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Abstract: Adipose tissue is involved in many physiological processes. Therefore, the need for adipose
tissue-like analogues either for soft tissue reconstruction or as in vitro testing platforms is undeniable.
In this work, we explored the natural features of gellan gum (GG) to recreate injectable stable
adipose-like microtissues. GG hydrogel particles with different percentages of polymer (0.5%,
0.75%, 1.25%) were developed and the effect of obtained mechanical properties over the ability of
hASCs to differentiate towards the adipogenic lineage was evaluated based on the expression of
the early (PPARγ) and late (FABP4) adipogenic markers, and on lipids formation and accumulation.
Constructs were cultured in adipogenic induction medium up to 21 days or for six days in induction
plus nine days in maintenance media. Overall, no significant differences were observed in terms
of hASCs adipogenic differentiation within the range of Young’s moduli between 2.7 and 12.9 kPa.
The long-term (up to six weeks) stability of the developed constructs supported its application in soft
tissue reconstruction. Moreover, their ability to function as adipose-like microtissue models for drug
screening was demonstrated by confirming its sensitivity to TNFα and ROCK inhibitor, respectively
involved in the repression and induction of the adipogenic differentiation.

Keywords: adipose tissue engineering; adipogenic differentiation; adipose-like microtissues; gellan
gum; hydrogels

1. Introduction

Adipose tissue is no longer considered solely an energy storage tissue. It is a complex tissue
involved in several biological processes including the endocrine/paracrine regulation of energy
metabolism and thermoregulation, that also provides key structural protection and support to major
organs [1,2]. Increasing adipose tissue loss associated with various pathological conditions, namely
oncologic resection, trauma, and congenital abnormalities, has been supporting the need for improved
strategies for soft tissue reconstruction, currently limited due to high resorption rates [3]. Moreover,
endocrine and metabolic diseases such as diabetes and obesity, hallmarks of developed societies,
require additional knowledge to be delivered for further improving the targeted therapeutics and
enhanced success rates. Considering this, new strategies to generate adipose-like tissues that can be
either used in soft tissue reconstruction or as reliable in vitro models are in an undeniable demand.
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The combination of adult stem cells from various sources within 3D polymeric structures has
been one of the most approached to generate 3D adipose-like tissues. The majority of these works
have been using 3T3-L1 [4–7], a murine pre-adipocyte cell line that has limited representation of
human tissue physiology. In alternative, adult stem cells have been differentiated into the adipogenic
lineage in a range of natural/synthetic materials [8–11]. Considerations, such as the mimicking of
the dimensions of the fat lobules at the microscale [8] and of adipose tissue mechanical properties,
have been addressed from the material’s perspective at the initial stage of development. While these
have been shown to correlate with the achieved degree of differentiation, it is also known that to be
reliable and functional, the generated constructs have to possess appropriate stability. Factors such as
the type of material [10,12,13] and respective degradation rate, in vitro culture conditions [11,14] and
(pre)-vascularization [8,11] are among those known to influence it however, little is known about the
requirements to achieve ideal stability.

Gellan gum (GG) is a natural polymer that has been proposed for various tissue engineering and
regenerative medicine applications [15–18]. Because GG is thermosensitive and reacts with monovalent
or divalent cations, it forms hydrogels by temperature change and by ionic crosslinking. Thus,
the properties of GG hydrogels are highly tunable by changing the polymer and/or crosslinking
concentration, or even crosslinking type and conditions. Moreover, GG is not susceptive to enzymatic
action which makes GG hydrogels degradation dependent on hydrolytic reactions. Cell adhesiveness,
except when combined with peptide sequences [19,20] or processed in particular modes [21,22], is not
a feature naturally depicted by GG hydrogels.

