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Abstract: Sleep disorders, prevalent in the general population, present significant health challenges.
The current diagnostic approach, based on a manual analysis of overnight polysomnograms (PSGs),
is costly and time-consuming. Artificial intelligence has emerged as a promising tool in this context,
offering a more accessible and personalized approach to diagnosis, particularly beneficial for under-
served populations. This is a systematic review of AI-based models for sleep disorder diagnostics that
were trained, validated, and tested on diverse clinical datasets. An extensive search of PubMed and
IEEE databases yielded 2114 articles, but only 18 met our stringent selection criteria, underscoring the
scarcity of thoroughly validated AI models in sleep medicine. The findings emphasize the necessity
of a rigorous validation of AI models on multimodal clinical data, a step crucial for their integration
into clinical practice. This would be in line with the American Academy of Sleep Medicine’s support
of AI research.
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1. Introduction

Sleep, an essential biological requirement fundamental to human health and wellbeing,
is a natural physiological state that is also vulnerable to various diseases and disorders.
A significant portion of the general population experiences sleep disturbances, leading
to a diminished quality of life, increased health risks, and higher healthcare expenses [1].
The National Sleep Foundation’s 2020 survey found that nearly half of Americans suf-
fer from daytime sleepiness [2]. Additionally, between 35 and 50% of adults annually
experience insomnia symptoms [3]. Sleep disorders, as classified by the International Clas-
sification of Sleep Disorders, include a range of conditions such as insomnia, sleep-related
breathing disorders, hypersomnolence, circadian rhythm disruptions, parasomnias, and
movement disorders during sleep [4].

The field of sleep medicine is rich in clinical data, with nearly one million polysomno-
graphic tests (Figure 1) conducted each year in the U.S. for analysis [5]. These disorders
present unique challenges to patients and healthcare providers, particularly due to the
altered state of awareness during sleep. Advancements in technology, especially in artificial
intelligence (AI), present an opportunity for sleep medicine to transform. AI can efficiently
process and analyze vast amounts of digital health data from both inpatient and outpa-
tient sources, enabling the development of predictive diagnostic and treatment models.
AI tools are adept at cleaning data, classifying diseases, and identifying specific disease
patterns, tasks beyond the scope of human biological intelligence. Given that each patient
generates over 80 megabytes of clinical data annually, a number that is only increasing,
manually reviewing each patient’s data within the limited time of clinical sessions is be-
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coming increasingly challenging [6]. This growth in data underlines the need for advanced
technological solutions in diagnosing and managing sleep disorders.
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from polysomnograms. It also aligns with the current guidelines of the American 
Academy of Sleep Medicine (AASM), the leading professional society for the promotion 
of sleep health. In 2019, the FDA approved WatchPat (Itamar Medical Inc., Atlanta,  GA, 
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[10]. It provides a non-invasive and accessible means for diagnosing sleep apnea. 

Despite the widespread prevalence of sleep disorders, many patients go undiagnosed 
or do not adhere to treatment plans. This problem is partly due to the limited availability 
and high costs of sleep medicine clinics and laboratories, which are predominantly located 
in major urban areas. Obstructive sleep apnea (OSA), increasingly prevalent in the United 
States party due to the obesity epidemic, affects a substantial segment of the population 
but remains largely undiagnosed [11,12]. OSA, if not treated, heightens the risk of serious 
health issues such as hypertension, stroke, depression, and increased mortality [11]. 

Figure 1. Image depicts a polysomnography study setup with multimodal monitoring tools:
EEG (Electroencephalogram)—Electrodes attached to the head for monitoring brain wave activ-
ity; EOG/ECG (Electrooculogram/Electrocardiogram)—Equipment monitoring eye movements and
heart activity; Oronasal Airflow Monitor—Device positioned near the nose and mouth to measure
breathing; Chin EMG (Electromyogram)—Sensors attached to the chin to detect muscle activity;
Position Sensor—A sensor placed on the body to detectsleep positions; Pulse Oximetry—A small
device attached to a finger to measure blood oxygen levels and heart rate; Thoracic and Abdominal
Movement Sensors—Sensors placed on the chest and abdomen to monitor respiratory effort and
movement; Auxiliary Device—central component of the polysomnography system and it contains
specialized amplifiers, filters, and computer chips that translate the signals collected from various
bioelectrical potentials such as sensors and electrodes that is attached to the patient’s body into
records that can be analyzed and visualized.

In 1936, Alan Turing constructed the first computer model called the Turing machine,
which laid the foundation for computation and artificial intelligence [7]. It was not until
1956 that computer scientists coined the term “artificial intelligence” during a workshop at
Dartmouth College, marking the official beginning of the modern AI field [8]. In subsequent
years, computing technology made its way into the medical realm, ushering in a new era
of modern medicine. In 2007, IBM created WATSON (version 18.4), a computer software
program used for decision management in lung cancer [9]. A decade later, in 2017, the first
AI-based sleep device, EnsoSleep (EnsoData, Madison, WI, USA), received FDA approval
for use in sleep medicine [10]. This software program automatically scores sleep stages and
detects respiratory events, movements, and arousals from polysomnograms. It also aligns
with the current guidelines of the American Academy of Sleep Medicine (AASM), the
leading professional society for the promotion of sleep health. In 2019, the FDA approved
WatchPat (Itamar Medical Inc., Atlanta, GA, USA), a wrist-worn device with substernal
sensors, as a home sleep apnea diagnostic test [10]. It provides a non-invasive and accessible
means for diagnosing sleep apnea.

Despite the widespread prevalence of sleep disorders, many patients go undiagnosed
or do not adhere to treatment plans. This problem is partly due to the limited availability
and high costs of sleep medicine clinics and laboratories, which are predominantly located
in major urban areas. Obstructive sleep apnea (OSA), increasingly prevalent in the United
States party due to the obesity epidemic, affects a substantial segment of the population
but remains largely undiagnosed [11,12]. OSA, if not treated, heightens the risk of seri-
ous health issues such as hypertension, stroke, depression, and increased mortality [11].
Similarly, untreated insomnia is moderately linked to acute myocardial risk and a higher
likelihood of stroke [13,14], and individuals with insomnia are twice as likely to develop
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depression compared to those without sleep issues [15]. REM sleep behavior disorder
(RBD), marked by aggressive dreams and physical actions like kicking and vocal outbursts,
is essential for the early detection of neurological disorders such as Parkinson’s disease
due to its association with alpha-synucleinopathies. Central disorders of hypersomnolence,
such as narcolepsy, cause significant daytime dysfunction. Sleep-related movement dis-
orders, like periodic limb movements of sleep (PLMS), disrupt sleep continuity, leading
to non-restorative sleep. Furthermore, sleep disorders contribute to elevated healthcare
utilization and costs in the United States, with an estimated overall healthcare expenditure
of approximately $94.9 billion [1].

