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Abstract: Accelerated brain aging (ABA) intricately links with age-associated neurodegenerative
and neuropsychiatric diseases, emphasizing the critical need for a nuanced exploration of het-
erogeneous ABA patterns. This investigation leveraged data from the UK Biobank (UKB) for a
comprehensive analysis, utilizing structural magnetic resonance imaging (sMRI), diffusion magnetic
resonance imaging (dMRI), and resting-state functional magnetic resonance imaging (rsfMRI) from
31,621 participants. Pre-processing employed tools from the FMRIB Software Library (FSL, version
5.0.10), FreeSurfer, DTIFIT, and MELODIC, seamlessly integrated into the UKB imaging processing
pipeline. The Lasso algorithm was employed for brain-age prediction, utilizing derived phenotypes
obtained from brain imaging data. Subpopulations of accelerated brain aging (ABA) and resilient
brain aging (RBA) were delineated based on the error between actual age and predicted brain age.
The ABA subgroup comprised 1949 subjects (experimental group), while the RBA subgroup com-
prised 3203 subjects (control group). Semi-supervised heterogeneity through discriminant analysis
(HYDRA) refined and characterized the ABA subgroups based on distinctive neuroimaging features.
HYDRA systematically stratified ABA subjects into three subtypes: SubGroup 2 exhibited extensive
gray-matter atrophy, distinctive white-matter patterns, and unique connectivity features, display-
ing lower cognitive performance; SubGroup 3 demonstrated minimal atrophy, superior cognitive
performance, and higher physical activity; and SubGroup 1 occupied an intermediate position. This
investigation underscores pronounced structural and functional heterogeneity in ABA, revealing
three subtypes and paving the way for personalized neuroprotective treatments for age-related
neurological, neuropsychiatric, and neurodegenerative diseases.

Keywords: accelerated brain aging; advanced brain aging; subtypes; heterogeneity; structural MRI

1. Introduction

The brain aging process elicits intricate alterations in both the structure and func-
tion aspects of the brain. This phenomenon manifests in various forms of degeneration,
encompassing cortical thinning [1], increased white-matter atrophy and lesions [2], and
diminished functional connectivity [3]. Despite the profound impact of aging on the
brain, current investigations into brain aging, specifically the categorization of brain aging
subtypes based on neuroimaging features, are at an early stage of development [4,5]. Re-
searchers are navigating the complexities of understanding the diverse patterns associated
with brain aging. The complexity is further heightened by the interplay among genetic,
lifestyle, and environmental factors, all of which contribute significantly to the observed
diversity in the brain aging process [6–8]. This apparent heterogeneity intrinsic to brain ag-
ing emphasizes the imperative of studying brain-aging subtypes to unravel the underlying
mechanisms and variations of brain aging within the aging population [9].
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Traditional brain-aging research has categorized brain aging into distinct categories:
resilient brain aging (RBA) [10–12], normal brain aging, and accelerated brain aging (ABA),
occasionally referred to as advanced brain aging [13,14]. Such studies have revealed that
RBA is associated with a greater resistance to the risk of neurodegenerative diseases like
Alzheimer’s disease (AD). Conversely, ABA represents a paradigm wherein aging processes
within the cerebral domain proceed at an accelerated pace, surpassing the expected rate
corresponding to an individual’s chronological age. This acceleration is evidenced by the
manifestation of cerebral characteristics that appear older than anticipated. Discernible
disparities in the brain-aging biomarkers of ABA have been well-documented within the
context of neuropsychiatric disorders. Conditions such as schizophrenia, post-traumatic
stress disorder, anxiety disorders, and depression exhibit conspicuous deviations in some
brain-aging biomarkers [15]. This observation underscores the intricate interplay between
ABA and the underlying pathophysiological substrates of neuropsychiatric disorders. The
implication arises that ABA processes may serve as potential contributors to the etiology
and progression of such conditions. Expanding upon extensive databases of normative
aging, the analysis of MRI data emerges as a pivotal avenue for scrutinizing ABA within
the cerebral milieu. One such methodology, the Brain Age Gap Estimation (BrainAGE)
method [16], leverages machine-learning techniques to discern individual-level variability
in brain-aging dynamics. This involves the utilization of standard MRI sequences, wherein
a prediction model, derived from a learning sample comprising neurologically healthy
adults, is deployed to estimate the apparent biological age of a new individual’s brain. In
this process, the disparity between the estimated biological age and the subject’s chrono-
logical age constitutes the brain-age “gap” (BAG), a metric quantifying the extent to which
a given brain appears comparatively “older” or “younger” relative to the individual’s
chronological age. The BrainAGE method thus provides a sophisticated means of assessing
and quantifying the accelerated aging phenomenon within the brain, offering insights into
the individualized dynamics of cerebral aging beyond chronological timelines. Studies
have established positive correlations between increased BrainAGE and numerous dis-
eases, including obstructive sleep apnea [17], schizophrenia [18], AD [19], major depressive
disorder [20], chronic poststroke language impairment [21], and Parkinson’s disease [22].
Therefore, elucidating the heterogeneity of ABA is crucial for understanding the underlying
pathophysiological processes in brain aging [23].

