Table 4. Comparison of the proposed method with previous studies.

Study Method Dataset Classes Accuracy
Mbaga et al. [11] SVM Herlev dataset 7 classes 92.96%
Win et al. [12] SVM, KNN, boostefi trees., bagged SIPaKMeD dataset 2 classes 98.270/0
trees, and major voting 5 classes 94.09%
Plissiti et al. [13] MLP and SVM SIPaKMeD dataset 5 classes 95.35%
Basak et al. [14] feature selection and DL SIPaKMeD dataset 5 classes 97.87%
Park et al. [15] ResNet-50 and SVM Cervicography images 2 classes 82.00%
Tripathi et al. [16] ResNet-152 SIPaKMeD dataset 5 classes 94.89%

Al Mubarak et al. [17] Fusion based and CNN 4 classes 80.72%
Alquran et al. [19] DL and cascading SVM Herlev dataset 7 classes Up to 92%
Dhawan et al. [20] InceptionV3 Kaggle dataset 3 classes 96.10%

Huang et al. [21] ResNet-50V2 and DenseNet-121 Tissue biopsy image dataset 4 classes 95.33%

Mulmule and MLP with three kernels and SVM Benchmark database 97.14%
Kanphade [22]

96% for sensitivity
Nikookar et al. [23] Artificial intelligence Digital colposcopy dataset 2 classes and 94%
for specificity

Yaman and SIPaKMeD 98.26%

155 Tuncer [24] SVM Mendeley 2 classes 99.47%

This study Cervical Net and feature fusion SIPaKMeD 5 classes 99.1%

with ML classifiers

The highest accuracy obtained for the same dataset is given in [14]. Nevertheless, this
study achieved the highest accuracy in the literature and proposed a novel DL structure that
can extract a new feature. Feature engineering is employed here to find the most significant
features and combine them with existing features from the pre-trained DL structure.

5. Conclusions

Cervical cancer is the second most frequent cancer among women globally, with a
60% mortality rate. Cervical cancer has no outward symptoms and a long latent period.
Therefore, early identification via frequent examinations is critical to counter the high death
rate and necessitates using automation in cervical cancer detection. This paper proposed an
automated system for cervical cancer using a novel deep learning (DL) structure to extract
the features and find the most significant ones. Subsequently, it fused these features with
existing pre-trained structures’ graphical descriptors. We suggested a system comprising six
steps: image acquisition, image enhancement, feature extraction, feature selection, feature
fusion, and classification. This system reached the highest accuracy for five classes at
99.1% in the support vector machine (SVM) classifier after selecting the 544 most significant
features from the novel Cervical Net and combining them with 544 from Shuffle Net.
The key benefit of our technique is its improved prediction performance in separating
classes of Pap smear images and showing better classification accuracy. Furthermore, the
obtained result is the best among all previous studies, with the largest dataset for single
cells. To summarise, a novel DL structure with modifications to the extracted features can
outperform existing machine learning (ML) models when detecting cervical cancer from
cervicography images.

The presented study can be applied in medical fields because it is built based on a
huge dataset, making the results more reliable and confidential. Furthermore, this method
combines deep learning features and machine learning classifiers, making it easy, fast,
and reliable.



Bioengineering 2022, 9, 578 18 of 20

Author Contributions: Conceptualization, H.A. and M.A.; methodology, H.A.; validation, W.A.M.
and R.A.A.; formal analysis, W.A.M.; investigation, M.A.; resources, R.A.A.; writing—original draft
preparation, H.A. and M.A.; writing—review and editing, H.A. and W.A.M.; visualisation, M.A.;
supervision, H.A.; project administration, W.A.M. and H.A.; funding acquisition, W.A.M. and A.R.I.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Higher Education Malaysia under the Fun-
damental Research Grant Scheme (FRGS/1/2021/SKKO0/UNIMAP/02/1) and Universiti Teknologi
PETRONAS.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset analysed during the current study was derived from
the SIPaKMeD database, which consists of 4049 manually isolated pap smear cell images. This
dataset has been publicly available online since 2018. It is available on the corresponding website:
https:/ /www.cs.uoi.gr/~marina/sipakmed.html (accessed on 15 March 2022).