In spite of the growing number of accredited sleep centers, there remains a significant
gap in healthcare access to sleep medicine in the United States, where the ratio of people
to sleep specialists is over 43,000 to 1 [16]. For instance, the effective management of OSA
with Continuous Positive Airway Pressure (CPAP) therapy requires regular follow-ups at
clinics, yet the capacity of specialized sleep medicine clinics to meet increasing demand is
limited. Replicating the specialized services of these clinics in general settings, like primary
care, is not feasible. Additionally, current treatments lack customization; they often fail to
fully consider the complexity, heterogeneity, and genetic factors of each sleep disorder. AI-
based tools offer a solution to these challenges by enhancing the capabilities of sleep clinics
to improve access and treatment adherence. AI can identify complex patterns through
predictive models that may be missed by humans and traditional statistical methods. It also
reduces the workload of labor-intensive tasks, allowing healthcare professionals to focus
more on direct patient care. Integrating AI into sleep medicine can optimize resource use,
improve care access, and cut costs.

Bioengineers and clinicians are particularly interested in the automated processing
of vast amounts of electrophysiologic data from sleep studies, achieved using Machine
Learning (ML) models. These ML models, a subset of AI, use algorithms to identify
patterns in data, aiding in classification and prediction tasks. With advances in the field of
AI, the application of ML for the automated analysis of sleep studies has gained popularity.
Additionally, the availability of public sleep datasets, comprising thousands of recordings
from sleep labs and research studies, has facilitated the development of ML models by
providing ample data for training. A multitude of ML models that have been designed
to detect and label sleep-related events have been reported in recent years. The aim of
this article is to select and review ML models that were developed using the rigorous
methodology described below to automate standard diagnostic techniques that are used in
the clinical practice of sleep medicine. Technical terms related to Machine Learning with
respective examples are highlighted in Table 1.

Table 1. Essential concepts and analogies in Machine Learning.

Term Definition Example

Iterations Repetitive cycles where an ML model practices making
predictions using training data.

Like a basketball player practicing free throws multiple
times to improve.

Features Traits or details in the data that help in categorizing or
analyzing the data.

In a smartphone camera’s photo-sorting app, features
might include color, brightness, or the presence of faces

to categorize images into different albums.

Cross-validation

It is technique in statistical analysis and Machine
Learning with which a dataset is divided into multiple

parts. These parts are then used interchangeably as
training and testing sets to validate the accuracy and

generalizability of a model. This process helps in
assessing how well a model will perform on an

independent dataset and in preventing overfitting.

Like a coach dividing the team into several groups and
having each group play both roles of the main team

and the opponent in different matches. This helps the
coach understand how well the team adapts to

different scenarios. However, this does not guarantee
that the team will perform equally well against actual

external opponents

Overfitting When an ML model learns the training data too well
but struggles with new data.

A student who memorizes answers for a specific set of
questions for a history test cannot apply the knowledge

to new, unseen questions on the same topic.
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Table 1. Cont.

Term Definition Example

Underfitting

This occurs when an ML model is not complex enough
to capture the underlying patterns and relationships in

the training data, leading to poor performances on
both training and new, unseen data.

Like trying to understand a complex novel by only
reading the summary, and as a result, being unable to

grasp the full story or discuss it in detail.

Weight The importance given to a message passed between
neurons in a neural network.

Similar to adjusting the balance on a music mixer to
control how much each instrument contributes to the

overall sound of a band.

Biases

In a neural network, “bias” is an adjustable parameter
that enables the model to modify its output

independently of the input data, playing a crucial role
in determining neuron activation and thus influencing

the model’s overall behavior and accuracy.

In a job application screening system trained mostly on
resumes from a few top universities, there may be a

bias favoring applicants from those schools, potentially
overlooking equally qualified candidates from other

institutions.

Activation Function

An activation function in a neural network is a
mathematical formula that determines whether and to
what extent a neuron should be activated, based on the
input it receives. It helps the network make non-linear
decisions, allowing it to handle complex data patterns.

In a photo-filtering app, an activation function might
decide how strongly a certain feature, like brightness

or color saturation, should influence whether a photo is
categorized as “outdoor” or “indoor”.

Loss Function How much the model’s prediction differs from the
actual result.

The difference between a GPS’s estimated time of
arrival and the actual time you reach your destination.

Gradient
The gradient refers to the measure of change in the

network’s error (or loss) in response to adjustments in
its weights and biases.

How changing the amount of sugar in a cake recipe
affects its sweetness when the goal is to find the ideal

sweetness (accuracy) of the product.

Backpropagation A process that calculates how each part of the network
contributed to the error.

Analyzing which step in a baking recipe went wrong
when the cake does not rise.

Gradient Descent A method to find the best weights and biases for the
lowest error in a network.

Searching for the perfect oven temperature and baking
time for the ideal cake texture.

1.1. Training, Testing, and Validation

In Machine Learning (ML), the development of a model begins with the training
phase, where the model is exposed to a specific dataset, known as the training dataset.
During this phase, the model learns to identify and interpret patterns within the data.
Following this, the model undergoes a validation phase, where its accuracy is assessed
using a separate sample of data, termed the validation dataset. This phase is crucial for
fine-tuning the model, ensuring that it not only adheres closely to the training data but
also generalizes effectively to new, unseen data. After successful training and validation,
the model’s performance is evaluated on a different dataset, known as the “test” dataset.
The results of this evaluation on the test dataset are critically reported.

A prevalent practice in ML is cross-validation, which involves using portions of the
training data for validation purposes. Although cross-validation helps to mitigate overfitting
(Table 1), using an entirely separate dataset for validation, one that the model has not encoun-
tered during its training phase, ensures a more accurate assessment of the model’s capability
to generalize. Such a stringent approach is warranted in scenarios where precise and reliable
model predictions are crucial, healthcare being a relevant example [17,18]. In this review, our
focus is on studies that have adhered to this rigorous standard as we report the development
of ML models using validation datasets that are distinct and separate from their training sets,
thereby ensuring a higher degree of reliability and validity in their findings.

1.2. Deep Learning and Neural Networks

Deep Learning (DL) is a specialized subset of Machine Learning focused on processing
complex input data through computer algorithms to discern meaningful features, identify
underlying patterns, and make predictions (Figure 2). DL models are adept at automatically
extracting relevant features from training data, thus bypassing the need for manually
developing features for pattern recognition [19]. These models are structured as Artificial
Neural Networks (ANNs) to mirror the neural connections in the human brain. ANNs
consist of multiple interconnected layers of computational units termed nodes or “neurons”.
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These layers include an input layer for receiving data, several hidden layers that process
and transform data to recognize patterns, and an output layer for making predictions.
The connections between neurons, represented by weights, determine the strength or
weakness of the message sent from one neuron to the next, thereby influencing each
neuron’s output or response. Additionally, activation functions, drawing inspiration from
the brain’s neural activations, are instrumental in processing the inputs received by neurons.
They convert linear inputs into non-linear outputs, a critical transformation that enables
the neural network to discern complex patterns. This non-linear processing facilitates the
network’s capability to interpret intricate data structures and relationships, akin to solving
multifaceted problems rather than performing straightforward calculations.