Within the realm of neurological disorders, the application of unsupervised clustering
algorithms stands as a pervasive methodology for conducting ABA subtype analyses. In a
seminal study by Wrigglesworth et al. [24], 167 individuals exhibiting ABA were identified
from a cohort of 326 community-dwelling older adults based on their BrainAGE metrics.
The investigators proceeded to employ latent class analysis (LCA) on the ABA subjects,
incorporating a comprehensive array of cognitive, lifestyle, and health measures. The
results of the LCA revealed the presence of two distinct ABA subtypes. The first subtype
exhibited a low prevalence of obesity, a diminished likelihood of low general cognitive
status, a smaller probability of low mental quality of life (QoL), and a reduced likelihood of
low physical QoL. In contrast, the second subtype was characterized by a higher prevalence
of hypertension, a lower probability of high general cognitive status, moderate scores in
mental QoL, and a diminished likelihood of high physical QoL. These findings underscore
the utility of unsupervised clustering in unraveling nuanced health-related subtypes within
the context of ABA. Unlike unsupervised learning, semi-supervised learning methods
utilize labeled and unlabeled data to train a base classifier to distinguish between tar-
get and control groups, which is then updated in an unsupervised manner to discover
the heterogeneity of the target group. This approach leads to more accurate predictions
and a deeper understanding of the disease. Eavani et al.’s study [25] in ABA, utilizing
the Mixture of Experts (MOEs) method on MRI data from 400 participants aged 50 to
96, identifies 5 distinct ABA phenotypes. This research underscores the importance of
capturing the heterogeneity and subtypes of ABA rather than seeking a single signature,
providing insights for future studies in understanding the neurobiological underpinnings
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of ABA. However, this study confronts two notable challenges. First, the limited dataset,
encompassing approximately 261 subjects displaying ABA that were derived from around
400 participants, may raise concerns about the generalizability of the results. Addition-
ally, while the MOE framework amalgamates the unsupervised modeling of mixtures of
distributions with the supervised learning of classifiers, bestowing it with commendable
merits in subgroup identification and multivariate pattern discrimination, it is not without
its shortcomings. The MOE method’s integration of classification with clustering strategies
leads it to inherit the limitations inherent in traditional clustering methods, particularly in
the context of high-dimensional data where sparsity and dimensionality challenges prevail.
With escalating dimensionality, the notion of distance between data points loses its meaning
and becomes increasingly inadequate for discerning inherent patterns. This predicament
is further exacerbated by the high sparsity endemic to high-dimensional spaces, yielding
clustering outcomes that are marked by instability and unreliability. In this context, even
minor perturbations in data points can yield entirely disparate cluster assignments, thereby
compromising the robustness and consistency of the clustering results. In stark contrast, the
recently developed heterogeneity through discriminant analysis (HYDRA) [26] was used
for this study. A multiple max-margin discriminative analysis framework algorithm offers
a promising and innovative solution. HYDRA’s prowess lies in its remarkable capacity
to effectively capture neuroanatomical subtypes by utilizing multiple linear hyperplanes
to create a convex polytope that distinctly separates various subgroups. Notably, HY-
DRA leverages the modeling capabilities of linear support vector machines (SVMs) to
discriminate between homogeneous classes, even within high-dimensional data spaces.
Moreover, HYDRA adopts a sophisticated two-pronged approach to improve upon its
predecessor. Firstly, it meticulously initializes the iterative algorithm with great care, with a
specific emphasis on promoting clustering solutions that exhibit diversity related to disease
characteristics. This is achieved through the application of determinantal point processes
(DPPs) to sample a wide array of aging directions, thus refining the initial clustering assign-
ments. Secondly, HYDRA acknowledges the variability inherent in estimated solutions,
particularly in non-convex settings, and skillfully employs a multi-initialization strategy
in tandem with a fusion step. This comprehensive approach results in the production of
robust and consistent results that accentuate the underlying group structure while simul-
taneously minimizing the impact of noisy perturbations. Overall, the innate advantages
and advanced methodologies of HYDRA position it as a compelling and superior choice
for heterogeneous analysis. Consequently, HYDRA has garnered widespread adoption
in disease subtype analysis and recognition as the preeminent heterogeneous analysis
algorithm in current practice [26–30].

In the course of this scientific investigation, BrainAGE functions as the pivotal tool for
the stratification of the aging population into ABA and RBA subpopulations. Subsequent
to this stratification, our study delves into the nuanced task of estimating diverse aging tra-
jectories within the ABA population relative to the RBA. This intricate analysis is facilitated
through the utilization of multimodal MRI image features. This research methodology
signifies a departure from previous studies as it entails the examination of a notably expan-
sive dataset comprising 5152 subjects. Within this dataset, 1949 subjects are representative
of the ABA subpopulation, while 3203 represent the RBA subpopulation. The data were
meticulously sourced from the UK Biobank (UKB) database, a reservoir of information
that spans multiple distinct imaging modalities. Specifically, the brain imaging-derived
phenotypes (IDPs) encompass 207 features derived from structural magnetic resonance
imaging (sMRI), 144 features from diffusion magnetic resonance imaging (dMRI), and
210 features from resting-state functional magnetic resonance imaging (rsfMRI). This com-
prehensive approach substantially fortifies the robustness of our analysis, enabling a more
nuanced understanding of the intricate interplay between ABA subpopulations and their
corresponding neuroimaging profiles. By meticulously dissecting these multimodal MRI
features, our investigation aims to contribute novel insights into the complex landscape of
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ABA, thus advancing our comprehension of the underlying mechanisms at play within the
aging process.

In this study, we make three crucial contributions. Firstly, our investigation conducts
a thorough examination of ABA subtypes through the application of multimodal neu-
roimaging techniques. To our knowledge, this study stands as the first-ever exploration
into ABA heterogeneity utilizing multimodal neuroimaging on a significant scale, drawing
from a substantial cohort of healthy volunteers (n = 31,621). This addresses challenges
associated with limited sample sizes in previous research, ensuring a more comprehensive
understanding of the diverse ABA population. Secondly, the high dimensionality (n = 561)
poses challenges in heterogeneity analysis algorithms, prompting the introduction of the
innovative HYDRA method for scrutinizing brain-aging heterogeneity. This approach
effectively addresses inherent limitations in traditional methods applied to the analysis
of ABA heterogeneity, showcasing its potential to unravel intricate patterns within high-
dimensional neuroimaging datasets. This promises a fruitful avenue for future research into
brain-aging heterogeneity. Beyond these advancements, the study’s contributions extend to
the broader significance of understanding brain aging. Stratifying ABA subjects into three
subtypes establishes a foundation for personalized prevention approaches against condi-
tions like dementia. In essence, this study not only propels the methodological landscape
of neuroimaging research forward but also holds profound implications for translational
applications in the realms of personalized medicine and preventative neurology.

The organization of the remainder of this paper is as follows. In Section 2, a com-
prehensive introduction unfolds, elucidating essential facets such as the UKB data, the
neuroimaging processing pipeline, the machine-learning model employed for brain-age
prediction and the identification of ABA subgroups, and a meticulous overview of the
statistical procedures that underpin this study. Section 3 meticulously unveils the study
results, with a particular focus on the nuanced analysis of ABA subtypes. Following the
presentation of results, Section 4 engages in a comprehensive discussion that contextualizes
the findings within the broader landscape of neuroimaging research and the understanding
of ABA, while a concise summary is encapsulated in Section 5.

2. Materials and Methods
2.1. Participants

The data utilized in this investigation emanated from a population-based prospective
cohort study, namely the UKB [31], which is accessible at www.ukbiobank.ac.uk (accessed
on 11 January 2021). The UKB had previously secured ethical approval from the North
West Multi-centre Research Ethics Committee (REC reference 11/NW/0382). Furthermore,
the research initiative documented herein had received approval from the UKB, designated
by application number 68,382. During in-person interviews, a standardized questionnaire
was employed to systematically acquire an extensive array of lifestyle information from the
study participants. Additionally, the cognitive status of the subjects was evaluated using a
touch-screen questionnaire. The UKB encompassed a comprehensive cohort, comprising a
total of over 500,000 individuals.