Acknowledgments: Thanks to the Ministry of Higher Education Malaysia under the Fundamental
Research Grant Scheme (FRGS/1/2021/SKK0/UNIMAP/02/1). The authors thank the authors of the
dataset for making it available online, and they would also like to thank the anonymous reviewers
for their contribution to enhancing this paper.

Conflicts of Interest: The authors declare that they have no conflict of interest to report regarding

the present study.

References

1.  World Health Organization. WHO Cancer Regional Profile 2020; International Agency for Research on Cancer: Lyon, France, 2020;
pp- 1-2.

2. Sung, H; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN
Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer |. Clin. 2021, 71, 209-249. [CrossRef]
[PubMed]

3.  Ferlay, ].; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Pifieros, M.; Znaor, A.; Bray, F. Estimating the global cancer
incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941-1953. [CrossRef] [PubMed]

4.  Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer ]. Clin. 2021, 71, 7-33. [CrossRef]

5. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer ]. Clin. 2020, 70, 7-30. [CrossRef]

6. Mustafa, W.A.; Halim, A.; Nasrudin, M.W.; Rahman, K.S.A. Cervical cancer situation in Malaysia: A systematic literature review.
Biocell 2022, 46, 367-381. [CrossRef]

7. Nahrawi, N.; Mustafa, W.A.; Kanafiah, S.N.A.M. Knowledge of Human Papillomavirus ( HPV ) and Cervical Cancer among
Malaysia Residents: A Review. Sains Malays. 2020, 49, 1687-1695. [CrossRef]

8. William, W.; Ware, A.; Basaza-Ejiri, A.H.; Obungoloch, J. A pap-smear analysis tool (PAT) for detection of cervical cancer from
pap-smear images. Biomed. Eng. Online 2019, 18, 16. [CrossRef]

9. Nkwabong, E.; Badjan, I.L.B.; Sando, Z. Pap smear accuracy for the diagnosis of cervical precancerous lesions. Trop. Doct. 2019,
49, 34-39. [CrossRef]

10. Mustafa, W.A,; Halim, A.; Jamlos, M.A.; Idrus, Z.S.S. A Review: Pap Smear Analysis Based on Image Processing Approach.
J. Phys. Conf. Ser. 2020, 1529, 022080. [CrossRef]

11. Mustafa, W.A,; Halim, A.; Rahman, K.S.A. A Narrative Review: Classification of Pap Smear Cell Image for Cervical Cancer
Diagnosis. Oncologie 2020, 22, 53-63. [CrossRef]

12.  Varalakshmi, P.; Lakshmi, A.A.; Swetha, R.; Rahema, M.A. A Comparative Analysis of Machine and Deep Learning Models for
Cervical Cancer Classification. In Proceedings of the 2021 International Conference on System, Computation, Automation and
Networking (ICSCAN), Puducherry, India, 30-31 July 2021. [CrossRef]

13. Mbaga, A.H.; ZhiJun, P. Pap Smear Images Classification for Early Detection of Cervical Cancer. Int. ]. Comput. Appl. 2015, 118,
10-16. [CrossRef]

14.  Win, K.P; Kitjaidure, Y.; Hamamoto, K.; Aung, T.M. Computer-assisted screening for cervical cancer using digital image
processing of pap smear images. Appl. Sci. 2020, 10, 1800. [CrossRef]

15.  Plissiti, M.E.; Dimitrakopoulos, P,; Sfikas, G.; Nikou, C.; Krikoni, O.; Charchanti, A. Sipakmed: A New Dataset for Feature and
Image Based Classification of Normal and Pathological Cervical Cells in Pap Smear Images. In Proceedings of the International
Conference on Image Processing, ICIP, Athens, Greece, 7-10 October 2018; pp. 3144-3148. [CrossRef]

16. Basak, H.; Kundu, R.; Chakraborty, S.; Das, N. Cervical Cytology Classification Using PCA and GWO Enhanced Deep Features