Considering that along adipogenic differentiation, cells suffer continuous alterations in
integrin expression and that disruption of the extracellular matrix (ECM)-cell contact is fulcra [1],
we hypothesized that natural GG hydrogels features, like reduced cell-ECM interactions mimicking
and degradation rate, would potentiate adipogenic differentiation of human adipose derived stem cells
(hASCs). Moreover, by tuning the physic-chemical and mechanical properties of GG hydrogels we
could add to the generation of stable GG-based adipose-like microtissues. Hence, GG hydrogel particles
with different percentages of polymer were developed and the effect of obtained mechanical properties
over the ability of hASCs to differentiate towards the adipogenic lineage was evaluated. Degradability
was also assessed to assure the stability of the developed constructs, critical for its application in soft
tissue reconstruction. Moreover, their ability to function as adipose-like microtissue models for drug
screening was analysed by testing its sensitivity to molecules involved in the induction/repression of
the adipogenic differentiation (Scheme 1).
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Scheme 1. Schematic representation of the development of adipose-like microtissues and potential
applications. Human adipose derived stem cells (hASCs) are encapsulated in gellan gum-based hydrogel
particles with different percentages of polymer, and differentiated into the adipogenic lineage. The obtained
adipose-like microtissues can be used for adipose tissue reconstruction of defects from oncologic resection,
trauma and congenital abnormalities, or as 3D in vitro tissue analogues for drug screening.
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2. Materials and Methods

2.1. Gellan Gum Hydrogel Particles Preparation

Gellan gum (GG) hydrogels were prepared as previously described [21] with some modifications.
Gelzan (Sigma-Aldrich, Saint Louis, MI, USA) was filtered through a sterile filtration system (Techno
Plastic Products AG, Trasadingen, Switzerland), frozen in liquid nitrogen and lyophilized (LyoAlfa
10/15, Telstar, Terrassa, Spain) for three days to obtain sterile, dried and purified material. This was
dissolved in deionized (DI) H2O to attain a final concentration of 0.5%, 0.75%, and 1.25% (w/v).
After complete dissolution of the polymer at 90 ◦C under stirring, the temperature was lowered to
40 ◦C and Alpha Minimum Essential Medium (α-MEM) (Life Technologies, Paisley, UK) was added
and then dispensed into a hydrophobic surface using a syringe/pipette for viscous solutions to produce
spherical hydrogel particles. The size of the particles was given by the dispensed amount (1 to 50 µL).
The injectability was assessed by coupling a 27 G needle in a syringe (1 mL) by loading the particles in
a GG vehicle solution. Images of the particles were acquires using a Stereo Microscope + Lamp (Schott
KL 200, Stemi 1000, Carl Zeiss, Oberkochen, Germany) combined with AxioVision software (version
4.8.2.0, Carl Zeiss, Oberkochen, Germany) which allows to measure hydrogel particles diameter.

2.2. Oscillatory Rheology

The viscoelastic properties were determined using an oscillatory rheometer (MAL1097376,
Kinexus Prot, Malvern, UK). Hydrogels discs (5 mm Ø, 4 mm height) were prepared as previously
described for the particles but using a punctured mould and maintained in complete α-MEM medium
for two days to reach the swelling equilibrium. The discs were loaded in the rheometer between
parallel plates (25 mm in diameter) adjusting the gap to reach a normal force close to 0 N (normal force
maximum is 0.5 N). The storage (G′) and loss (G′ ′) moduli were measured by performing a dynamic
time sweep at a frequency of 10 rad/s, 0.5% strain and at 25 ◦C along time until a plateau was reached.

2.3. Degradation

The degradation of GG hydrogel particles was analysed by determining the mass loss after
incubation with a NaCl (0.154 M) solution at 37 ◦C and stirring (180 rpm) for 42 days. Mass loss was
determined by measuring the weight of GG hydrogels particles before (Wi) and after (Wf), immersion
into the NaCl solution. Maximum mass loss at the end of the incubation time (six weeks) was also
determined by measuring the weight of the dried GG hydrogels particles after freeze-drying at the
final time-point.

Mass loss was calculated according to the following equation:

mass(%) =
Wf−Wi

Wi
× 100

where Wi represents the initial weight of the hydrogel particles and Wf represents the weight of the
hydrogel particles at each time-point or the dried hydrogel particles weight at the last time-point
after freeze-drying.