As part of the overarching UKB study, a subset of participants underwent neuroimag-
ing procedures, resulting in the acquisition of brain imaging data. To ensure data ho-
mogeneity, each of the three imaging centers was equipped with identical scanners and
fixed platforms, maintaining consistency by refraining from major software or hardware
updates throughout the study. Specifically, each center utilized a 3T Siemens Skyra (Skyra
3T, Siemens Healthcare GmbH, Erlangen, Germany) with software platform VD13 and a
32-channel receive head coil dedicated to brain imaging. The T1-weighted MRI employed
a Magnetization-Prepared Rapid Gradient-Echo (MPRAGE) sequence characterized by a
high spatial resolution of 1 × 1 × 1 mm, an image matrix of 208 × 256 × 256 mm3, and
inversion time (TI)/repetition time (TR) of 880/2000 ms. DMRI data acquisition encom-
passed two b values (b = 1000, 2000 s/mm2) with a spatial resolution of 2 × 2 × 2 mm,
covering a comprehensive set of 100 distinct directions. This protocol incorporated a multi-

www.ukbiobank.ac.uk
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band acceleration factor of 3. RsfMRI was executed with specific acquisition parameters,
featuring a spatial resolution of 2.4 × 2.4 × 2.4 mm, a TR of 0.735 s, an echo time (TE) of
39 ms, and a multiband acceleration factor of 8. These standardized imaging protocols
contribute to the reliability and consistency of the acquired data across the study cohort.

The selection process, detailed in the accompanying Figure 1, adhered to rigorous
criteria aimed at ensuring data quality. Exclusion was based on the International Classifi-
cation of Diseases, Tenth Revision (ICD-10), diagnostic classification system. Individuals
diagnosed with malignant tumors of the eye, brain, and other parts of the central nervous
system; cerebrovascular disease; psychiatric and behavioral disorders; neurological dis-
orders; and other disorders affecting brain health were excluded from the analysis. This
screening procedure led to the inclusion of 388,721 subjects between the ages of 45 and
83. Subsequently, 31,621 subjects possessing comprehensive sMRI, dMRI, and rsfMRI data
were selected. This subset was then randomly divided into a training set (40%) and a test
set (60%) to implement the brain-age prediction model. Within the test set, individuals
exhibiting characteristics of ABA or RBA were identified using the brain-age prediction
model. Specifically, individuals demonstrating a positive BrainAGE across all three imag-
ing modalities were assigned to the ABA group. Conversely, those displaying consistently
negative values in all three imaging modalities were assigned to the RBA group. Further-
more, participants who had not completed all nine cognitive tests, as well as those with
incomplete data on covariates, were eliminated from the final analysis. As a result, the
study ultimately comprised 1949 subjects classified within the RAB group, characterized by
a mean age of 63.6 years with a standard deviation of 7.97. Concurrently, the ABA group
encompassed 3203 subjects with a mean age of 64.6 years and a standard deviation of 6.96.
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2.2. Imaging-Derived Phenotypes (IDPs)

The UKB presents a diverse array of neuroimaging modalities [32]. Following the
meticulous acquisition of data, a standardized methodology is applied for image prepro-
cessing and preliminary analysis, leading to a comprehensive set of IDPs. The carefully
curated IDPs serve as the foundation for capturing valuable insights into different aspects
of the brain structure and function, facilitating a comprehensive investigation aligned with
the study’s objectives.

The T1 MRI, distinguished for its meticulous precision, stands as a structural modality
acclaimed for its remarkable ability to intricately capture detailed brain anatomy at an
impressive resolution. This imaging modality provides a potent contrast between gray
and white matter, facilitating the accurate visualization of intricate brain structures. The
quantification of volumes was meticulously conducted using the FMRIB software library
(FSL, version 5.0.10), accessible at http://fsl.fmrib.ox.ac.uk/fsl (accessed on 16 February
2022). Employing the FMRIB’s automated segmentation tool (FAST, version FAST3), a total
of 139 IDPs were derived. This was achieved by aggregating partial volume estimations
within 139 regions of interest (ROIs) (UKB ID: 25782-25920) established in the MNI152
space, amalgamating parcellations from various atlases, including the Harvard–Oxford
cortical and subcortical atlases (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases, accessed on
16 February 2022) and the Diedrichsen cerebellar atlas (http://www.diedrichsenlab.org/
imaging/propatlas.htm, accessed on 16 February 2022). The warp field, previously esti-
mated to effectuate the transformation of subject data into a standardized space, underwent
inversion and subsequent application to the ROIs. This process generated a version of the
ROIs in the native space, facilitating precise masking within the segmentation framework.
Extraction of cortical thickness from cortical regions involved the meticulous implemen-
tation of the established FreeSurfer parcellation scheme [33]. This scheme, grounded in
the Desikan–Killiany atlas, comprehensively delineates cortical domains across both hemi-
spheres, encompassing a total of 68 discrete regions (UKB ID: 25755-26788, 26856-26889).

DMRI serves as a crucial tool for evaluating water molecule movement within the
local tissue environment. At the voxel level, local estimates of diffusion properties provide
valuable insights into microstructural tissue integrity, encompassing diffusion tensor es-
timates. Furthermore, long-range estimates derived from tractography, which involves
the meticulous tracing of brain pathways, offer comprehensive information about the
structural connectivity between pairs of brain regions. In this study, we employed the
DTIFIT tool (available at https://fsl.fmrib.ox.ac.uk/fsl/fdt, accessed on 16 February 2022),
to fit a diffusion tensor at each voxel. This procedure yielded multiple diffusion measures,
encompassing fractional anisotropy (FA) and mean diffusivity (MD) maps. These collective
measures provide a comprehensive elucidation of the characteristics of water diffusion
within the brain tissue. Moreover, the dMRI data underwent sophisticated processing
leveraging using NODDI (Neurite Orientation Dispersion and Density Imaging). NODDI
enables the estimation of crucial white-matter microstructural parameter isotropic water
volume fraction (ISOVF).

To delve into the intricacies of the white-matter microstructure, we employed tract-
based spatial statistics (TBSS). TBSS facilitates the alignment of the FA image onto a
standard-space white-matter skeleton through high-dimensional FNIRT-based warping.
This standardized-space warp is subsequently applied to all other dMRI measures. Each
resulting skeletonized image for dMRI measures underwent averaging across 48 standard
spatial tract masks, meticulously defined by Susumi Mori’s group at Johns Hopkins Uni-
versity. This detailed averaging procedure produced a total of 144 distinctive IDPs (FA
(UKB ID: 25056-25103), MDs (UKB ID: 25104-25151), and ISOVFs (UKB ID: 25440-25487)).