Selection. SN Comput. Sci. 2021, 2, 369. [CrossRef]


https://www.cs.uoi.gr/~marina/sipakmed.html
http://doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/pubmed/33538338
http://doi.org/10.1002/ijc.31937
http://www.ncbi.nlm.nih.gov/pubmed/30350310
http://doi.org/10.3322/caac.21654
http://doi.org/10.3322/caac.21590
http://doi.org/10.32604/biocell.2022.016814
http://doi.org/10.17576/jsm-2020-4907-19
http://doi.org/10.1186/s12938-019-0634-5
http://doi.org/10.1177/0049475518798532
http://doi.org/10.1088/1742-6596/1529/2/022080
http://doi.org/10.32604/oncologie.2020.013660
http://doi.org/10.1109/ICSCAN53069.2021.9526464
http://doi.org/10.5120/20756-3159
http://doi.org/10.3390/app10051800
http://doi.org/10.1109/ICIP.2018.8451588
http://doi.org/10.1007/s42979-021-00741-2

Bioengineering 2022, 9, 578 19 of 20

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

41.

42.

43.
44.

Park, Y.R,; Kim, YJ.; Ju, W.; Nam, K.; Kim, S.; Kim, K.G. Comparison of machine and deep learning for the classification of cervical
cancer based on cervicography images. Sci. Rep. 2021, 11, 16143. [CrossRef] [PubMed]

Tripathi, A.; Arora, A.; Bhan, A. Classification of cervical cancer using Deep Learning Algorithm. In Proceedings of the
5th International Conference on Intelligent Computing and Control Systems, ICICCS 2021, Madurai, India, 6-8 May 2021;
pp. 1210-1218. [CrossRef]

AlMubarak, H.A ; Stanley, J.; Guo, P; Long, R.; Antani, S.; Thoma, G.; Zuna, R.; Frazier, S.; Stoecker, W. A hybrid deep learning
and handcrafted feature approach for cervical cancer digital histology image classification. Int. |. Healthc. Inf. Syst. Inform. 2019,
14, 66-87. [CrossRef]

Alyafeai, Z.; Ghouti, L. A fully-automated deep learning pipeline for cervical cancer classification. Expert Syst. Appl. 2020, 141,
112951. [CrossRef]

Alquran, H.; Mustafa, W.A.; Qasmieh, I.A.; Yacob, Y.M.; Alsalatie, M.; Al-Issa, Y.; Alqudah, A.M. Cervical Cancer Classification
Using Combined Machine Learning and Deep Learning Approach. Comput. Mater. Contin. 2022, 72, 5117-5134. [CrossRef]
Dhawan, S.; Singh, K.; Arora, M. Cervix image classification for prognosis of cervical cancer using deep neural network with
transfer learning. EAI Endorsed Trans. Pervasive Health Technol. 2021, 7, e5. [CrossRef]

Huang, P,; Tan, X,; Chen, C.; Lv, X,; Li, Y. AF-SENet: Classification of cancer in cervical tissue pathological images based on fusing
deep convolution features. Sensors 2021, 21, 122. [CrossRef]

Mulmule, P.V.; Kanphade, R.D. Supervised classification approach for cervical cancer detection using Pap smear images. Int. .
Med. Eng. Inform. 2021, 1, 1. [CrossRef]

Nikookar, E.; Naderi, E.; Rahnavard, A. Cervical cancer prediction by merging features of different colposcopic images and using
ensemble classifier. J. Med. Signals Sens. 2021, 11, 67-78. [CrossRef] [PubMed]

Yaman, O.; Tuncer, T. Exemplar pyramid deep feature extraction based cervical cancer image classification model using pap-smear
images. Biomed. Signal Process. Control 2022, 73, 103428. [CrossRef]

Coppola, F.; Faggioni, L.; Gabelloni, M.; De Vietro, F.; Mendola, V.; Cattabriga, A.; Cocozza, M.A.; Vara, G.; Piccinino, A.; Lo
Monaco, S.; et al. Human, All Too Human? An All-Around Appraisal of the ‘Artificial Intelligence Revolution” in Medical
Imaging. Front. Psychol. 2021, 12, 710982. [CrossRef] [PubMed]