2.4. Isolation and Characterization of Human Adipose Stem Cells

Human adipose stem cells (hASCs) were isolated as previously described [23] from the
subcutaneous adipose tissue of three donors that underwent liposuction procedures at Hospital
da Prelada (Porto). Samples were collected with the informed consent of the patients and under
a collaboration protocol with 3B’s Research Group, approved by the ethical committees of both
institutions. hASCs were expanded in Alpha Minimum Essential Medium (α-MEM) supplemented
with 10% Foetal Bovine Serum (FBS) (Life Technologies, Bleiswijk, The Netherlands) and 1%
Antibiotic/Antimycotic (ATB) (Life Technologies, Paisley, UK) in a humidified atmosphere with
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5% CO2 at 37 ◦C. The mesenchymal stem cell phenotype of hASCs was confirmed by the expression of
the principal mesenchymal markers (CD90, CD105 and CD73) analysed by flow cytometry and after
differentiation into the adipogenic and osteogenic lineages (Supplemental Material).

2.5. Cell Encapsulation within Gellan Gum Hydrogels Particles

Human adipose stem cells were resuspended in GG solution at concentrations of 3 × 103 cells/µL.
After proper dispersion of the cells within the polymeric solution, hydrogel particles were prepared as
described above. Cell-laden hydrogel particles were incubated in supplemented α-MEM medium in
a humidified atmosphere with 5% CO2 at 37 ◦C.

2.6. Adipogenic Differentiation within Gellan Gum Hydrogels Particles

Adipogenic differentiation of hASCs within gellan gum hydrogel particles was induced as
previously described [24] with some modifications. After culturing cell-laden hydrogel particles
in α-MEM medium for three days, medium was changed to an adipogenic induction medium
(IM) consisting of α-MEM supplemented with 10% FBS, 1% ATB, 34 µM of D-pantothenate
(Sigma-Aldrich, Sintra, Portugal) and 66 µM of biotin (Sigma-Aldrich, Sintra, Portugal), 200 nM
of insulin (Sigma-Aldrich, Sintra, Portugal), 1 µM of dexamethasone (Sigma-Aldrich, Sintra, Portugal),
250 µM of 3-isobutyl-1-methylxanthine (IBMX) (Sigma-Aldrich, Sintra, Portugal), and 5 µM of
troglitazone (Sigma-Aldrich, Sintra, Portugal). Cells were cultured for further 3, 6, 15 and 21 days.
An additional condition was set after days six of induction, by changing the medium to maintenance
medium (MM)—IM without IBMX and troglitazone—and culture the cell-laden hydrogel particles for
a further nine days.

2.7. Incubation with TNF Alpha and ROCK Inhibitor

To assess the influence TNF alpha (inhibitor) and Rho kinases (ROCK) inhibitor (promoter)
on the adipogenic differentiation, 0.5% GG hydrogel particles with hASCs were cultured for
15 days in induction medium supplemented with 0.5 µg/mL of TNFα or 50 µM of ROCK inhibitor.
Control conditions in basal medium and in differentiation medium without the tested molecules
were considered.

2.8. Quantitative Real Time Polymerase Chain Reaction (RT-PCR)

Cell-laden hydrogel particles were collected in 400 µL of Tri-reagent (Sigma-Aldrich, Sintra,
Portugal) and preserved at −80 ◦C until extraction. For RNA extraction, samples were incubated for
5 min at RT, macerated with a tissue grinder (Nippon genetics, Duren, Germany) and subsequently
centrifuged for 5 min at 6000 G. The pellet was discarded and 80 µL of chloroform (Sigma-Aldrich,
Sintra, Portugal) was added to the recovered supernatants. Following an incubation period of 15 min
at RT, samples were centrifuged at 4 ◦C for 20 min at 13,000 rpm. After centrifugation, the aqueous
phase was collected and 200 µL of isopropanol (VWR, Carnaxide, Portugal) were added. Following
a 10 min of incubation period at RT, samples were centrifuged at 4 ◦C for 10 min at 13,000 rpm.
The supernatants were discarded and pellets were washed once with 100% ethanol and twice with
70% ethanol, by centrifugation at 4 ◦C for 5 min at 13,000 rpm. Extracted RNA was kept in 10 µL of
RNAse/DNAse free water (Lonza, Verviers, Belgium).