The analysis of rs-fMRI images was conducted using the MELODIC (Multivariate
Exploratory Linear Decomposition into Independent Components) framework [34]. This
processing pipeline integrated group principal component analysis and independent com-
ponent analysis, culminating in the extraction of spatially orthogonal independent compo-
nents (ICs) representing distinct resting-state neural networks. A low-dimensional group-

http://fsl.fmrib.ox.ac.uk/fsl
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
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independent component analysis approach was employed to obtain a population-level
spatial map of the resting-state network. The functional images underwent pre-processing
with 25 fractions (UKB ID: 25752), and a meticulous exclusion process eliminated 4 noise
components, resulting in a set of 21 components of particular interest. Each of these
components corresponded to unique resting-state networks, offering invaluable insights
into the underlying neural activity patterns during rest. The online visualization of these
ICs is facilitated through the Papaya viewer (https://www.fmrib.ox.ac.uk/ukbiobank/
group_means/rfMRI_ICA_d25_good_nodes.html, accessed on 16 February 2022). This
viewer, along with accompanying maps, provides an interactive and insightful platform
for exploring and comprehending the spatial distribution of the ICs derived from rs-fMRI
data. Moreover, a partial correlation matrix derived from rsfMRI data was utilized to
represent the number of network connections, totaling 210 values. This was calculated by
multiplying the 21 networks by 20 (excluding identity correlations) and dividing by 2, con-
sidering the matrix’s diagonal symmetry. The implementation of partial correlation aimed
to enhance the precision of estimating direct “connections” between networks compared to
full correlation.

2.3. Brain-Age Prediction Model

Lasso, short for “Least Absolute Shrinkage and Selection Operator,” is a statistical
regularization technique in machine learning. It adds a penalty term to the regression equa-
tion, constraining the absolute size of the coefficients and effectively promoting sparsity
by forcing some coefficients to be exactly zero. Lasso is widely employed in predictive
modeling, particularly when dealing with high-dimensional datasets. Prior investigations
into brain-age prediction [35,36] have consistently demonstrated the superior performance
of the Lasso model when compared to other machine-learning models. Given these com-
pelling findings, we have chosen the Lasso model as the method of choice for brain-age
prediction in our study.

Within the Lasso model, the penalty regularization parameter, denoted as alpha,
assumes a pivotal role in determining the intensity of the penalty applied to model param-
eters. The magnitude of alpha directly influences the strength of the penalties assigned
to each parameter, resulting in varying degrees of model shrinkage. In the context of this
study, we meticulously defined the grid search space for the alpha parameter as (0.001, 0.01,
0.1, 1, 10, 100). This specific range was chosen to efficiently explore the parameter space
and identify the optimal alpha value that would maximize model performance.

BrainAGE [37] is a neuroimaging-based metric designed to quantify the difference
between an individual’s actual chronological age and the predicted age of their brain.
This innovative approach leverages structural brain imaging data to provide insights into
the aging process at the neural level. The fundamental premise behind BrainAGE is to
assess the extent to which the brain either accelerates or decelerates in comparison to
the individual’s chronological age. BrainAGE also has a strong correlation with brain
maintenance (BM) [38]. The brain-age prediction model entails the application of machine-
learning techniques to brain imaging data, enabling the development of a predictive model
for estimating the “age” of the brain through its imaging features. The BrainAGE score
is derived by calculating the difference between the age predicted by the model and an
individual’s chronological age (Equation (1)). A positive BrainAGE score suggests that
the brain is aging at a faster rate than expected, potentially indicating accelerated aging or
suboptimal BM. Conversely, a negative BrainAGE score implies a more youthful-appearing
brain, indicative of better-preserved structural characteristics than what would be expected
based on chronological age.

BrainAGE = Predicted age − Chronological age (1)

Recent studies have underscored the presence of a proportional bias in the computation
of brain age, where the disparity between chronological age and predicted brain age exhibits
a negative correlation with chronological age. This phenomenon is attributed to the well-

https://www.fmrib.ox.ac.uk/ukbiobank/group_means/rfMRI_ICA_d25_good_nodes.html
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documented effect of regression toward the mean [35,39]. This phenomenon has the
potential to introduce bias in the prediction of age, which may be overestimated in younger
subjects and underestimated in older subjects compared to their respective chronological
ages. Given the inherent age-related bias, the imperative arises for the implementation of
an age-bias correction procedure, as outlined in Equation (2).

Predicted agecorrected = Predicted ageraw − α − β × Chronological age (2)

where Predicted ageraw indicates brain age predicted by the Lasso model, and α and β

represent the intercept and slope of the regression line between chronological age and
predicted age in the training set.

Subsequently, subjects in the test sets were systematically categorized based on their
BrainAGE. Individuals displaying positive BrainAGE values across all three modalities
were categorized into the ABA group, indicating that their predicted brain age exceeded
their chronological age. Conversely, subjects with negative BrainAGE values across the
three imaging modalities were assigned to the RBA group, indicating a favorable condition
where the predicted brain age suggested a structure and function younger than their actual
age. This stratification provides a nuanced understanding of age-related deviations in brain
structure and function, fostering a comprehensive characterization of individual differences
in brain aging within the study cohort.

2.4. Non-Imaging Derived Phenotypes (Non-IDPs)

Throughout their active engagement in the UKB study, subjects were diligently queried
to furnish comprehensive insights into their lifestyle and physical health using diverse
methodologies. The amalgamation of this wealth of information culminated in the creation
of non-imaging derived phenotypes (Non-IDPs), which serve as integral components of
the broader analytical framework. The study comprehensively examined six Non-IDPs
intricately associated with lifestyle and physical health. These variables included systolic
blood pressure (UKB ID: 4080), time spent driving (UKB ID: 1090), hand grip strength (UKB
ID: 46, 47), usual walking pace (UKB ID: 924), and diabetes diagnosed by a doctor (UKB
ID: 2443).

2.5. Neuropsychological Tests

The neuropsychological battery, consisting of nine cognitive domains [40], served as
the foundation for cognitive evaluation in this study. Specifically, two cognitive scales
within the scope of our investigation—reaction time (UKB ID: 20023) and trail-making
(UKB ID: 6350)—both incorporating time as a test outcome, underwent a log transformation
to enhance their analytical robustness. A detailed overview of the neuropsychological tests
is provided in Table 1.

Table 1. Cognitive domain, neuropsychological tests, and test descriptions.