Bioengineering 2024, 11, x FOR PEER REVIEW 4 of 22 
 

where precise and reliable model predictions are crucial, healthcare being a relevant 
example [17,18]. In this review, our focus is on studies that have adhered to this rigorous 
standard as we report the development of ML models using validation datasets that are 
distinct and separate from their training sets, thereby ensuring a higher degree of 
reliability and validity in their findings. 

1.2. Deep Learning and Neural Networks 
Deep Learning (DL) is a specialized subset of Machine Learning focused on 

processing complex input data through computer algorithms to discern meaningful 
features, identify underlying patterns, and make predictions (Figure 2). DL models are 
adept at automatically extracting relevant features from training data, thus bypassing the 
need for manually developing features for pattern recognition [19]. These models are 
structured as Artificial Neural Networks (ANNs) to mirror the neural connections in the 
human brain. ANNs consist of multiple interconnected layers of computational units 
termed nodes or “neurons”. These layers include an input layer for receiving data, several 
hidden layers that process and transform data to recognize patterns, and an output layer 
for making predictions. The connections between neurons, represented by weights, 
determine the strength or weakness of the message sent from one neuron to the next, 
thereby influencing each neuron’s output or response. Additionally, activation functions, 
drawing inspiration from the brain’s neural activations, are instrumental in processing the 
inputs received by neurons. They convert linear inputs into non-linear outputs, a critical 
transformation that enables the neural network to discern complex patterns. This non-
linear processing facilitates the network’s capability to interpret intricate data structures 
and relationships, akin to solving multifaceted problems rather than performing 
straightforward calculations. 

 
Figure 2. This figure illustrates a Convolutional Neural Network (CNN) designed for classifying 
neuroimaging data. The structure includes the following: Input Layer: Receives raw pixel data from 
the neuroimaging input; Convolutional Layers: These layers utilize filters to extract specific features 
from the image, focusing on various imaging characteristics and spatial orientations; Pooling 
Layers: Aimed at reducing the spatial dimensions (width and height) of the input data for 
subsequent convolutional layers. This process decreases computational demands and memory 
usage and enhances the network’s ability to locate features; Flattened Layer: Transforms the 2D 
feature matrices into a 1D vector, making it compatible with the fully connected layers that follow; 
Fully Connected Layers: These layers, typically dense, use the features refined and downscaled by 

Figure 2. This figure illustrates a Convolutional Neural Network (CNN) designed for classifying
neuroimaging data. The structure includes the following: Input Layer: Receives raw pixel data from
the neuroimaging input; Convolutional Layers: These layers utilize filters to extract specific features
from the image, focusing on various imaging characteristics and spatial orientations; Pooling Layers:
Aimed at reducing the spatial dimensions (width and height) of the input data for subsequent convo-
lutional layers. This process decreases computational demands and memory usage and enhances
the network’s ability to locate features; Flattened Layer: Transforms the 2D feature matrices into a
1D vector, making it compatible with the fully connected layers that follow; Fully Connected Layers:
These layers, typically dense, use the features refined and downscaled by the convolutional and
pooling layers to perform classification. Each neuron in these layers connects to all activations in
the preceding layer; Output Layer: Generally contains neurons equal in number to the classes being
predicted. It employs a softmax activation function to generate a probability distribution across the
classes; Categories/Classes: Signify the network’s final classification, denoting the category or class
to which the input image is most likely to belong.

The training of a neural network involves adjusting its internal weights and biases
to enhance the prediction accuracy. During this process, the network calculates gradients,
which reflect the error change resulting from each adjustment. The error is quantified
by a loss function, indicating the discrepancy between the model’s predictions and the
actual outcomes. Using backpropagation, the network retroactively computes each neuron
layer’s contribution to the final output error. This process is repeated across all training
data samples (iterations). The weights and biases that minimize error are then determined
using an optimization method known as gradient descent [19].
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In Fully Connected Neural Networks (FCNNs), all neurons in adjacent layers are
interconnected, forming loops. In contrast, Feed-Forward Neural Networks (FNNs) have
connections only between adjacent neurons in the same layer, speeding up the learning
process. Each layer’s output in an FNN is transformed by an activation function before
being input into the next layer. Convolutional Neural Networks (CNNs), a type of FNN, are
tailored for processing multidimensional array data, making them ideal for image analysis
and spatial pattern recognition. CNNs employ small weight arrays called filters to detect
specific features in a larger two-dimensional array, such as image pixels or EEG and EOG
channel variations. The process of convolution transforms an image into a feature map,
highlighting identical features across different image parts. These feature maps are then
processed through pooling layers that consolidate similar features, and through successive
convolution and pooling layers, the network recognizes more intricate patterns, like sleep
stage indicators in EEG data.

Recurrent Neural Networks (RNNs) are a variant of ANNs that loop their outputs back
into the network, combined with prior or future inputs. This design makes RNNs suitable
for analyzing sequential time-series data, such as sleep study epochs. The integration of
Long Short-Term Memory (LSTM) cells in RNNs enables them to discard irrelevant data
and retain pertinent information, thus recognizing long-term dependencies in extended
data segments, such as a sequence of sleep study epochs [20].

1.3. Sleep Staging and Cortical Arousals

There are five stages of sleep: Wake (W), Stage 1 (N1), Stage 2 (N2), Stage 3 (N3), also
known as slow-wave sleep, and Rapid Eye Movement (REM) [21]. Stages 1–3 are collec-
tively referred to as non-REM (NREM) sleep. An overnight PSG is necessary to score sleep
stages. While this staging provides information about the overall structure of sleep, it does
not capture its microstructure. Microarousals and cyclic alternating patterns (CAPs), for
instance, are periodic electrographic activities that occur during sleep and serve as markers
of increased sleep disruption and instability and are influenced by various sleep disorders
such as OSA, insomnia, and PLMS. Both microarousals and CAPs are diminished with
CPAP treatment for OSA [22]. As a result, they can be valuable biomarkers for diagnosing
and monitoring treatment in sleep disorders that are not easily identified through standard
sleep scoring. However, the manual scoring and annotation of microarousals and CAP are
prone to inaccuracies, necessitating the development of automated detection methods.

An additional benefit of automated scoring programs is their potential to replace
or complement the laborious scoring hours typically performed by sleep technologists,
enabling them to redirect their time toward direct patient care. In 2023, the AASM initiated
a two-year pilot certification program for auto-scoring software designed to classify adult
sleep stages. The purpose of this program was to independently evaluate the performances
of auto-scoring systems. Software companies can attain certification from the AASM, a
reputable institution known for establishing standards in the field of sleep medicine.

Visual inspection is the current standard for the detection of cortical arousals on
laboratory PSGs. They are clinically relevant as excessive amounts of arousals, typically
due to primary sleep disorder such as OSA, cause disruption of the sleep architecture
and lead to daytime hypersomnia or cognitive dysfunction. Microarousals, however, are
challenging to detect with the human eye. AI can aid in the detection of these hidden
abnormalities in the sleep architecture.