RNA quantity and purity were assessed using a NanoDrop N-1000 Spectrophotometer (Thermo
Fischer Scientific, Wilmington, DE, USA). Samples with a 260/280 nm ratio between 1.6 and 2.2
were used for cDNA synthesis. Synthesis was performed using a QSCript cDNA SuperMix (Quanta
Biosciences, Gaithersburg, MD, USA) and a Reverse Transcription Polymerase Chain Reaction (RT-PCR)
Mastercycler (Eppendorf, Hamburg, Germany). An initial amount of 200 ng of RNA in RNAse/DNAse
free water was used for a total volume of 20 µL.

FABP4 and PPARγ transcripts were quantified in the cDNA samples using a Quantitative Real
Time Polymerase Chain Reaction (qRT-PCR). The primers were designed using the Primer-BLAST
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tool (NCBI, Bethesda, MD, USA) and synthesized by Eurofins genomics (Ebersberg, Germany) as
listed in Table 1. The Real-Time PCR reaction was done using PerfeCta SYBR Green FastMix (Quanta
Biosciences, Gaithersburg, MD, USA), following manufacturer’s instructions in a Reverse Transcription
Polymerase Chain Reaction Mastercycler (Eppendorf, Hamburg, Germany). FABP4 and PPARγ were
amplified for 45 cycles in a total volume of 20 µL. Each cycle comprised a denaturation step at 95 ◦C
for 10 s, followed by an annealing step at specific temperatures (see Table 1) for 30 s and an extension
step at 72 ◦C for 30 s. Relative gene expression was analysed against GAPDH housekeeping gene.

Table 1. Primers sequences.

Gene Primer Forward (5′–3′) Primer Reverse (5′–3′) Tm (◦C) 1

PPARγ TGGGTGAAACTCTGGGAGAT (20) TGGCATCTCTGTGTCAACCA (20) 57.3
FABP4 AAACTGGTGGTGGAATGCGT (20) GCGAACTTCAGTCCAGGTCA (20) 58.4

GAPDH AGCCTCAAGATCATCAGCAA (20) GTCATGAGTCCTTCCACGAT (20) 56
1Tm—Melting temperature.

2.9. Western Blot

Cell-laden hydrogels were collected in radio-immunoprecipitation assay (RIPA) buffer containing
protease inhibitor (1:100) and Dithiothreitol (DTT) (1:1000), all from Sigma-Aldrich (Sintra, Portugal),
to reduce disulphide bonds and protect proteins from denaturation. Samples were macerated with
a tissue grinder (Nippon genetics, Duren, Germany), left for 30 min in lysis buffer solution and
centrifuged for 20 min at 4 ◦C and 12,000× g. Protein quantification was performed using Bradford
assay kit (Thermo Fisher Scientific, Rockford, IL, USA), according to manufacturer’s instructions.
For Western Blot, 10 µg of each samples were loaded in a 19% SDS polyacrylamide gel (Sigma-Aldrich,
Sintra, Portugal) for electrophoresis and subsequently transferred onto a nitrocellulose membrane (GE
Healthcare, Buckinghamshire, UK). The blot was then incubated in Ponceau solution, and posteriorly
blocked with a 5% milk powder solution for 1 h. The blot was incubated at 4 ◦C overnight with a rabbit
polyclonal FABP4 antibody (1:1000) and with a rabbit polyclonal beta-tubulin antibody (Abcam,
Cambridge, UK) at a dilution of 1:500 (loading control). The bound antibody was detected with
an anti-rabbit alkaline phosphatase secondary antibody (Sigma-Aldrich, Sintra, Portugal) diluted in
a 5% milk powder solution at 1:5000. Bands were visualized using an AP Conjugate Substrate kit
(Biorad, Lisbon, Portugal), followed by scanning with an EPSON Perfection V600 Scanner (EPSON,
Nagano, Japan). Band intensities were quantified using ImageJ software (Version 1.52b, NIH, Baltimore,
MD, USA).