Testing Description Cognitive Domain UKB ID

Pairs matching Number of incorrect
matches made in round

Visual declarative
memory 399

Numeric memory Maximum number of
digits remembered correctly Working memory 4282

Fluid intelligence Fluid intelligence score
assessment

Verbal and numerical
reasoning 20016

Paired associate
learning

Number of correctly
associated word pairs

Verbal declarative
memory 20197

Matrix pattern
completion

Number of correctly
solved puzzles

Non-verbal
reasoning 6373

Reaction time Mean time taken to correctly identify matches Processing speed 20023
Symbol digit
substitution Number of correct symbol digit matches made Processing speed 23324
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Table 1. Cont.

Testing Description Cognitive Domain UKB ID

Tower rearranging Number of correctly
solved puzzles Executive function 21004

Trail-making Duration to complete
alphanumeric path Executive function 6350

2.6. Identification of ABA Subgroups Using HYDRA

Leveraging the information derived from IDPs, we employed the HYDRA algorithm
to discern distinct ABA subtypes [26]. HYDRA is a semi-supervised machine-learning
algorithm tailored for unraveling the intricacies of disease heterogeneity. In this study,
this algorithm achieves ABA heterogeneity by partitioning ABA subjects, discerning pat-
terns or transformations between subpopulations within the ABA group and a reference
group (i.e., RBA subjects). The partitioning process employs a convex polytope, a construct
amalgamating multiple linear max-margin classifiers. Notably, HYDRA demonstrates the
capability to effectively regress out nuisance covariates, such as age and sex, enhancing
its precision in discerning genuine patterns associated with brain aging. In its approach,
HYDRA conceptualizes subjects as points within a high-dimensional space, aligning with
the support vector machine (SVM) classification framework. Leveraging the discriminative
power of linear SVMs in high-dimensional spaces, HYDRA extends this capability to the
non-linear domain in a piecewise fashion. This extension involves the formation of a
convex polytope through the combination of multiple hyperplanes, effectively segregat-
ing the two groups. Enclosed within this convex polytope are the RBA samples, while
distinct faces of the polytope facilitate ABA subtyping. Each face encapsulates a distinct
multivariate pattern of difference between the two groups, and hence a distinct accelerated
aging process.

In the initial phase, HYDRA allocates different labels to the ABA and control groups
(RBA subjects). Subsequently, the algorithm integrates multiple linear max-margin classi-
fiers into a convex polyhedron by clustering the k-values, where k represents the number of
clusters, effectively distinguishing control subjects from those exhibiting ABA. The assign-
ment of ABA subjects to the nearest hyperplane within a single linear subclassifier results
in the division of all ABA subjects into K clusters, with each polyhedron encapsulating
the distinct characteristics of an ABA subtype. The optimization problem is systematically
addressed through an iterative procedure, alternately assigning ABA samples to the faces
of the polytope and estimating hyperplanes to maximize the overall margin. This iterative
coupling between clustering and classification serves the dual purpose of segregating
ABA subjects based on accelerated brain-aging effects, rather than a global anatomical
perspective. For optimizing the identification of ABA subtypes, a systematic approach was
employed, ranging from two to five clusters, with five-fold cross-validation. Covariates,
including age, gender, and education level, were considered during the process. Of note,
the educational level underwent a transformation into years of education, aligning with
established practices in prior research [41]. The stability of clustering outcomes was quanti-
fied using the adjusted rand index (ARI) [26] in conjunction with five-fold cross-validation.
The determination of the optimal number of clusters relied on the maximum ARI, ensuring
the selection of the most reliable clusters. The comprehensive workflow is depicted in
Figure 2.



Bioengineering 2024, 11, 124 10 of 26

Bioengineering 2024, 11, x FOR PEER REVIEW 10 of 27 
 

 
Figure 2. The comprehensive workflow of the present investigation. 

2.7. Statistical Analysis 
The study encompassed three primary sections delineating distinct characteristics: 

(1) Lifestyle and determinants, encompassing variables such as age, gender, years of edu-
cation, and six lifestyle factors pertaining to physical health; (2) Neuropsychological exam, 
comprising a comprehensive battery of nine cognitive assessments; and (3) IDPs derived 
from T1, dMRI, and rsfMRI, totaling 561 IDPs. For sections (1) and (2), differences between 
matched subtypes were rigorously compared. Disparities in qualitative variables were as-
sessed using the chi-square test, while quantitative variables underwent analysis of vari-
ance (ANOVA). Two-by-two comparisons were executed utilizing Dunnett’s test, with a 
predefined statistical significance level set at p < 0.05. In section (3), the analytical frame-
work encompassed a comparison of differences between subgroups and controls, employ-
ing ANOVA. To address the issue of multiple comparisons, the Bonferroni method was 
meticulously applied, imposing a stringent threshold of q < 0.01. All statistical analyses 

Figure 2. The comprehensive workflow of the present investigation.

2.7. Statistical Analysis

The study encompassed three primary sections delineating distinct characteristics:
(1) Lifestyle and determinants, encompassing variables such as age, gender, years of
education, and six lifestyle factors pertaining to physical health; (2) Neuropsychological
exam, comprising a comprehensive battery of nine cognitive assessments; and (3) IDPs
derived from T1, dMRI, and rsfMRI, totaling 561 IDPs. For sections (1) and (2), differences
between matched subtypes were rigorously compared. Disparities in qualitative variables
were assessed using the chi-square test, while quantitative variables underwent analysis
of variance (ANOVA). Two-by-two comparisons were executed utilizing Dunnett’s test,
with a predefined statistical significance level set at p < 0.05. In section (3), the analytical
framework encompassed a comparison of differences between subgroups and controls,
employing ANOVA. To address the issue of multiple comparisons, the Bonferroni method
was meticulously applied, imposing a stringent threshold of q < 0.01. All statistical analyses
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were conducted using SPSS 26 software, a widely acknowledged statistical package (SPSS,
1989; Apache Software Foundation, Chicago, IL, USA).

3. Results
3.1. Brain-Age Prediction

Within the scope of this investigation, Lasso regression analysis was selected as the
preferred methodology for predicting brain age, with mean absolute error (MAE) serving
as the metric for evaluating model performance. Interestingly, dMRI emerged as the
modality with the highest predictive accuracy. The application of Lasso regression to dMRI
data resulted in a remarkably low MAE of 4.03 years, indicating the effectiveness of this
approach in estimating brain age. Moreover, the predictive accuracy based on T1 data,
encompassing cortical thickness and gray-matter volume, resulted in an MAE of 4.17 years,
while rsfMRI demonstrated an MAE of 5.28 years.