1.4. Sleep Disorders

Obstructive Sleep Apnea (OSA) occurs when the pharyngeal and retro-lingual airway
collapses during sleep, leading to reduced airflow, nocturnal hypoxia, and fragmented
sleep. The diagnosis of OSA relies on the apnea-hypopnea index (AHI), which measures
the number of abnormal respiratory events per hour. However, the AHI alone may not
accurately reflect the clinical severity of the condition. AHI values below 5 are consid-
ered normal by criteria, but they fail to capture subpopulations that exhibit more subtle
symptoms and signs of sleep-disordered breathing, such as primary snoring, upper airway
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resistance, unrefreshing sleep, or co-existing vascular disease. There may be different
subtypes of OSA that have yet to be fully understood, as the current AHI cutoffs do not
adequately reflect the clinical severity or potential risks if left untreated [23].

The 12-lead Electrocardiogram (EKG) is a widely used procedure, with >100 million
conducted annually in medical offices and emergency departments across the United
States [24]. Leveraging the ease and speed of EKGs, they can serve to streamline the
identification of at-risk patients and determine those who may require sleep studies or clinic
referrals for sleep apnea. In comparison to laboratory PSG recordings, which necessitate
multiple electrode placements and are therefore impractical for routine screening, EKG
signals can be obtained in an office setting or potentially even in the comfort of one’s home,
making routine data acquisition more feasible.

REM Sleep Behavior Disorder (RBD) is characterized by dream-enactment behavior
due to impaired motor inhibition during REM sleep, a phenomenon that is referred to
as REM sleep without atonia (RSWA). A confirmation for the diagnosis of RBD requires
laboratory PSG data and relevant clinical symptoms. However, the interpretation of
polysomnographic sleep epochs relies on subjective visual inspection, which presents a
challenge for accurate interpretation. There is a need for a more reliable methodology,
especially for the early detection of abnormal REM tonicity on polysomnographic data.
Ongoing research is focused on early detection as it has the potential for the prevention of
RBD-associated risks such as the development of alpha-synucleinopathies like Parkinson’s
disease or Lewy body dementia [25].

Narcolepsy is characterized by excessive daytime hypersomnia but can be accompa-
nied by symptoms like cataplexy (loss of muscle tone), sleep paralysis, and hypnagogic
hallucinations. Diagnosing narcolepsy presents a unique challenge because excessive day-
time sleepiness, its core feature, is also common in other sleep disorders, making it difficult
to rely solely on this symptom for an accurate diagnosis. Narcolepsy type 1 (narcolepsy
with cataplexy) is characterized by low or absent cerebrospinal fluid (CSF) hypocretin levels,
which serves as a reliable biomarker [26]. The diagnosis of narcolepsy typically involves
a nighttime PSG followed by multiple daytime nap opportunities through the Multiple
Sleep Latency Test (MSLT), but this process is laborious and challenging to adhere to for
both patients and healthcare providers. Additionally, central disorders of hypersomnia,
including narcolepsy type 2, have poor retest reliability with the MSLT [27].

Periodic Limb Movements of Sleep (PLMS) are periodic leg jerks that involve the
extension of the big toe, dorsiflexion of the ankle, and flexion of the knee and hip. These
movements can cause microarousals and disruption of sleep continuity therefore leading
to daytime hypersomnia, and potentially contribute to long-term vascular disease risk [28].
PLMS confirmation requires laboratory PSG and relies on manual identification by a sleep
technician. It is also prone to inter-scorer variability.

2. Methods
2.1. Search Strategy

We conducted a search of PubMed and IEEE databases for articles published in
English up until 17 September 2023. We searched PubMed using the query of MeSH terms
“Sleep” AND “Artificial Intelligence” in the advanced search. We searched IEEE using the
query (“All Metadata”:sleep) AND (“All Metadata”:artificial intelligence). The following
systematic review was conducted by the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) standards and registered under the ID reviewregistry1746
on Research Registry.

2.2. Selection Criteria

We first screened the search results against the title and abstract. We selected obser-
vational studies that reported novel artificial intelligence-based models for applications
in sleep medicine. We also selected studies that externally validated previously reported
models. We then screened the full-text articles of the selected studies. For a study to be
included in the review, the reported model was required to meet the following criteria:
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• Trained and validated with data from gold-standard diagnostic modalities for sleep
staging or the diagnosis of sleep disorders. Standard diagnostics include PSG-based
sleep staging, the detection of OSA using single-lead EKG signals, and a PSG-based
detection of sleep disorders using AASM diagnostic criteria.

• Developed using separate training, validation, and testing datasets.
• Internally or externally validated on clinical datasets.

We excluded studies that reported models using non-gold standard diagnostic modal-
ities such as single-channel EEGs or wearable consumer sleep technologies. We also
excluded studies that reported models developed without a separate validation dataset
(e.g., using cross-validation). The same criteria were used for title and abstract screening as
well as for the screening of full-text articles.

2.3. Screening

We screened the full text of the studies selected after title and abstract screening.
We broadly classified the studies that were selected for the review into two groups based
on the application of the reported model. The first group included studies that reported
models designed for automated sleep staging and cortical arousals. The second group
included studies that reported models designed for the detection of sleep disorders.

2.4. Data Extraction

The following data were extracted from the selected studies and tabulated in a Mi-
crosoft Excel spreadsheet:

1. Article information including the name of the first author and year of publication.
2. Application of the reported AI model, based on which the studies were grouped into

two groups (see Section 2.3).
3. Specifics of the reported AI model, including model architecture, classification tasks

performed by the model, and features used for classifying the input data.
4. Composition of the training, validation, and testing datasets, including the proportion

of sleep studies used in each of the three datasets, characteristics of the included
patients, and the sleep study setup.

5. Performance metrics of the model on the testing dataset, including the following:

• Agreement of the model with consensus manual scoring (measured using Co-
hen’s kappa), and/or accuracy of the model, and/or the F1 score for automated
sleep staging models.

• Sensitivity, specificity, and/or other reported metrics for sleep disorder detection models.

6. The full-text articles were reviewed, and relevant details about model design, popula-
tion, and model performance were extracted.

The performances of different automated sleep staging models were compared based
on the reported Cohen’s kappa for each model. Additionally, we compared the population
studied, number of sleep study recordings, and PSG setup used in public sleep datasets
that were used to develop AI models in the noted studies.

3. Results
3.1. Number of Screened and Selected Studies

Our initial search yielded a total of 2218 results. As shown in Figure 3, 2114 results were
screened against the title and abstract (after removing duplicate results) and, ultimately,
33 articles were selected for full-text screening. Of those, only eighteen studies, which met
all the inclusion criteria, were included in the final analysis [29–46]. All eighteen articles
reported deep learning-based models. Seventeen different models were reported in the
eighteen studies that we selected [30–46]. One study externally validated a previously
reported model [29].
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3.2. Datasets Used for Model Development

Sixteen studies used publicly available online sleep datasets for model training, vali-
dation, and/or testing, out of which thirteen used multiple datasets from different clinical
settings. Only two studies used data exclusively from patients who underwent sleep
studies at the hospital where the research was conducted [30,31]. Commonly used public
datasets in the included studies are compared in Table 2.

Table 2. Characteristics of commonly used public sleep datasets.