2.10. Immunocytochemistry

Cell-laden hydrogel particles were fixed in 10% v/v of formalin (Bio-Optic, Milano, Italy) for
1 h, incubated with 1% Triton X-100 (Sigma-Aldrich, Sintra, Portugal) for 20 min at 4 ◦C, and with
2.5% w/v of horse serum (HS, Vector Laboratories, Burlingame, CA, USA) for 1 h, respectively for
cell permeabilization and blocking of nonspecific antibody binding. Samples were then incubated
with rabbit anti-human primary antibodies FABP4 (1:100), PPAR gamma (1:25) (Abcam, Cambridge,
UK) diluted in 1% BSA, 0.2% Triton in PBS for 24 h. After washing with PBS, samples were incubated
overnight at 4 ◦C with the secondary antibody Alexa Fluor 488 donkey anti-rabbit (Life Technologies,
Carlsband, CA, USA) at a concentration of 1:500 in 1% HS in PBS. Nuclei were counter-stained with
DAPI (0.02 mg/mL). Cell-laden hydrogel particles were observed using a Leica TCS SP8 confocal
microscope (Leica, Mannheim, Germany) or an AxioImager Z1m fluorescence microscope (Zeiss,
Gottingen, Germany).
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2.11. Nile Red Staining and Quantification

Cell-laden hydrogel particles, previously fixed in 10% formalin, were placed in a diluted solution
of Nile Red (0.05 µg/mL, 1:2000 dilution in PBS) and incubated for 20 min at 4 ◦C. Nuclei were
counter-stained with DAPI (0.02 mg/mL). Lipids were observed using a Leica TCS SP8 confocal
microscope (Leica, Mannheim, Germany) or an AxioImager Z1m fluorescence microscope (Zeiss,
Gottingen, Germany). ImageJ software was used to count the number of Nile Red stained cells in
relation to the total number of cells (DAPI) in 9 random images for each condition.

2.12. Statistical Analysis

GraphPad Prism 7 software (La Jolla, CA, USA) was used to perform statistical analysis.
The results were compared to a control condition corresponding to the samples before induction
of the differentiation. Data was analysed using the Shapiro-Wilk normality test. Data following
a normal distribution was analysed using a two-way ANOVA with Turkey post-test and a one-way
ANOVA with Turkey post-test. Significance was set to * p < 0.05, *** p < 0.001; **** p < 0.0001).
All quantitative data refer to n = 3 and are presented as mean ± standard deviation.

3. Results

3.1. GG Hydrogel Particles Properties

Considering soft-tissue reconstruction and the possibility to inject the adipose tissue-like
microtissues to fill in a defect, GG spherical hydrogel particles of different sizes were produced.
The size of the particles, given by the dispensed amount (from 1 to 50 µL) (Figure 1A), ranged from 700
to 5000 µm in diameter, approximately (Figure 1B). To demonstrate that injection would not interfere
with the integrity of the hydrogel particles, they were loaded in a GG vehicle solution and dispensed
using a syringe (1 mL) coupled to a 27 G needle (Figure 1C). After injection the hydrogel particles kept
the spherical shape and did not disintegrate (Figure 1C,D).
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Figure 1. Production and injectability of gellan gum (GG) hydrogel particles. (A,B) Spherical particles 
with different sizes ranging from 700 to 5000 µm of diameter, approximately are obtained by Figure 1. Production and injectability of gellan gum (GG) hydrogel particles. (A,B) Spherical particles

