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Abstract: Hemorrhage is the leading cause of preventable death in both civilian and military medicine.
Junctional hemorrhages are especially difficult to manage since traditional tourniquet placement is
often not possible. Ultrasound can be used to visualize and guide the caretaker to apply pressure at
physiological pressure points to stop hemorrhage. However, this process is technically challenging,
requiring the vessel to be properly positioned over rigid boney surfaces and applying sufficient
pressure to maintain proper occlusion. As a first step toward automating this life-saving intervention,
we demonstrate an artificial intelligence algorithm that classifies a vessel as patent or occluded, which
can guide a user to apply the appropriate pressure required to stop flow. Neural network models
were trained using images captured from a custom tissue-mimicking phantom and an ex vivo swine
model of the inguinal region, as pressure was applied using an ultrasound probe with and without
color Doppler overlays. Using these images, we developed an image classification algorithm suitable
for the determination of patency or occlusion in an ultrasound image containing color Doppler
overlay. Separate AI models for both test platforms were able to accurately detect occlusion status
in test-image sets to more than 93% accuracy. In conclusion, this methodology can be utilized for
guiding and monitoring proper vessel occlusion, which, when combined with automated actuation
and other AI models, can allow for automated junctional tourniquet application.

Keywords: machine learning; ultrasound imaging; artificial intelligence; tourniquet application;
hemodynamics; tissue phantom; hemorrhage

1. Introduction

Hemorrhage is the leading cause of preventable death in trauma casualties, both
civilian [1] and in combat [2]. Through public health programs such as the “Stop the Bleed”
initiative [3] and the abundant use of tourniquets, the mortality from extremity hemorrhage
has greatly diminished [4]. However, junctional hemorrhage remains a largely unsolved
problem. Junctional hemorrhage is defined as hemorrhage from the areas connecting the
extremities to the torso—axillae, shoulders, groin, buttocks, and proximal thighs, as well
as from the neck [5]. As these areas are not amenable to traditional extremity tourniquet
placement, several alternative solutions are in use.

The first approach is wound packing, which creates pressure inside the bleeding
wound in order to press against the bleeding vessel, with materials ranging from gauze
supplemented with pro-coagulant substances [6] to expanding sponges inserted by a
syringe into the wound [7]. While these techniques are effective against hemorrhage from
a venous source, they lack efficacy against hemorrhage from a major artery, such as the
femoral artery [8]. Another approach is manual pressure points wherein a major artery,
proximal to the hemorrhage source, is pressed against a bony surface to stop the blood flow
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to the wound and beyond. While a single study [9] has described this practice as ineffective,
leading to its elimination from most clinical practice guidelines, more recent studies show
promising results [10,11]. However, this technique requires continuous monitoring and
pressure by the provider, which may limit its effectiveness when used in prolonged case
situations. Therefore, this approach provides only a short temporizing solution and severely
limits the ability to transport and evacuate the patient.

Several junctional tourniquets have been developed utilizing the pressure points
concept. These devices are designed to maintain ongoing pressure on the vessel, pending
a definitive surgical solution. Currently, there are four junctional tourniquets that are
approved by the Food and Drug Administration: abdominal aortic junctional tourniquet
(AAJT), junctional emergency treatment tool (JETT), SAM® junctional tourniquet, and
Combat Ready Clamp (CRoC) [12–14]. The AAJT consists of a windlass mechanism to
stabilize the device on the abdomen, axilla, or groin, where then a pneumatic bladder is
inflated to occlude the artery. The CRoC is a compression clamp that can be placed over
the axilla or groin, where it is then tightened by a hand crank. The JETT is a belt that
can be placed over the pelvis, where two pads can be mechanically extended by turning
handles. The SAM junctional tourniquet consists of inflatable bladders that are placed
over the pelvis with a belt. Each of these tourniquets is recommended to be used for less
than four hours for axilla and groin placements, while less than one hour is recommended
for the abdomen [5,12]. However, studies have shown their utilization to be cumbersome
and time consuming [15,16] and they have a high failure rate in training [17] and real
combat scenarios [18]. Moreover, their effectiveness drops dramatically during patient
transport [19].