Dataset Characteristics of
Included Subjects Number of Recordings PSG Setup

Massachusetts General Hospital
(MGH)-PSG [33] Symptomatic 10,000

(10,000 subjects)

Six-channel EEG, EOG, chin and leg
EMG, EKG, SaO2, chest and abdomen

movement sensors, nasal airflow,
pressure transducer (PTAF), position
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Table 2. Cont.

Dataset Characteristics of
Included Subjects Number of Recordings PSG Setup

Sleep Heart Health Study (SHHS) [47]

Adults over 40 with and without a
history of snoring who were

previously recruited to epidemiological
cohort studies on cardiovascular health

9376
(5804 subjects)

Two-channel EEG, EOG, EKG, SpO2,
chest and abdomen movement sensors,

nasal airflow

Sleep EDF (expanded) [48] Symptomatic (difficulty falling asleep)
subjects and healthy controls

197
(96 subjects)

Two-channel EEG, EOG, chin EMG,
SaO2, chest and abdomen movement

sensors, nasal airflow

Stanford Sleep Cohort (SSC) [49] Symptomatic 760
(760 subjects)

Six-channel EEG, EOG, chin and leg
EMG, EKG, SaO2, chest and abdomen

movement sensors, nasal airflow

Wisconsin Sleep Cohort (WSC) [11]
Combination of subjects at high and

low risk for OSA based on
questionnaire responses

2570
(1549 subjects at baseline, ongoing

follow-up)

Two-channel EEG (six channels in
select recordings), EOG, chin and leg
EMG, EKG, SaO2, chest and abdomen

movement sensors, nasal and oral
airflow, nasal pressure, position

Institute of Systems and
Robotics—University of Coimbra

(ISRUC) [50]

Symptomatic patients with diagnosed
sleep disorders and healthy controls

126
(118 subjects)

Six-channel EEG, EOG, chin and leg
EMG, SaO2, chest movement sensor,

nasal airflow

EEG—Electroencephalogram; EOG—Electrooculogram; EMG—Electromyogram; EKG—Electrocardiogram; SaO2—Oxygen
saturation of arterial blood; SpO2—Oxygen saturation of peripheral blood; EDF—European Data Format.

3.3. Automated Sleep Staging and Sleep Disorder Detection Models

Eleven of the included studies reported novel DL techniques for automated sleep
staging using PSGs. Nine studies reported novel DL techniques for the automated detection
of cortical arousals and detection of sleep disorders including OSA, narcolepsy, and PLMS.
Two studies overlapped between both groups—Stephansen et al. reported a CNN that
performed sleep staging for narcolepsy detection [32], while Biswal et al. reported a
Deep Neural Network (DNN) for sleep staging, OSA screening, and limb movement
detection [33].

3.4. Deep Learning for Sleep Staging and Cortical Arousals
3.4.1. Sleep Staging

The characteristics of included studies that developed and validated automated sleep
staging models are listed in Table 3, whereas their performances are listed in Table 4. In ten
out of the eleven studies we selected, agreement of the model with consensus manual
scoring was reported using Cohen’s kappa value. L-SeqSleepNet had the highest reported
Qq/Cohen’s kappa (0.838) [34]. L-SeqSleepNet is a hierarchical RNN designed to perform
long-sequence modeling, i.e., the staging of longer sequences of 200 epochs at a time.
However, since the training, validation, and testing datasets were all from the SHHS
database, the possibility of model overfitting must be considered. Among the models
tested on external data, the Philips Somnolyzer software (Version 4.0.0) had the highest
reported Cohen’s kappa of 0.78 ± 0.01 [35]. Somnolyzer 24 × 7 was first reported in 2005
for automated scoring [51]. A bi-directional LSTM version of the Somnolyzer was trained
to use probability-based auto staging to generate a hypnodensity graph. Hypnodensity is a
representation of the sleep stage probability distribution for each epoch. The model was
tested on datasets from three separate sleep clinics (manually scored by 6 to 12 scorers).
It outperformed all manual scorers [35].

Table 3. Characteristics of studies that developed and validated automated sleep staging models.

First Author, Year Type of Neural Network Training and Validation
Datasets Testing Datasets Comments

Patanaik, 2018 [39] Deep CNN

1046 PSGs of healthy
adolescents (DS1) *

284 PSGs of healthy adults
(DS2)

75% for training and 25% for
validation

210 PSGs of adolescent and adult
patients with suspected sleep

disorders (DS3)
77 PSGs of Parkinson’s disease

patients, 42% of whom were classified
as having REM sleep behavior

disorder (RBD) and 28% as probably
having RBD (DS4)

Trained on data from healthy subjects,
tested on data from patients with

suspected sleep disorders and RBD
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Table 3. Cont.

First Author, Year Type of Neural Network Training and Validation
Datasets Testing Datasets Comments

Biswal, 2018 [33] RCNN
9000 training and validation
PSGs from the MGH dataset
5224 from the SHHS dataset

1000 held out PSGs from MGH
580 held out PSGs from SHSS

Stephansen, 2018 [32]
Ensemble of

Cross-Correlation (CC)
encoded CNN models

(Stanford STAGES model)

3507 (90% training, 10%
validation) from the WSC,

SSC, and KHC datasets

70 PSGs scored manually by six
scorers from the IS-RC cohort

(staging)

Olesen, 2020 [40] CNN (feature extraction) +
RNN (staging)

15,684 PSGs from ISRUC,
MrOS, SHHS, SSC, and WSC
datasets (87.5% training, 2.5%

validation, 10% testing)

10% PSGs held out from the same
datasets

Same accuracy obtained using 75%
training data (four out of five cohorts)

as 100% (five out of five cohorts)

Abou Jaoude, 2020 [41] Multi-modal DNN
5041 PSGs for training

650 for validation
From the MGH-PSG dataset

HomePAP—243 PSGs
ABC—129 PSGs

MGH-PSG—650 PSGs

Developed a PSG-based staging
model (CRNN-PSG) and fine-tuned it
into a scalp EEG-based staging model
(CRNN-EEG); only the performance
of the PSG-based model is considered

Zhang, 2020 [42] LSTM-RNN

122 training and 20 validation
PSGs of adults with a history

of snoring performed at
Beijing Tongren Hospital

152 PSGs from the study dataset
40 PSGs from 20 SC subjects from the

SleepEDF dataset

Compared performance of staging
model between participants with and

without OSA

Alvarez-Estevez, 2021 [43] CNN

354 PSGs (80% of a total 443)
from six datasets further split
into 80% for training and 20%

for validation

89 PSGs (20% of a total 443) held out
from the six study datasets that

included ISRUC and SHHS

Cesari, 2021 [29]
Ensemble of (CC) encoded

CNN models (Stanford
STAGES model)

1066 PSGs from the Study of
Health in Pomerania-TREND

Externally validated, previously
developed Stanford STAGES model

(see above)

Guillot, 2021 [44] RNN

5788 total PSGs from eight
datasets including the MASS,
SleepEDF, MrOS, and SHHS

datasets
Did not specify the split

between the training,
validation, and testing sets

Testing dataset was unseen during
training in a Direct Transfer (DT)

setting
Both of the other settings required the

use of cross-validation (CV); their
performance was not considered for

the review

Designed to classify sequences of
multiple epochs at once

PSG settings varied across datasets
and included 2, 3, 5, 8, and 12 lead

EEGs with or without EMG.