with different sizes ranging from 700 to 5000 µm of diameter, approximately are obtained by dispensing
different volumes of polymer solution (from 1 to 50 µL). (C) The obtained particles (previously stained
with methylene blue) are loaded in a GG solution (C1) that acts as vehicle to confirm its injectability
through a needle of 27G (C2–C4). (D) The integrity of the particles before (D1) is maintained after
injection (D2).
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To determine if the amount of polymer affected the mechanical properties of the hydrogel particles,
the storage (G′ ′) and loss (G′ ′) moduli were measured (Figure 2A). The storage modulus determined
by the most linear curve in a dynamic time sweep (Figure 2B) was higher for hydrogels with 1.25% of
polymer content, which represents an increase of 17% and 33% in comparison to hydrogels respectively
with 0.75% (p < 0.05) and 0.5% (p < 0.05) of polymer content.

The stability of the prepared GG hydrogel particles in saline solution was analysed based on
the hydrogel particles mass loss up to 42 days (six weeks). After a fast mass loss within the first day,
the profiles of the hydrogel particles kept relatively constant along the six weeks of incubation time
(Figure 2C). When the dry weight of the particles was measures at the end time point, it was possible
to see that the particles did not degrade and that the weight variations did not correspond to loss of
polymeric content (Figure 2C,D).
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Figure 2. Physic-chemical and mechanical properties of gellan gum (GG) hydrogels. (A) Representative
dynamic time sweep of storage (G′) and loss (G′ ′) moduli of GG hydrogels using strain of 0.5%,
frequency of 10 rad/s and at 25 ◦C. (B) Plot of storage (G′) and loss (G′ ′) moduli of GG hydrogels
obtained from the dynamic time sweep (n = 5). (C) Mass loss profile of GG hydrogel particles along
incubation with a saline solution for 42 days (six weeks, n = 5). (D) Plot of maximum mass value after
six weeks. *** p < 0.001 and **** p < 0.0001.

3.2. Assessment of hASCs Differentiation within GG Hydrogel Particles

To evaluate the influence of the physic-chemical and mechanical properties of the different
formulations of GG hydrogel particles on the differentiation of hASCs, the expression of the early and
late adipogenic markers, respectively PPARγ and FABP4, and of the lipid formation and accumulation
were evaluated.

The results obtained from the qPCR analysis for PPARγ (Figure 3A) and FABP4 (Figure 3B)
demonstrated that these genes started to be expressed after six days of culture in induction medium.
The expression of PPARγ increased for higher times of culture in induction medium up to day 15.
The switch to maintenance medium after six days of culture in induction one, did not affect the
expression of PPARγ. In opposition, PPARγ expression within 0.5% GG hydrogel particles significantly
increased (p < 0.05) along the time of culture in induction medium. This tendency seems to be
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also observed within 0.75% and 1.25% GG particles up to day 15, although without significant
differences. The expression of FABP4 in the 0.5% GG hydrogel particles showed the same trend
as PPARγ, significantly increasing (p < 0.05) along the time of culture in induction medium. Moreover,
at day 15 the expression of PPARγ in the 0.5% GG hydrogel particles was significantly higher (p < 0.05)
than in the 1.25% ones. Interestingly, independently of the concentration of the particles, the expression
levels at day six in induction plus nine days in maintenance media were similar to those observed at
day six only in induction medium, and significantly lower than those at day 15 within the 0.25% GG
hydrogel particles.
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Figure 3. Relative expression of (A) PPARγ and (B) FABP4 genes in human adipose-derived stem
cells within gellan gum hydrogel particles with different amounts of polymer (0.5%, 0.75% and 1.25%)
cultured in adipogenic induction medium for 3, 6, 15 and 21 days and for six days plus maintenance
medium for 9 days. * p < 0.05 and ** p < 0.01.