The categorization of ABA and RBA groups was contingent upon the consistency
of positive or negative BrainAGE across the three modalities within the test set of brain-
age prediction (n = 18,974). Specifically, if BrainAGE across all three modalities was
positive, the subject was categorized as ABA; conversely, if BrainAGE was consistently
negative, the subject was designated as RBA. This delineation led to the selection of
3203 subjects in the RBA group (mean age = 63.6 ± 7.97) and 1949 subjects in the ABA
group (mean age = 64.6 ± 6.96).

3.2. Definition of ABA Subgroups

Within the confines of this investigation, the HYDRA framework was implemented
to partition ABA heterogeneity, where the ABA population assumed the role of the ex-
perimental group, and the RBA population served as the control group. Subsequent to
this partitioning, meticulous scrutiny of the fidelity of cluster assignment transpired. The
examination involved systematically varying the cluster number from 1 to 5, employing
the ARI as the metric for assessment. The ARI quantifies the similarity between true and
predicted cluster assignments, offering a measure of clustering accuracy that accounts for
chance. Notably, a monotonically increasing trend was observed within the range of 1 to
3 subtypes. However, as the subtype count extended to 4 and 5, a relative decline in the ARI
values was discerned in comparison to the trinary configuration. This observation suggests
that clustering efficacy may be optimized into three distinct subtypes (refer to Figure 3). It
is imperative to note that HYDRA employed a robust five-fold cross-validation strategy.
The delineation of optimal subtypes reflects the outcomes observed in the validation sets
across these folds. Subsequent analysis delineated that, based on the cross-validation result,
783 individuals from the ABA cohort were allocated to SubGroup 1, while SubGroup 2
comprised 561 ABA subjects, and SubGroup 3 encompassed 605 ABA subjects.
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The comprehensive delineation of demographic information, as meticulously pre-
sented in Table 2, highlights the nuanced distinctions within these demographic variables.
Substantial statistical distinctions in age and sex distribution were evident within the
tripartite classification of ABA subjects. Notably, there were no discernible differences in
years of education. To mitigate the potential confounding effects stemming from these
demographic variations, the Generalized Linear Model (GLM) for IDps incorporated three
crucial demographic variables—namely, age, sex, and years of education—as covariates.
Through this inclusion, their respective influences were systematically controlled and elim-
inated. The application of rigorously controlled covariate regressions serves to enhance the
precision of subsequent analyses and facilitates a nuanced interpretation of the influence of
specific subtypes on the observed outcomes.

Table 2. Demographics characteristics of RBA and ABA subgroups.

Characteristics RBA Group SubGroup 1 SubGroup 2 SubGroup 3 p-Values

n 3203 783 561 605
Age (years) 64.62 61.57 66.78 63.40 <0.0001 a,b,c

Education (years) 16.17 15.46 15.54 15.75 0.527
Women, n (%) 1884 (58.8%) 326 (41.6%) 259 (46.2%) 302 (49.9%) 0.008 c

a: SubGroup 1 is significantly different from the SubGroup 2; b: SubGroup 2 is significantly different from the
SubGroup 3; c: SubGroup 1 is significantly different from the SubGroup 3.

Following this, an ANOVA was employed to scrutinize discrepancies among RBA
and distinct subgroups within the ABA cohort. In response to the inherent challenge
of multiple comparisons, the Bonferroni method was applied with a stringent threshold
(q < 0.01). Remarkably, this comprehensive examination revealed nuanced differences in
the patterns of sMRI, dMRI, and rsfMRI features across the three subtypes. These findings
underscore the intricate nature of neuroimaging alterations within distinct subtypes of
ABA cohorts.

In the context of structural alterations discerned through sMRI, Figures 4 and S1
in Supplementary Materials have been meticulously crafted to provide comprehensive
insights into the distinctions among the three identified ABA subgroups and the control
group. SubGroup 1, consisting of 783 elderly subjects, exhibited diffuse cortical atrophy
spanning the frontal, parietal, and temporal lobes bilaterally, with limited atrophy observed
in the occipital and limbic lobes. This subgroup displayed extensive gray-matter volume
reduction throughout the entire brain, emphasizing significant atrophy in key regions
such as the Insula, Paracentral lobule, and Angular gyrus. SubGroup 2 demonstrated
a comparable pattern of atrophy to SubGroup 1, with slight variations noted in the left
cortex of the limbic lobe and Insula. In contrast, SubGroup 3 manifested small cortical and
gray-matter volume atrophy, indicating regionally sparse and mild whole-brain atrophy.
To further elucidate these morphological alterations, a graphical representation (Figure 5)
of Z-values and their 95% confidence intervals for cortical thickness comparisons has been
incorporated. This graphical representation unveils similar regions of atrophy across the
three subgroups, yet discernible differences exist in the overall distribution pattern of
atrophy. It is imperative to underscore that all Z-values were computed with respect to the
mean and standard deviation of the RBA group, where Z-values for the RBA group serve
as the baseline with a value of 0. SubGroup 3 exhibited the least pronounced atrophy, while
SubGroup 2 showcased the most severe atrophy. These findings offer nuanced insights into
structural distinctions among ABA subgroups, unraveling the intricacies of ABA-related
morphological alterations.

Upon meticulous examination of white-matter microstructure using dMRI, SubGroup
2 emerged as a focal point characterized by substantial deviations from the control group,
indicating pronounced alterations across nearly all scrutinized regions. In comparison to
the control group, SubGroup 1 and 3 also manifested a comprehensive array of distinctions
from controls, albeit with a noticeably lower magnitude than observed in SubGroup 2.
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Graphical representations, as depicted in Figures 6–8, unravel the nuanced variations in
Z-values and their 95% confidence intervals for FA, MD, and ISOVF. All Z-values are
computed relative to the mean and standard deviation of the RBA group, serving as the
baseline with an expected value of 0. In the context of white-matter integrity, lower FA
values and elevated MD and ISOVF values are indicative of compromised microstruc-
tural integrity. Remarkably, SubGroup 2 exhibited lower Z-values in FA compared to the
other two subgroups, accompanied by higher values in MD and ISOVF. This observation
underscores a pronounced degradation of white-matter integrity in SubGroup 2. In con-
trast, the Z-values within SubGroups 1 and 3 exhibited comparable trends, displaying
closer proximity to 0. Contrary to the control group, SubGroup 1 displayed a compro-
mised white-matter microstructure akin to that observed in SubGroup 3, albeit with a
milder impact.