Bakker, 2023 [35] Bi-directional LSTM-RNN
(Somnolyzer) 588 PSGs from SIESTA dataset

95 PSGs from three clinical datasets
separate from the training set;

datasets A (n = 70), B (n = 15), and C
(n = 10) were scored by 6, 9, and 12

scorers, respectively.

Phan, 2023 [34] Hierarchical RNN
3824 (70% of 5463) PSGs from
SHHS dataset with 100 PSGs

held out for validation
1639 (30% of 5463) PSGs from the

SHHS dataset

* Cognitive Neuroscience Lab, Duke-NUS Medical School, Singapore (DS1); Chronobiology and Sleep Lab,
Duke-NUS Medical School, Singapore (DS2); Sleep Disorders Unit, Singapore General Hospital, Singapore
(DS3); Laboratory for Sleep and Chronobiology, University of California San Diego, School of Medicine, USA
(DS4). Abbreviations: PSG—Polysomnogram; SHHS—Sleep Heart Health Study; MGH—Massachusetts General
Hospital; WSC—Wisconsin Sleep Cohort; SSC—Stanford Sleep Cohort; KHC—Korean Hypersomnia Cohort;
IS-RC: Inter-Scorer Reliability Cohort; EDF—European Data Format; ISRUC—Institute of Systems and Robotics,
University of Coimbra Sleep Cohort; HomePAP—Home Positive Airway Pressure; ABC—Apnea, Bariatric
surgery, and CPAP; RBD—REM Sleep Behavior Disorder; OSA—Obstructive Sleep Apnea; CNN—Convolutional
Neural Network; RNN—Recurrent Neural Network; RCNN—Region-based Convolutional Neural Network;
LSTM—Long Short-Term Memory.

Table 4. Performances of automated sleep staging models.

First Author, Year Type of Neural
Network

Model Performance on Testing Dataset

Cohen’s Kappa Accuracy F1 Score

Patanaik, 2018 [39] Deep CNN 0.740 (DS3);
0.597 (DS4)

81.4% (DS3);
72.1% (DS4)

Biswal, 2018 [33] RCNN 80.5 (MGH);
73.2 (SHSS)

87.5% (MGH);
77.7% (SHSS)

Stephansen, 2018 [32] CNN 57.7 ± 6.1 (Unbiased overall Cohen’s
kappa across six scorers) 86.8 ± 4.3

Olesen, 2020 [40] CNN + RNN
0.728, 95%CI: 0.726–0.731 (Mean of all
combinations of four training and one

validation cohorts)

Abou Jaoude, 2020 [41] Multi-modal DNN 0.64 (For CRNN-PSG model on both
testing datasets)

Zhang, 2020 [42] LSTM-RNN 0.7276 (study dataset)
0.77 for (SleepEDF)

0.8181 (study
dataset);

0.836 (SleepEDF)

0.8150 (study dataset);
0.781 (SleepEDF)
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Table 4. Cont.

First Author, Year Type of Neural
Network

Model Performance on Testing Dataset

Cohen’s Kappa Accuracy F1 Score

Alvarez-Estevez, 2021 [43] CNN 0.63 (Average kappa on external
datasets)

Cesari, 2021 [29] CNN 0.61 ± 0.14 (Overall manual vs. auto
scoring for both datasets)

Guillot, 2021 [44] RNN 64.9 to 84.4 across eight datasets
84.4 for DOD-H dataset (12-lead EEG)

Bakker, 2023 [35] LSTM-RNN

0.78 ± 0.01 compared to unbiased
consensus of scorers for auto-scoring

model (vs. 0.69 ± 0.063 for best manual
scorer)

Phan, 2023 [34] RNN 0.838 (SHHS)

Abbreviations: PSG—Polysomnogram; SHHS—Sleep Heart Health Study; MGH—Massachusetts General
Hospital; DOD-H—Dreem Open Dataset-Healthy; EDF—European Data Format; CNN—Convolutional Neu-
ral Network; RNN—Recurrent Neural Network; RCNN—Region-based Convolutional Neural Network;
LSTM—Long Short-Term Memory.

3.4.2. Cortical Arousals

Three out of the total eighteen studies included in the review reported cortical arousal
detection models with all three being LSTM-based [36–38] (Table 4). Among the three mod-
els, the best performance was achieved by the bi-directional LSTM, reported by Brink-Kjaer
et al., with an Area Under the Precision Recall Curve (AUPRC) of 0.82. It outperformed
five out of nine expert scorers [36].

3.5. Deep Learning for Detection of Sleep Disorders

In Table 5, we list the characteristics of studies that developed and validated neural
network models to detect sleep disorders as well as those that detect cortical arousals.
Model performances are reported in Table 6. Three out of the eight studies externally
validated the model on a test dataset that was different from the dataset used during
training. The other five studies internally validated the model by being tested on a portion
of the dataset that was not used during training.

Table 5. Characteristics of studies that developed and validated models for the automated detection
of sleep disorders and cortical arousals.

First Author, Year Type of Neural
Network

Disease Classified
(Present vs. Absent) Features Training and Validation

Datasets Testing Dataset

Stephansen, 2018 [32]

Ensemble of
Cross-Correlation (CC)
encoded CNN models
(used as biomarker of

narcolepsy)

Narcolepsy Type 1

Hypnodensity of sleep
stages,

sleep latency,
REM latency,

SOREMPs *, etc.

645 training, 445
validation PSGs from
seven cohorts: WSC,

SSC, KHC, AHC, JCTS,
IHC, and DHC

321 PSGs from two
cohorts never seen by
the model: FHC and

CNC

Iwasaki, 2022 [45] LSTM-RNN
Severe OSA (AHI ≥ 30);
Moderate-to-severe OSA

(AHI ≥ 15)

Ratio of total apnea to
total sleep duration (AS

ratio) based on RR
intervals labeled as
apneic or normal

938 adolescent (>12 yrs)
and adult PSGs (468

training, 470 validation)
performed at the

Nakamura clinic in
Okinawa, Japan

SUMS dataset—N = 59
PhysioNet dataset—N =

35 (34 PSGs used to
determine AS ratio

threshold)

Kuan, 2022 [31] ANN Moderate-to-severe OSA Age, sex, BMI

7328 manually scored
full-night PSGs of adult

patients who had not
been previously treated

for OSA

2094 held out PSGs from
the same lab

Pourbabaee, 2019 [37]
Dense Recurrent CNN

(DRCNN) with
bi-directional LSTM

Primary classification
task:

non-apnea/hypopnea
arousal (target arousal)
vs. apnea/hypopnea vs.
normal sleep vs. wake

EEG, EMG, EOG, SpO2

1985 PSGs from the
MGH dataset: 794

training, 100 validation,
100 testing

989 held out PSGs from
the same dataset
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Table 5. Cont.