To confirm the gene expression results and the hASCs capacity to differentiate towards adipogenic
lineage within the GG hydrogel particles, the expression of PPARγ (Figure 4A) and FABP4 (Figure 4B)
was evaluated at the protein level by immunocytochemistry. PPARγ expression started at day three
and seemed to increase along the differentiation time (Figure 4A). The expression FABP4 was not
detected until day 15 of culture in induction medium or after 6 days of culture in induction plus nine
days in maintenance media. In comparison to day 15 of induction, it seems that a higher number of
cells is expressing FABP4 at day 21 (Figure 4B). This trend was confirmed by Western blot (Figure 4C),
although the semi-quantitative analysis did not reveal significant differences.

To further confirm the adipogenic phenotype of the cells along the differentiation within the
produced hydrogel particles, the accumulation of neutral intracellular lipids was analysed through
Nile Red staining (Figure 5). These lipids started to be seen at day six of induction medium and
accumulate at higher amounts at longer induction time-points. Moreover, when maintenance medium
was added after the six days of culture in induction medium, the levels of neutral lipids seem to be
similar to those observed after 15 days of culture in induction medium.
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Figure 4. Adipogenic differentiation of human adipose-derived stem cells within gellan gum hydrogel
particles with different amounts of polymer along the culture in adipogenic induction medium and
after being cultured for six days in induction plus nine days in maintenance media. Representative
confocal images of (A) PPARγ and (B) FABP4 expression (green). Cells nuclei were labelled with
DAPI (blue). (C) Representative western Blot analysis of the expression of FABP4. Plotted data was
normalized against beta-tubulin expression that was used as loading control. Scale bar 100 µm.
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Figure 5. Neutral intracellular lipids accumulation in human adipose-derived stem cells-derived
adipocytes within gellan gum hydrogel particles with different amounts of polymer along the culture
in adipogenic induction medium and after being cultured for six days in induction plus nine days in
maintenance media. Representative confocal images of cells stained with nile red (yellow). Nuclei were
labelled with DAPI (blue). Polar cell membrane lipids are stained in red. Scale bar 100 µm.

3.3. Assessment of TNF Alpha and ROCK Inhibitor Effect on Adipogenic Differentiation

In order to prove the responsive behaviour of the proposed systems, the induction medium
was supplemented with TNFα or ROCK inhibitor during the adipogenic differentiation (Figure 6A).
Nile Red staining confirmed that the differentiation process is highly compromised in the presence
of TNF alpha. On the other hand, in the presence of ROCK inhibitor the adipogenic differentiation
occurs as previously observed (Figure 5). Moreover, the obtained results, both in the presence TNF
alpha and ROCK inhibitor in the GG hydrogel particles, compare to those obtained in standard 2D
drug screening culture conditions used as control (Figure 6B).
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Figure 6. Assessment of the influence of TNFα (0.5 µg/mL) and ROCK inhibitor (50 µM) over the
adipogenic differentiation of human adipose-derived stem cells within 0.5% gellan gum hydrogel
particles after 15 days of culture in induction medium. (A) Representative images of nile red staining
(polar cell membrane lipids are stained in red), and respective (B) quantification of the percentage of
stained cells in relation to the total number of cells. Scale bar 50 µm. **** p < 0.0001.

4. Discussion and Conclusions

The development of adipose tissue equivalents has been relying on different strategies that,
despite the promising results, also present some limitations, namely in terms of achieved degree of
differentiation and stability of the constructs. In this work, we intended to tackle these limitations by
exploring the natural features of GG to recreate stable and reliable adipose-like microtissues. Therefore,
we tuned GG hydrogels properties by changing the polymer content generating constructs with
Young’s moduli between 2.7 and 12.9 kPa. Formulations with 0.5% and 0.75% of GG showed a modulus
in the range of the native adipose tissue that varies between 3 and 7 kPa [25–28]. In opposition, hydrogel
formulations with 1.25% of GG have a modulus of approximately 12kPa, in the highest limit reported in
the literature for subcutaneous adipose tissue [28]. The amount of polymer also affected the mass loss
profile of the GG particles in an inverse proportion as expected by our previous results [21], although
the total amount of mass loss occurs within the first day. This is likely to correlate mostly to the
non-polymeric content of GG hydrogel, rather than to the hydrolysis of the polymer. In fact, when the
hydrogels are placed in the saline solution an exchange of ions/water from the culture medium,
in which the hydrogels were prepared, to the saline solution occurs resulting in mass loss within the
first day. This explanation is also consistent with the fact that when the polymeric/non-polymeric
ratio is lower (0.5% GG hydrogel particles), the percentage of lost mass is higher due to the higher
amount of water coming out from the hydrogels to reach an equilibrium state. Moreover, the absence
of hydrolysis and consequently the lack of degradation of the polymer can be confirmed by the dried
mass of the hydrogel particles at the end time point, in which the particles with successively lower
polymeric content seem to gain weight. This is due to the amount of salts, in addition to the polymeric
content that keeps constant, that is kept in the dried structure and that is higher for the formulation
with lower polymeric content in which a higher water loss was observed.