Examining functional connectivity through rsfMRI, this study meticulously delineates
the intricate connection strengths between distinct ABA subgroups and the control cohort.
The categorization of connection strengths within the control group, discerned through
positive and negative connections, facilitated the comparison of Z-values for the three
subgroups, elegantly presented as a heatmap in Figure 9. The Z-values presented in the
analysis are derived in relation to the mean and standard deviation of the RBA group,
establishing 0 as the baseline for Z-values in the RBA group. Noteworthy observations
emerge as groups 1 and 3 exhibit a more analogous pattern in both positive and negative
connection strengths. However, SubGroup 3 stands out with notably more negatively
linking nodes within the negative connection category. In stark contrast, SubGroup 2
presents a divergent pattern characterized by a smaller change in negative connection
strengths in comparison to the control group.

3.3. Cognitive and Non-IDPs Characteristics between Matched Subtypes

Detailed cognitive characteristics among the three ABA subtypes and the RBA are
elucidated in Table 3. SubGroup 2 prominently exhibited the most discernible cognitive
impairment, notably differing from the other subtypes in reaction time, symbol digit
substitution, and trail-making. In contrast, SubGroup 3 displayed superior cognitive
performance across all tests, demonstrating significant differences, particularly in fluid
intelligence and matrix pattern completion, compared to the other subgroups.

Table 3. Cognitive characteristics within the identified study subtypes.

Cognitive Function
Test UKB ID RBA Group SubGroup 1 SubGroup 2 SubGroup 3 p-Values

Pairs matching 399 3.577 3.664 3.814 3.540 0.307
Numeric memory 4282 6.819 6.554 6.452 6.688 0.089
Fluid intelligence 20016 6.820 6.307 6.435 6.927 <0.001 b,c

Paired associate
learning 20197 7.234 6.670 6.445 6.854 0.097

Matrix pattern
completion 6373 8.227 7.756 7.745 8.088 0.036 b,c

Reaction time 20023 2.764 2.764 2.784 2.769 <0.001 a,c

Symbol digit
substitution 23324 19.634 18.654 17.633 18.832 0.003 a,c

Tower rearranging 21004 10.041 9.807 9.580 9.958 0.246
Trail-making 6350 2.711 2.733 2.765 2.718 <0.001 a,c

a: SubGroup 1 is significantly different from SubGroup 2 (p < 0.05); b: SubGroup 1 is significantly different from
SubGroup 3 (p < 0.05); c: SubGroup 2 is significantly different from SubGroup 3 (p < 0.05).
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ABA subgroups in comparison to the RBA group. Error bars represent the 95% confidence intervals.
The black dotted line represents the mean Z-value for each subgroup.

Shifting the focus to Non-IDPs, differences among the subtypes are illustrated in
Figures 10 and 11. SubGroup 2 exhibited the most pronounced distinctions compared to
the other two ABA groups, featuring elevated blood pressure, diminished grip strength, a
higher prevalence of confirmed diabetes, and a slower pace in usual walking. SubGroups 1
and 3 displayed relatively fewer differences, primarily diverging in the time spent driving
and usual walking pace. Concurrently, notable distinctions were observed in blood pressure,
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confirmed diabetes prevalence, and usual walking pace between SubGroup 2 and the RBA
group. However, no statistically significant differences were identified in grip strength
values and driving time. In the case of SubGroup 1, marked disparities were evident
in all Non-IDP variables as compared to the RBA group, except for the prevalence of
diagnosed diabetes.
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Figure 11. Comparative assessment of qualitative Non-IDP variables between the three subtypes and
RBA group were then underwent by ANOVA, two-by-two comparisons were conducted employing
Dunnett’s test. a: SubGroup 2 is significantly different from SubGroup 3 (p < 0.05); b: SubGroup 1 is
significantly different from RBA group (p < 0.05); c: SubGroup 2 is significantly different from RBA
group (p < 0.05).
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4. Discussion

Harnessing the capabilities of HYDRA in conjunction with the distinctive datasets
provided by the UKB study, our research endeavors sought to scrutinize the existence of
neuroimaging-defined subtypes within a cross-sectional sample of ABA. Our analyses
discerned the presence of three discernible subtypes, each characterized by distinct neu-
roimaging profiles. These three subtypes manifest distinctive attributes of brain gray-matter
structure, white-matter microstructure, and functional network connectivity. Notably, Sub-
Group 3 displayed the mildest atrophy, resembling SubGroup 1 in white-matter microstruc-
ture and functional connectivity strength. In contrast, SubGroup 2 exhibited no significant
atrophy disparities compared to SubGroup 1; however, SubGroup 2 is characterized by the
most impaired white-matter microstructural integrity and displays distinctive connectivity
networks. This differentiation implies potential variations in underlying aging mechanisms,
shedding light on the intricate heterogeneity inherent in the aging process.

4.1. Complex Landscape of ABA

Within the broader spectrum, age-related cognitive impairment seldom emerges as a
consequence of a singular disease entity. Instead, it presents as a multifaceted interplay
involving diverse factors, encompassing AD, various forms of dementia, and a range
of health conditions like traumatic brain injury, stroke, depression, or developmental
disabilities. The escalating apprehension regarding age-related cognitive decline arises
from its widely recognized role as a pivotal determinant shaping the overall quality of
life [42]. Given this backdrop, there is a heightened emphasis on the pursuit of biomarkers
capable of assessing individual brain age and forecasting the trajectory of cognitive decline.

Methodologies deployed to ascertain brain age, grounded in neuroimaging data, are
designed to elucidate deviations in age-related cerebral changes. This is accomplished
through the establishment of robust reference curves for RBA and ABA, providing person-
alized metrics of brain age. Importantly, these approaches are tailored to accommodate
the multidimensional patterns that characterize the aging process within the brain. Such
sophisticated strategies hold considerable promise for advancing our understanding of
cognitive aging and facilitating proactive interventions to enhance cognitive well-being in
the aging population.

In the course of this comprehensive investigation, the ABA cohorts were meticulously
characterized based on the discerning metric of BrainAGE, as detailed in Table 4. Within
both sMRI and dMRI modalities, SubGroup 2 consistently exhibits the highest BrainAGE
levels, indicative of the most pronounced accelerated aging. However, in the realm of
rsfMRI, SubGroup 2 demonstrates the lowest BrainAGE, portraying a distinctive profile
of accelerated aging within this specific modality. Shifting the focus to the domain of
dMRI-defined BrainAGE, SubGroups 1 and 3 demonstrate comparable BrainAGE levels,
both of which are lower than that of SubGroup 2. Delving deeper into the analysis of
rsfMRI-defined BrainAGE, SubGroup 1 emerges as the category with the highest values,
yet it exhibits proximity to SubGroup 3.

Table 4. BrainAGE of the ABA subtypes.