First Author, Year Type of Neural
Network

Disease Classified
(Present vs. Absent) Features Training and Validation

Datasets Testing Dataset

Brink-Kjaer, 2020 [36] LSTM-RNN
Cortical arousal vs.

sleep;
wake vs. sleep

EEG, EOG, EMG

Training: 2889
Home Sleep Test (HST)

from MrOS, CFS
Validation: 996 PSGs
from MrOS, CFS and

in-lab PSGs from WSC

30 unseen PSGs, each
from SSC (clinical) and
WSC annotated by nine

sleep technicians

Li, 2020 [38] LSTM-RNN Cortical arousal
detection Single-lead EKG signal

MESA cohort: 1112
training and 124 test

PSGs
SHHS cohort: 1058

training and 118 test
PSGs

311 unseen PSGs from
MESA and 785 from

SHHS

Wallis, 2020 [30] 1D-CNN with residual
connections REM sleep with Atonia

Amplitude and
sustained duration of

chin and leg EMG
compared to predefined
baseline for short phasic

(P) bursts and longer
tonic (T) events;

EEG and EOG for
staging

554 training and 60
validation in-hospital
PSGs manually scored

and annotated for T and
P events

78 unseen PSGs from the
same dataset

Carvelli, 2020 [46] LSTM-RNN Limb movement score
calculation

Left/right anterior
tibialis (LAT/RAT) EMG
signal used to calculate

Periodic Limb
Movements as per

AASM criteria;
EKG signal used to filter

out artifacts in
LAT/RAT signal

655 training and 53 test
PSGs from the MrOS,

WSC, and SSC datasets
manually scored and

annotated for limb
movements

92 unseen PSGs from the
same datasets

Biswal, 2018 [33] RCNN
OSA detection

Limb Movement
Detection

Chest, abdomen
movements, SaO2 (for

AHI)
LAT/RAT EMG (for

limb movements)

9000 training and testing
PSGs from the MGH

dataset;
5224 from the SHHS

dataset

1000 held out PSGs from
MGH

580 held out PSGs from
SHSS

* REM sleep occurring after at least 2.5 min of wake or stage 1; Abbreviations: PSG—Polysomnogram; SHHS—
Sleep Heart Health Study; MGH—Massachusetts General Hospital; WSC—Wisconsin Sleep Cohort; SSC—
Stanford Sleep Cohort; KHC—Korean Hypersomnia Cohort; AHC—Austrian Hypersomnia Cohort; JCTS—Jazz
Clinical Trial Sample; IHC—Italian Hypersomnia Cohort; DHC—Danish Hypersomnia Cohort; FHC—French
Hypersomnia Cohort; CNC—Chinese Narcolepsy Cohort; CFS—Cleveland Family Study; MESA—Multi-Ethnic
Study of Atherosclerosis; SOREMPs—Sleep Onset REM Periods; RCNN—Region-based Convolutional Neural
Network; LSTM—Long Short-Term Memory; RNN—Recurrent Neural Network; ANN—Artificial Neural Net-
work; AHI—Apnea Hypopnea Index; OSA—Obstructive Sleep Apnea; SUMS—Shiga University of Medical
Sciences; 1D-CNN—One-Dimensional Convolutional Neural Network.

Table 6. Performance of models for the automated detection of sleep disorders.

First Author, Year Type of Neural Network Disease Classified (Present vs. Absent) Model Performance

Stephansen, 2018 [32] CNN Narcolepsy Type 1

Sensitivity = 93%; Specificity = 91%; Accuracy = 0.92;
PPV = 0.87; NPV = 0.95; for narcolepsy biomarker in

never-seen replication sample
Sensitivity = 90%; Specificity = 92%; for narcolepsy

biomarker in HPT cohort

Iwasaki, 2022 [45] LSTM-RNN Severe OSA (AHI ≥ 30);
Moderate-to-severe OSA (AHI ≥ 15)

For the detection of moderate-to-severe OSA
(AHI ≥ 15):

SUMS dataset: AUC = 0.93; Sensitivity = 0.92;
Specificity = 0.89;

PhysioNet dataset: AUC = 0.95; Sensitivity = 0.95;
Specificity = 0.86

Kuan, 2022 [31] ANN Moderate-to-severe OSA
For predicting moderate-to-severe OSA:

Accuracy = 76.4%; Sensitivity = 87.7%; Specificity =
56.9%; PPV = 77.7%; NPV = 73.0%

Pourbabaee, 2019 [37]
Dense Recurrent CNN

(DRCNN) with bi-directional
LSTM

Primary classification task:
non-apnea/hypopnea arousal (target

arousal) vs. apnea/hypopnea vs. normal
sleep vs. wake

AUROC = 0.931
AUPRC = 0.543

(For non-apnea/hypopnea arousal detection on blind
test set)
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Table 6. Cont.

First Author, Year Type of Neural Network Disease Classified (Present vs. Absent) Model Performance

Brink-Kjaer, 2020 [36] LSTM-RNN Cortical arousal vs. sleep;
wake vs. sleep

Mean F1 score of the model for arousal detection in
unseen testing dataset = 0.76

Mean precision = 0.72; Recall = 0.81; AUPRC = 0.82

Li, 2020 [38] LSTM-RNN Cortical arousal detection
AUPRC = 0.39
AUROC = 0.86

For model trained on MESA and validated on SHHS

Wallis, 2020 [30] CNN REM sleep with Atonia Balanced accuracy (BAC) = 0.91;
Cohen’s Kappa 0.68

Carvelli, 2020 [46] LSTM-RNN Limb movement score calculation Maximum F1 score = 0.770 ± 0.049 for LM and
0.757 ± 0.050 for PLMS

Biswal, 2018 [33] RCNN OSA detection
Limb movement detection

r2 for AHI scoring = 0.85;
r2 for limb movement detection = 0.7 (MGH dataset

only)

Abbreviations: SHHS—Sleep Heart Health Study; MGH—Massachusetts General Hospital; MESA: Multi-Ethnic
Study of Atherosclerosis; PPV—Positive Predictive Value; NPV—Negative Predictive Value; HPT—High Pretest
Probability Cohort; AHI—Apnea Hypopnea Index; OSA—Obstructive Sleep Apnea; SUMS—Shiga University of
Medical Sciences; AUROC—Area Under Receiver Operating Curve; AUPRC—Area Under Precision Recall Curve.

3.5.1. Obstructive Sleep Apnea

Iwasaki et al. validated their previously reported LSTM-based neural network for
sleep apnea screening using EKG signals [45]. The model classifies each RR-interval
from the EKG recording of a sleep study as apneic or normal, compared against RR-
intervals manually annotated by PSG technologists. The model stores the label for each RR-
interval from an overnight sleep study in its memory using the LSTM feature. The Apnea–
Sleep (AS) ratio for the entire recording, defined as the ratio of total apnea to total sleep
time, is then automatically calculated and reported. The optimal threshold to classify
moderate (AHI ≥ 15 to <30) and severe (AHI ≥ 30) sleep apnea was calculated for the
training dataset from a sleep clinic in Japan. The model achieved a sensitivity of 92%
when tested on a different dataset from the Shiga University of Medical Science (SUMS)
sleep lab in Japan. The model was also tested on 35 PSGs recorded in the 1990s from the
Germany-based PhysioNet Apnea-ECG dataset, achieving a sensitivity of 95%. However,
the optimal AS ratio had to first be determined using 34 PSGs from the PhysioNet dataset
for training. The study datasets included patients with Chronic Obstructive Pulmonary
Disease (COPD), asthma, cardiac arrhythmias, diabetes, and other potentially confounding
comorbid conditions. Subjects with arrhythmias were reported to account for a significant
proportion of false negative results.