It is also been shown that the mechanical properties of 3D microenvironments influence
adipogenic differentiation although differently depending on the use of adipose tissue
decellularized [29] or biomaterials-based [7] matrices. We confirmed the adipogenic differentiation of
hASCs within the GG hydrogels by assessing the expression profile of early (PPARγ) and late (FABP4)
adipogenic markers in the different formulations and along the time. Although the action mechanism of
PPARγ is not fully understood, PPARγ is a transcriptional factor that is highly expressed in adipocytes
and is a major regulator of adipogenesis through the modulation of other adipogenic-related genes
expression, such as FABP4 [30]. Having this in consideration, the upregulation of the expression of this
gene as the induction period increases confirmed the triggering of the adipogenic differentiation and its
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maintenance in induction medium. While we could expect a downregulation after some time of culture,
the presence of PPARγ agonist troglitazone in the induction medium might in part be responsible
for the observed upregulated expression of PPARγ [31] at latter times. This is also supported by
the fact that the level of upregulation, in the condition using induction and maintenance (without
troglitazone) media, was lower, particularly for the 0.5% GG hydrogel particles, and comparable to
the same time period only in induction medium. The gene expression results showed that FABP4
expression is favoured in hydrogels with lower polymeric content and hence in more compliant
hydrogels, matching native tissue values [25–28], which corroborates with the literature [7,29]. Despite
the trend for FABP4 mRNA expression results, the semi-quantitative analysis of the amount of FABP4
protein did not reveal significant differences, which might be associated to protein regulation at the
posttranscriptional level [32].

Since the success of soft tissue reconstruction approaches is currently limited by the 40–60%
volume retention of autologous adipose tissue, depending on its source [33,34], long-term stability
of adipose-like tissues is crucial [35]. Proposed biomaterial-based approaches have been exploring
several natural polymers such as collagen and alginate, however their degradability might be
too fast. In opposition, GG degradation by hydrolysis, which is associated to long-term stability,
represents an advantage over these materials for adipose tissue reconstruction. As mentioned before,
adipose-like microtissues can be also of great relevance as in vitro models for drug screening or for
unravelling the mechanistic of adipose tissue-associated pathologies. Considering this, we were able
to demonstrate that the adipose-like microtissues that we generated are responsive to TNFα and
Y-27632 (ROCK inhibitor). Y-27632 is a well-known ROCK kinase inhibitors reported as an enhancer of
adipogenesis [36], while TNFα is known as a negative regulator of adipogenesis by preventing the
early induction of PPARγ and C/EBPα expression [37,38]. Therefore we were able to confirm that our
3D constructs respond as expected, as shown by the absence presence of neutral intracellular lipids
accumulation, respectively in the presence of ROCK inhibitor and TNFα. Moreover, the results of our
3D system compare with those obtained in the standard 2D culture conditions confirming the potential
of the developed microtissues to be used as in vitro drug screening platforms.

In conclusion, independently of the mechanical properties of the hydrogels, we developed stable
and injectable GG-based adipose-like microtissues that can be considered for soft tissue reconstruction,
as well as 3D in vitro tissue analogues for drug screening.
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