A few reports on the use of ultrasound to guide pressure against an artery have been
published. Garrick et al. have reported a 93% initial success rate in occluding the femoral
artery using an ultrasound probe [20]. A case report has described the use of an ultrasound
probe against the abdominal aorta to mitigate an iliac artery hemorrhage [21]. However,
sonography requires skill, precluding it from prevalent use, compared to an extremity or a
junctional tourniquet.

We hypothesized that the skill threshold could be overcome through the use of arti-
ficial intelligence (AI) models that can detect the appropriate vessel requiring occlusion
from real-time ultrasound video feeds. AI has begun to revolutionize medicine through
smart, precision-medicine applications such as categorizing a wide range of abnormal
states from optical coherence tomography scans [22], compiling large diverse data sets for
making medical decisions [23], and using predictive text AI models to provide medical
recommendations during telemedicine [24]. Smart medicine applications have been exten-
sively reviewed elsewhere [25–30]. Focusing on AI for interpreting ultrasound images [31],
applications include the identification of tumors [32], diagnosing infectious disease [33,34],
and determining eFAST scan outcomes [35,36], among others. Each of these applications
often relies on deep convolutional neural networks, which extract image features and pa-
rameter weights to identify differences in images. Alternatively, object detection AI models
can produce a bounding box overlay [37] around features for tracking regions of interest
in an ultrasound image, such as tumors [38] and vessels [39]. Each of these approaches
may be applicable to this use case as AI models can potentially be trained to guide a user
to the proper pressure point and ensure that enough force is applied for occlusion. In
this research effort, we describe a deep-learning image classification algorithm to analyze
sonographic images and provide the occlusion status of a vessel of interest. This can be
used to aid the user in pressing the artery until occlusion and monitoring the effectiveness
of this pressure. This algorithm is meant to be integrated into an ultrasound probe, making
this probe an effective pressure head as part of a junctional tourniquet, without the need
of expertise. The constant monitoring of effectiveness will allow for a rapid or automated
response to displacement, overcoming this issue when transporting the patient. This work
is presented by first describing the identification of the occlusion threshold in the phantom
and capturing images for AI training. Then, we compare the performance metrics of two
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separate AI model architectures. Lastly, we validate the best performing model using an ex
vivo swine model.

2. Materials and Methods
2.1. Tissue Phantom Setup

An ultrasonically compatible basic phantom was developed for image collection to
train and test a classification algorithm. This phantom was created with 10% clear ballistic
gel (CBG) (Clear Ballistics, Greenville, SC, USA) using a 3D printed mold. Due to the high
temperature needed to melt the CBG, a co-polyester filament with a fused deposition 3D
printer (Ultimaker, Utrecht, The Netherlands) or high-temp resin and stereolithography 3D
printer (FormLabs, Somerville, MA, USA) were selected to print the mold. The phantom
was fashioned as a 3′′ length × 3′′ width × 2.5′′ depth box around a 3′′ length × 2′′

wide × 1” depth wax block (McMaster-Carr, Elmhurst, IL, USA), which acted as a bone to
allow for vessel occlusion.

The CBG was then cut into small pieces, placed into a 500 mL beaker, and melted
at 130 ◦C using a laboratory oven (Thermo Fisher Scientific, Waltham, MA, USA) for
approximately 2 h or until the gel was fully melted and de-bubbled. Using a 1 /

4” OD
biopsy punch (McMaster-Carr, Elmhurst, IL, USA) to hold the place of a vessel, the CBG
was slowly poured into the mold lined with silicone oil (Sigma-Aldrich, St Louis, MO, USA)
and left to cool at room temperature. Once cooled, the phantom was removed from the
mold and placed over the wax block.