Wang, R.; Lei, T.; Cui, R.; Zhang, B.; Meng, H.; Nandi, A K. Medical image segmentation using deep learning: A survey. IET
Image Process. 2022, 16, 1243-1267. [CrossRef]

Erickson, B.].; Korfiatis, P.; Akkus, Z.; Kline, T.L. Machine learning for medical imaging. Radiographics 2017, 37, 505-515. [CrossRef]
[PubMed]

Mustafa, W.A.; Sam, S.; Jamlos, M. A.; Khairunizam, W. Effect of different filtering techniques on medical and document image.
Lect. Notes Electr. Eng. 2021, 666, 727-736. [CrossRef]

Alqudah, A.; Alqudah, A.M.; Alquran, H.; Al-zoubi, H.R.; Al-qodah, M.; Al-khassaweneh, M.A. Recognition of handwritten
arabic and hindi numerals using convolutional neural networks. Appl. Sci. 2021, 11, 1573. [CrossRef]

Alsharif, R.; Al-Issa, Y.; Alqudah, A.M.; Qasmieh, I.A.; Mustafa, W.A.; Alquran, H. Pneumonianet: Automated detection and
classification of pediatric pneumonia using chest X-ray images and cnn approach. Electronics 2021, 10, 2949. [CrossRef]
Alawneh, K.; Alquran, H.; Alsalatie, M.; Mustafa, W.A.; Al-Issa, Y.; Alqudah, A.; Badarneh, A. LiverNet: Diagnosis of Liver
Tumors in Human CT Images. Appl. Sci. 2022, 12, 5501. [CrossRef]

Liu, H.; Yao, D.; Yang, J.; Li, X. Lightweight convolutional neural network and its application in rolling bearing fault diagnosis
under variable working conditions. Sensors 2019, 19, 4827. [CrossRef]

Brownlee, J. A Gentle Introduction to Pooling Layers for Convolutional Neural Networks. Mach. Learn. Mastery 2019, 22, 1-16.
Basak, H.; Kundu, R. Comparative Study of Maturation Profiles of Neural Cells in Different Species with the Help of Computer
Vision and Deep Learning. Commun. Comput. Inf. Sci. 2021, 1365, 352-366. [CrossRef]

Basak, H.; Ghosal, S.; Sarkar, M.; Das, M.; Chattopadhyay, S. Monocular Depth Estimation Using Encoder-Decoder Architecture
and Transfer Learning from Single RGB Image. In Proceedings of the IEEE 7th Uttar Pradesh Section International Conference on
Electrical, Electronics and Computer Engineering (UPCON), Prayagraj, India, 27-29 November 2020. [CrossRef]

Wang, Z.; Wang, L.; Huang, H. Sparse additive discriminant canonical correlation analysis for multiple features fusion. Neurocom-
puting 2021, 463, 185-197. [CrossRef]

Shi, J.; Chen, C,; Liu, H.; Wang, Y.; Shu, M.; Zhu, Q. Automated Atrial Fibrillation Detection Based on Feature Fusion Using
Discriminant Canonical Correlation Analysis. Comput. Math. Methods Med. 2021, 2021, 6691177. [CrossRef] [PubMed]

Zhang, K; Li, Y,; Wang, ].; Wang, Z.; Li, X. Feature fusion for multimodal emotion recognition based on deep canonical correlation
analysis. IEEE Signal Process. Lett. 2021, 28, 1898-1902. [CrossRef]

Pisner, D.A.; Schnyer, D.M. Support vector machine. In Machine Learning: Methods and Applications to Brain Disorders; Academic
Press: Cambridge, MA, USA, 2019; pp. 101-121. [CrossRef]

Alquran, H.; Qasmieh, .A.; Alqudah, A.M.; Alhammouri, S.; Alawneh, E.; Abughazaleh, A.; Hasayen, F. The melanoma skin
cancer detection and classification using support vector machine. In Proceedings of the 2017 IEEE Jordan Conference on Applied
Electrical Engineering and Computing Technologies, AEECT 2017, Aqaba, Jordan, 11-13 October 2017; pp. 1-5. [CrossRef]
Haykin, S. Neural Networks and Learning Machines, 3rd ed.; Prentice Hall: Hoboken, NJ, USA, 2009.

Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533-536.
[CrossRef]


http://doi.org/10.1038/s41598-021-95748-3
http://www.ncbi.nlm.nih.gov/pubmed/34373589
http://doi.org/10.1109/ICICCS51141.2021.9432382
http://doi.org/10.4018/IJHISI.2019040105
http://doi.org/10.1016/j.eswa.2019.112951
http://doi.org/10.32604/cmc.2022.025692
http://doi.org/10.4108/eai.12-4-2021.169183
http://doi.org/10.3390/s21010122
http://doi.org/10.1504/IJMEI.2022.123930
http://doi.org/10.4103/jmss.JMSS_16_20
http://www.ncbi.nlm.nih.gov/pubmed/34268095
http://doi.org/10.1016/j.bspc.2021.103428
http://doi.org/10.3389/fpsyg.2021.710982
http://www.ncbi.nlm.nih.gov/pubmed/34650476
http://doi.org/10.1049/ipr2.12419
http://doi.org/10.1148/rg.2017160130
http://www.ncbi.nlm.nih.gov/pubmed/28212054
http://doi.org/10.1007/978-981-15-5281-6_52
http://doi.org/10.3390/app11041573
http://doi.org/10.3390/electronics10232949
http://doi.org/10.3390/app12115501
http://doi.org/10.3390/s19224827
http://doi.org/10.1007/978-981-16-0425-6_26
http://doi.org/10.1109/UPCON50219.2020.9376365
http://doi.org/10.1016/j.neucom.2021.08.013
http://doi.org/10.1155/2021/6691177
http://www.ncbi.nlm.nih.gov/pubmed/33897806
http://doi.org/10.1109/LSP.2021.3112314
http://doi.org/10.1016/B978-0-12-815739-8.00006-7
http://doi.org/10.1109/AEECT.2017.8257738
http://doi.org/10.1038/323533a0

Bioengineering 2022, 9, 578 20 of 20

45.
46.

47.

48.

Chen, S.; Webb, G.I; Liu, L.; Ma, X. A novel selective naive Bayes algorithm. Knowl.-Based Syst. 2020, 192, 105361. [CrossRef]
Fix, E.; Hodges, ].L. Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties. Int. Stat. Rev. Rev. Int. Stat.
1989, 57, 238. [CrossRef]

Alquran, H.; Alsleti, M.; Alsharif, R.; Qasmieh, L.A.; Alqudah, A.M.; Harun, N.H.B. Employing texture features of chest x-ray
images and machine learning in covid-19 detection and classification. Mendel 2021, 27, 9-17. [CrossRef]

Sun, G; Li, S,; Cao, Y.; Lang, F. Cervical cancer diagnosis based on random forest. Int. ]. Perform. Eng. 2017, 13, 446-457. [CrossRef]


http://doi.org/10.1016/j.knosys.2019.105361
http://doi.org/10.2307/1403797
http://doi.org/10.13164/mendel.2021.1.009
http://doi.org/10.23940/ijpe.17.04.p12.446457

	Introduction 
	Review of Study 
	Materials and Methods 
	Image Acquisition 
	Image Enhancement 
	Cervical Net 
	Pre-Trained Shuffle Net 
	Deep Features Extraction 
	Feature Selection 
	Feature Fusion 
	Machine Learning Classifiers 
	Support Vector Machine (SVM) 
	Artificial Neural Networks (ANN) 
	Naive Bayes 
	k-Nearest Neighbour (KNN) 
	Random Forest (RF) 


	Results and Discussion 
	Shuffle Net Features 
	Novel Cervical Net Features 
	Feature Fusion (CCA) 

	Conclusions 
	References