Group sMRI rsfMRI dMRI

SubGroup 1 6.55 ± 4.51 11.51 ± 8.07 6.19 ± 4.55
SubGroup 2 7.85 ± 5.94 10.73 ± 7.79 7.19 ± 5.52
SubGroup 3 5.59 ± 4.39 11.41 ± 8.51 6.40 ± 4.64
RBA group −6.19 ± 4.56 −10.85 ± 8.14 −5.91 ± 4.06

Numerous determinants intricately shape and modulate the trajectories of individual
brain aging. The application of neuroimaging-based models in exploring brain aging has
yielded compelling insights. Notably, robust correlations have been unveiled between
ABA, AD severity, and the prospective decline in cognitive functions [43]. Additionally,
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associations have been established between ABA and mild cognitive impairment (MCI) [44],
as well as the conversion to AD [45]. Furthermore, investigations have linked ABA to
diverse factors such as traumatic brain injury [46], HIV [47], chronic pain [48], and type
2 diabetes mellitus [49]. ABA has proven indicative not only of diminished physical and
mental fitness but also of heightened allostatic load and increased mortality [50]. Moreover,
individual brain aging exhibits noteworthy connections with an array of health parameters,
personal lifestyle choices, and drug utilization [19]. Education levels and engagement
in physical activity have also emerged as significant determinants influencing the ABA
process [51]. This intricate interplay underscores the multifaceted nature of brain aging,
weaving a complex tapestry of connections with various health indicators, lifestyle elements,
and physiological conditions. The dissection of underlying mechanisms expediting brain
aging not only enables researchers to identify intervention and prevention targets but also
sheds light on the heightened risk of individuals experiencing ABA for conditions such as
AD, Parkinson’s disease, and other neurodegenerative disorders.

4.2. ABA Subtype and Cognitive Reserve

In the realm of maintaining cognitive functioning amidst brain changes or insults, two
pivotal forms of reserve come to the fore: brain reserve and cognitive reserve [52]. Brain
age estimation serves as a valuable metric, providing a nuanced perspective on brain main-
tenance and reserves. Notably, ABA individuals, when compared to age-matched peers,
exhibit compromised brain reserve capacities. This suggests that these individuals may
face challenges in deploying alternative brain networks or cognitive strategies in the face
of aging or insults. Cognitive reserve reflects the brain’s adaptive capacity against insults
or aging [53,54]. Educational attainment, commonly employed as a proxy for cognitive
reserve [55–57], reveals that ABA subjects, across three subgroups, possess educational
durations exceeding 15 years, signifying a population with high cognitive reserve. The
neural implementation of cognitive reserve manifests in two distinct forms: neural reserve
and neural compensation [58,59]. Neural reserve posits variability in primary brain net-
works or cognitive paradigms underlying task performance, thereby offering resilience
against brain aging. On the other hand, neural compensation describes the utilization
of non-normally engaged brain structures or networks to compensate for aging-induced
changes. These mechanisms exemplify the brain’s flexibility and adaptive strategies in the
face of challenges. In the present study, the application of ICA facilitates the decomposition
of fMRI data into distinctive brain networks. Positive connectivity within these networks
signifies synchronized activity between networks, reflecting collaborative involvement in
specific cognitive processes or tasks. The cooperative synergy inherent in positive connec-
tivity is indispensable for the facilitation of streamlined information processing and the
seamless execution of cognitive functions. Conversely, negative connectivity assumes a
pivotal role in promoting cognitive flexibility, affording the brain the capacity to navigate
between different cognitive states and alleviating interference among concurrent cognitive
processes. Disparities in both positive and negative network connections observed between
the ABA and RBA cohorts underscore a conspicuous neural compensation mechanism [60].
Specifically, the discernible augmentation in negative connectivity within ABA individuals
suggests that, in the face of degeneration, the brain intensifies inhibitory interactions among
disparate brain regions to counterbalance the disruptive effects of structural decline. In the
specific context of ABA subtypes 1 and 2, despite structural similarities in neurodegenera-
tion, nuanced differences in negative connectivity patterns are apparent. ABA subtype 1
prominently manifests a discernible proclivity towards cognitive compensation, indicating
adaptive responses to the structural challenges inherent in neurodegeneration. Conversely,
subtype 2 showcases a confluence of neural compensation and neural reserve. This obser-
vation underscores the inference that distinct strategies are employed by different subtypes
within the ABA context, delineating nuanced approaches to addressing the intricacies of
neurodegenerative processes.
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4.3. Limitations

This study entails certain limitations that warrant careful consideration. Firstly, the
exclusive utilization of data from the UKB introduces a notable limitation, as the subjects
are predominantly of white ethnicity and hail from the United Kingdom. Consequently,
the generalizability of the study findings to other countries or regions may be constrained.
Secondly, in the implementation of HYDRA for semi-supervised learning, the RBA was
deliberately chosen as the reference group. This decision stems from the discernible differ-
ences exhibited by the RBA when compared to the ABA cohort. Nevertheless, it is crucial
to acknowledge that this choice may introduce potential bias into the subtype estimation.
Thirdly, to validate the delineation of ABA subtypes, it is essential to broaden our experi-
mental scope by integrating additional datasets and extending the spectrum of comparative
analyses. However, a noteworthy limitation arises from the inherent inadequacies of out-
comes derived from smaller datasets, which often lack the necessary representativeness.
Moreover, the current state of the research landscape confronts a significant impediment
characterized by a shortage of openly accessible datasets commensurate in magnitude to
the UKB. This scarcity not only diminishes the depth of available data but also presents a
formidable barrier to the facilitation of seamless cross-study comparisons. However, with
increasing recognition from governments worldwide regarding the significance of large-
scale neurobiological repositories in medical and clinical research [61,62], we anticipate a
continual emergence of additional open-access large-scale biological databases.

5. Conclusions

Distinguishing itself from precedent investigations, this study capitalizes on consider-
able sample size and an extensive age spectrum, imparting significant robustness to the
examination of brain variability within the ABA cohort. The utilization of the HYDRA
methodology represents a notable methodological advancement, surpassing conventional
heterogeneity analysis techniques used in ABA analysis. HYDRA not only discerns ABA
subgroups but also enables the characterization of distinctions from the RBA group across
multiple dimensions.

Looking ahead, the inclusion of subsequent follow-up waves from the UKB study
promises a longitudinal exploration of the identified clusters. This longitudinal perspective
is essential for unraveling the evolving nature of these clusters over time and elucidating
their prognostic implications for brain and cognitive aging outcomes. The comprehensive
insights derived from this study not only unveil inherent brain heterogeneity within ABA
but also lay the groundwork for future analyses to deepen our understanding of the
cognition and brain arising from the progressive ABA observed in UKB participants.
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