2.2. Tissue Phantom Imaging

The phantom was fitted with a 1 /
4” diameter thin-walled latex tubing (GF Health

Products, Atlanta, GA) to act as a vessel, which was connected to a simple flow loop.
This loop consisted of a simple peristaltic pump (Masterflex, Gelsenkirchen, Germany)
driving Doppler-compliant fluid (CIRS Tissue Simulation Technology, Norfolk, VA, USA)
from a reservoir through the phantom and a pressure sensor (ADInstruments, Sydney,
NSW, Australia) that connected directly to a data acquisition unit (ADInstruments, Sydney,
NSW, Australia). Between the pump and the phantom there was a bypass line so that flow
could be diverted during occlusion while maintaining physiological relevant pressure in
the system. The phantom was kept underwater for imaging. Ultrasound imaging was
performed using a 15L4A probe (Terason, Burlington, MA, USA) from a Terason 3200T
Plus US imaging system (Terason, Burlington, MA, USA). Real-time video feed from the US
screen was recorded with the LabChart (ADInstruments, Sydney, NSW, Australia) software
using a video capture box (Amazon, Seattle, WA, USA). US images were recorded with and
without color Doppler overlay. The Doppler modality helped to confirm the presence or
absence of flow in the vessel. Distal pressure to the phantom was captured in real time to
determine the pressure reduction achieved by tourniquet application, which is analogous
to flow reduction. With the vessel in view and the phantom placed on top of the wax block,
the ultrasound probe was used to compress the vessel until flow was stopped or reduced
to at least 90% of its initial rate.

2.3. Ex Vivo Swine Model Setup

Euthanized swine tissue was procured from a commercial vendor (Animal Technolo-
gies, Tyler, TX, USA) from the lumbar area to the knees as this section allowed enough area
for experimental setup. Swine tissue was utilized due to the similarities between human
and swine femoral vessels [40–42]. Using previously developed methodologies [43], we
cannulated the distal superficial femoral artery using a 14G catheter (MedOfficeDirect,
Naples, FL, USA). Proximal cannulations for both vessels were made using 8Fr PCI intro-
ducers (Argon Medical Devices, Athens, TX, USA) and secured using silk ligatures. An
arteriovenous shunt was fashioned from tubing and a 3-way stopcock was used to connect
the vessels distally and allow flow going through the artery to return through the vein
or be hemorrhaged from the system. The hemorrhage site was connected to a pressure
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sensor for measuring distal pressure to the occlusion site. The proximal catheters were con-
nected to a heart-mimicking pump (SuperPump AR Series, Vivitro Labs, Victoria, Canada)
to create a flow loop. Doppler-compliant fluid was pumped through the loop to enable
Doppler modality for ultrasound imaging. A Draeger patient monitor (Delta XL, Lubeck,
Germany) was used to monitor the pressure in the flow loop so that flowrate adjustments
to the pump could alter pressure in the system to achieve a systolic and diastolic pressure
of approximately 110 and 80 mmHg, respectively. A pressure sensor (ICU Medical, San
Clemente, CA, USA) connected to a data acquisition unit was connected downstream in
the model, between the artery and arteriovenous shunt. Similar to the phantom model,
a Terason or Sonosite Edge (Fujifilm Sonosite, Bothell, WA, USA) US system was used to
capture live ultrasound feed using LabChart software and a capture box. Once the vessels
were in view, pressure was applied on the inguinal crease, compressing the vessels until
90% occlusion was achieved.

2.4. Ultrasound Image Processing

After data were collected, videos were exported from LabChart as MP4 files and
mean distal pressure readings were downsampled to 10 Hz to match the frame rate for the
recorded video. Using MATLAB (v2022a, Mathworks, Natick, MA, USA), mean pressure vs.
time data were plotted for each recording, and three regions were identified—(i) start and
(ii) end region for unobstructed pressure measurement, and (iii) end of probe occlusion of
the vessel. A mean unobstructed pressure was measured for the full-flow region, which was
then used to create gates for the classification categories. For a two-class scenario, full-flow
and no-flow categories were separated by a percent reduction in the distal pressure, ranging
from 90 to 50% threshold in different experimental setups. This was used to determine
the best threshold to distinguish between full-flow and no-flow classes. For the three-class
scenarios, full flow was characterized as unobstructed flow to only 10% reduction in mean
pressure, partial flow was 10% reduction to the determined no-flow marker (50 to 90%
reduction, depending on the experimental setup), and no flow was any pressure reduction
below this threshold. During data processing, images were cropped to remove ultrasound
user interface information from the image and then resized to 512 × 512 × 3. This process
was repeated for each recorded ultrasound video for tissue phantom and swine.