Clinical predictive models for OSA are useful tools for screening at-risk patients. Kuan
et al. reported a Feed-Forward Neural Network with Multilayer Perceptron (MLP) back-
propagation that was trained to identify patterns suggestive of OSA based on three clinical
features—age, sex and Body Mass Index (BMI)—among adult participants who had under-
gone full-night PSGs [31]. The three parameters predicted moderate-to-severe OSA (AHI ≥ 15)
with a sensitivity of 87.7% compared against expert-scored PSG diagnoses of OSA.

3.5.2. REM Sleep Behavior Disorder

Wallis et al. reported a deep 1D-CNN that was trained to detect phasic bursts and
tonic activity on chin and leg electromyography (EMG) signals that were rectified to an
amplitude function [30]. The model classified episodes of RSWA in accordance with AASM
criteria, achieving a balanced accuracy of 91% and Cohen’s kappa of 0.68. The residual
connections CNN outperformed other deep learning models that were designed and tested
in the same study, including an LSTM-RNN and other CNNs with different designs.

3.5.3. Narcolepsy

Stephansen et al. trained and validated an ensemble CNN for the detection of narcolepsy
type I [32]. The model first performed sleep staging by generating a hypnodensity graph of
sleep stage probabilities for each epoch. The model was trained to detect typical polysomno-
graphic features of narcolepsy, including sleep latency, REM latency, and sleep onset REM
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periods (SOREMPs). The model also automatically extracted novel hypnodensity-based fea-
tures for narcolepsy detection, ultimately creating a narcolepsy biomarker consisting of up to
38 PSG features. Finally, 90% sensitivity and 92% specificity were reported in a high-pretest
probability cohort (consisting of patients who had a positive MSLT) of the testing data. This
cohort, whose HLA-genotyping results were not revealed to the model, indicated that the
model could differentiate Type 1 narcolepsy from other hypersomnias.

3.5.4. Periodic Limb Movements of Sleep

A 2019 study from Denmark trained and validated an LSTM model that learns and
extracts limb movement features from anterior tibialis EMG signals using 800 PSGs from
three cohorts [46]. The memory feature enabled the model to detect PLMS, which are
defined as four or more consecutive limb movements within a specified intermovement
interval of 5 to 90 s. The performance of the system was compared (validated) against
expert technicians and existing PLMS detectors. The LSTM achieved a maximum F1
score of 0.770 ± 0.049 for limb movement detection and 0.757 ± 0.050 for PLMS detection,
performed significantly better than two human scorers, with no mean difference in F1
scores with the remaining seven scorers, and it outperformed other automatic detectors
that were previously evaluated on a subset of the Wisconsin Sleep Cohort (WSC).

Biswal et al. reported a RCNN designed to extract features from tibialis anterior
EMG signals to detect limb movements, providing a binary output with both periodic and
isolated movements classified as limb movements [33]. A correlation of 0.7 was reported
between the model-predicted and expert-scored Limb Movement Index (LMI), defined as
the number of limb movements per hour.

4. Discussion

Our review highlights a notable gap in the availability of clinically translatable and
validated ML models for integration into sleep medicine. Focusing on models that automate
standard diagnostic methods and validated with independent datasets, we found that less
than 1% of the reviewed studies met these criteria.

The integration of AI into sleep clinics, especially in interpreting polysomnographic
data, brings forth several challenges and pitfalls that need to be addressed [52,53]. There is
a pressing need for robust and generalizable ML models that are safe for clinical application.
Overfitted models, which perform well on training data but poorly on new data, could pose
significant risks in a clinical context. Equally concerning are underfitted models, which fail
to capture the complexity of clinical data, leading to inaccurate or overly simplistic analyses.
These models necessitate skilled researchers for development and implementation, there-
fore ensuring their generalizability in clinical cohorts and equipping healthcare providers
with the necessary skills for their use. Implementing stringent independent validation and
testing can prevent overfitting, a concern particularly pertinent in complex DL models that
utilize numerous features [17,18]. This is especially relevant in the field of sleep medicine,
as all 18 of the studies included in this review, and 30 out of the 33 articles assessed for
eligibility, reported DL-based models. It is also worth noting that 13 of the included studies
used clinical cohorts from different datasets for model development. External validation
across diverse clinical settings is crucial to ensure the safety and adaptability of ML models
in various environments that have patient demographics and different protocols, such
as PSG setups and scoring rules. Researchers can potentially leverage data from several
publicly available online, sleep study datasets worldwide to build models that are more
universally applicable.

Our study highlights the existing research in AI applications within sleep medicine
across numerous clinical and bioengineering centers. However, the field faces several
challenges. Our search did not find any reported AI models for detecting a broad spectrum
of common sleep disorders like insomnia, central sleep apnea, restless leg syndrome, and
circadian rhythm sleep disorders that met our inclusion criteria. The cautious use of
consumer wearables, not yet approved for standard medical diagnostics, must be kept
in mind. Moreover, the cost of AI implementation in clinical practice and the lack of
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standardized PSG data across sleep laboratories, each with its specific equipment and
data storage methods, pose additional challenges. Importantly, issues of data integrity,
security, and ethics must be meticulously addressed, as emphasized by the AASM [54]. In
the current era, AI in sleep medicine is not meant to replace clinicians but to enhance their
decision-making and patient care capabilities. The AASM’s AI task force outlines five key
areas for the application of big data in sleep medicine: improved diagnostic classification
and accuracy; predictive treatment models; subtyping sleep disorders; the automation of
sleep scoring; and patient-centered approaches to improve treatment compliance, such
as with Positive Airway Pressure (PAP) therapy [55]. Ensuring the responsible use of AI
and big data, addressing underfitting or overfitting, and maintaining patient privacy are
imperative in advancing these goals.

It is important to note the limitations of our review. Due to time constraints and the
broad scope of our query, we could not search databases such as Scopus. Hence, our search
may not have retrieved all the pertinent literature. However, we conducted a search of both
a clinical (PubMed) and an engineering-related (IEEE) database.

5. Conclusions

There remains a critical need for ML models to undergo thorough validation and
established reliability before they can be broadly implemented in clinical sleep medicine.
The scarcity of studies reporting independent validation datasets in the intersection of
sleep medicine and AI underscores the importance of rigorous validation and testing to
substantiate the efficacy of new AI models. This necessitates a concerted effort for more
comprehensive studies that focus on validating ML models across diverse and heteroge-
neous populations drawn from clinical cohorts.
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