2.5. Neural Network Model Training

All neural network model developments and evaluations were performed using MAT-
LAB v2022a on an AMD Ryzen 9 5900HX 3.3GHz, 32 GB RAM, and NVIDIA RTX 3080
16 GB VRAM computer system (Lenovo, Morrisville, NC). Two neural network archi-
tectures were used: (1) a previously developed custom classification network, ShrapML,
optimized for ultrasound image interpretation [44,45]; and (2) MobileNetV2, a conven-
tional neural network model that performed best for interpretation of ultrasound images
for small datasets [46]. ShrapML was Bayesian-optimized for ultrasound applications. The
optimized architecture comprised 6 blocks each containing a convolutional neural network
layer, rectified linear unit activator, and max pooling layer, followed by a flattening layer,
fully connected layer, and 36% dropout layer that led to a classification output setup [45].
During the optimization process, the Root Mean Squared Propagation (RMSprop) opti-
mizer, which is a widely used optimizer for classification tasks, was selected as optimal.
Each model was fitted with a 512 × 512 × 3 image input layer and a two- or three-category
classification output layer, depending on the image sets used.

For phantom training, image sets were loaded and randomly split 80:20 for training
and validation, while a phantom image set was completely held out for blind testing. For
swine training, a single image set was loaded and randomly split 60:20:20 for training,
validation, and testing, respectively. In some training cases, data augmentation in the
form of affine transformations was randomly introduced to training images. Specifically,
reflections and translation in the X- (−128 to 128 pixels) or Y-direction (−64 to 64 pixels)
were introduced randomly in these data augmentation training scenarios.
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Model training was performed in all instances for up to 100 epochs using a RMSProp
optimizer with a 0.001 learn rate. A batch size of 32 was used throughout with evaluation
of validation loss performed at the end of each epoch. A validation patience of five was
used, which meant if the validation loss was not further reduced in five epochs, training
ended early, and the lowest validation loss was selected as the optimal model. Training
was repeated three times with different random image splits for each training strategy, and
each model was independently evaluated for determining overall performance.

2.6. Evaluation of Neural Network Model Performance

Model performance was evaluated with test images held out from the training and
validation process. Predictions and confidences were calculated for each test image and
compared to ground truth labels in order to build a confusion matrix using GraphPad
Prism 9 (San Diego, CA, USA). For two-category models, positive predictions were no-flow
or occlusion images, while negative predictions were full-flow images. Using these identifi-
cations, accuracy, precision, recall, specificity, and F1 scores were calculated. Confidences
were used to construct a receiver operating characteristic (ROC) curve and to measure the
area under the ROC (AUROC). Performance metrics were found for triplicate models and
were shown as average values throughout.

In addition, Gradient-weighted Class Activation Mapping (GradCAM) overlays were
created for 1/24th of the testing images for each model. GradCAM overlays are used to
produce an approximate localization heat map identifying “hot spots” for regions important
to the model prediction as a means of making models more explainable and confirming
irrelevant image artifacts are not being tracked [47]. This technique is widely used for
showing how AI models used for medical image interpretation are tracking the same area of
interest as an expert would [48–50]. For our study, GradCAM overlays were created using a
built-in MATLAB command for 1/24th of the test images and were saved according to the
ground truth and prediction labels. Representative images were selected for highlighting
regions of the images the models identified when making a classification prediction.

3. Results
3.1. Determination of the Optimal Threshold for Occlusion

To develop a machine learning model for monitoring junctional flow occlusion, we
first identified the occlusion threshold most suitable for distinguishing flow (negative) and
no-flow (positive) conditions. Using a tissue phantom model, training performance was
compared with thresholds set at 50, 60, 70, 80, or 90% distal pressure reduction for occlusion
(Table 1). Lower threshold values had higher accuracy and improved performance in most
performance metrics, while the 80 and 90% threshold conditions’ performances were
reduced. As the highest occlusion threshold is ideal, 70% was selected as the threshold for
future testing as the differences were minimal with lower thresholds but this avoided the
performance reduction in the higher thresholds.

Table 1. Performance metric summary for ShrapML models with training sets split at different
pressure reduction thresholds. Models consisted of two categories—full flow and no flow—with
affine transformations randomly applied for data augmentation. Metrics are shown as average results
for n = 3 trained models. Color map is overlayed on each row to highlight the higher performance
metrics from minimum (no color) to maximum (green).

Distal Pressure Reduction Percent Threshold from Full Flow

50% 60% 70% 80% 90%
Accuracy 0.937 0.924 0.935 0.885 0.904
Precision 0.940 0.889 0.897 0.833 0.861

Recall 0.958 0.996 0.994 0.997 0.978
Specificity 0.905 0.823 0.864 0.744 0.821
F1 Score 0.948 0.939 0.943 0.907 0.916
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3.2. ShrapML and MobileNetV2 Performance for Tracking Tissue Phantom Vessel Occlusion

Next, various deep learning model setups were used for classifying junctional ul-
trasound images for flow or no flow, following tourniquet application (Figure 1). Two
different model architectures were used—ShrapML and MobileNetV2—each without and
with affine transformations for data augmentation. MobileNetV2 models trended toward
no-flow (false positive) predictions, resulting in recall metrics of 0.675 and 0.646 without
and with data augmentation, respectively (Table 2). However, MobileNetV2 was strong
at identifying full-flow conditions, with specificity reaching 0.990 and 0.996 without and
with data augmentation, respectively. In contrast, augmentation had a more pronounced
effect on ShrapML training. Without augmentation, ShrapML models had a high false
negative (full-flow prediction) rate, with a specificity of 0.683. Utilizing data augmentation
for ShrapML training solved this false negative bias, increasing specificity to 0.991 without
impacting the false positive rate. Overall, ShrapML models with augmentation had the
strongest accuracy (0.934) and F1 score (0.918) metrics and were selected as the optimal
configuration for this application.
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Figure 1. Confusion matrices for MobileNetV2 and ShrapML models tracking junctional vessel
occlusion. Average confusion matrices (n = 3 trained models) are shown for (A,C) MobileNetV2
and (B,D) ShrapML models, (A,B) without data augmentation and (C,D) with data augmentation.
Confusion matrix values are expressed as percentages across each ground truth category.

To further understand model performance, we created GradCAM overlays to highlight
the regions of the ultrasound images most critical to the model prediction (Figure 2). When
looking at full-flow ultrasound images, most of the models accurately tracked the vessel
patency as the key feature, except for the ShrapML model without augmentation for
the training data. The extent of tracking the vessel was reduced in images where less
or no Doppler signal was present. For the no-flow image class, model trends were less
consistent. MobileNetV2 models were more frequently tracking features at the edges of
the image (no augmentation) or below the tissue phantom (with augmentation). ShrapML
without augmentation had no strong feature correlation, indicating no flow was identified
as an absence of key feature extraction. ShrapML with data augmentation successfully
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tracked the compression of the tissue phantom, but the precise feature being tracked was
not obvious.

Table 2. Performance metrics for MobileNetV2 and ShrapML models for ultrasound tracking of
junctional vessel occlusion. Average (n = 3 trained models) performance metrics and standard
deviations are shown for MobileNetV2 and ShrapML models without and with data augmentation.

MobileNetV2 ShrapML

Without Data
Augmentation With Data Augmentation Without Data

Augmentation With Data Augmentation

Average Standard
Deviation Average Standard

Deviation Average Standard
Deviation Average Standard

Deviation

Accuracy 0.853 0.072 0.845 0.117 0.759 0.172 0.934 0.010

Precision 0.976 0.042 0.993 0.006 0.718 0.197 0.986 0.012

Recall 0.675 0.144 0.646 0.275 0.859 0.017 0.859 0.032

Specificity 0.990 0.018 0.996 0.004 0.683 0.316 0.991 0.008

F1 Score 0.794 0.114 0.757 0.223 0.771 0.120 0.918 0.014
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Figure 2. Gradient-weighted class activation maps (GradCAM) for trained binary classifier models for
ultrasound tracking of junctional vessel occlusion. (Column 1) Base ultrasound images are shown for
reference as well as (left to right) GradCAMs for Mobile Net V2 without and with data augmentation,
and ShrapML without and with data augmentation. Representative ultrasound images are shown for
full-flow and no-flow categories. Areas with high relevance to model predictions are highlighted by
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3.3. Effect of Three Classes on ShrapML Model Performance for Tracking Junctional
Vessel Occlusion

An alternative model design was assessed, which added a third category as partial
flow, which represented 10% to 70% distal pressure reduction. This improved the full-
flow and no-flow true prediction rate (Figure 3). However, this was at the expense of
the partial-flow category as over 75% of the predictions were incorrect. This was further
highlighted through GradCAM overlays. The full-flow and no-flow identified images were
still tracking the vessel placement and phantom compression, respectively (Figure 3). The
partial-flow class did not identify any obvious trends in the ultrasound image, including
frequently tracking features outside of the tissue phantom. As a result, the two-category
methodology was identified as most suitable for this application.
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Figure 3. Three-category ShrapML performance for tracking junctional vessel occlusion. (A) confu-
sion matrix for three categories—no flow, partial flow, and full flow—ShrapML models with affine
transformations for data augmentation. (B) GradCAM overlays for representative ultrasound images
for each of three categories. Areas with high relevance to model predictions are highlighted by
red-yellow overlays, while lower relevance regions are highlighted in blue-green.

3.4. Performance of ShrapML Model for Tracking Junctional Vessel Occlusion in an Ex Vivo
Swine Model

Lastly, the ShrapML binary classification network design was retrained for use with
junctional vessel occlusion datasets collected from the ex vivo swine model. Multiple
ultrasound clips were collected from a single ex vivo swine subject, and 20% of the images
were held out for testing model performance. Generally, the models had a similar perfor-
mance to the tissue phantom, with a slight bias toward false positive, no-flow predictions
(Figure 4). Results across the three replicate trained models were consistent, each with a
similar AUROC (Figure 4) and with low standard deviations for each performance metric
(Table 3). Accuracy was over 90% for swine image sets, similar to the tissue phantom perfor-
mance. For comparison, the models were also trained using the more aggressive 90% distal
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pressure reduction threshold for occlusion. Overall, performance was minimally impacted
when using swine images with this higher occlusion threshold (Figure 4B,C). GradCAM
overlays were used to track if the features identified by the model were tracking the vessel
as it occluded (as observed in the tissue phantom) or overfitting to noise in the images
(Figure 5). In full-flow images, the artery and vein were sometimes being tracked, while at
other times the artery was the primary feature responsible for model predictions. In the
no-flow image class, the trends were less obvious, but in general the bottom tissue features
were tracked if they appeared higher in the ultrasound image due to tissue compression.
This provided proof of concept that the model can work in animal tissue, but additional
images and subject variability will be needed for more robust performance.
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Table 3. Summary of performance metrics for the ShrapML trained with swine image sets for
tracking junctional vessel occlusion. Results are shown as average and standard deviations across
three replicate trained models for a 70% or 90% occlusion threshold.

70% Occlusion Threshold 90% Occlusion Threshold

Average Standard
Deviation Average Standard

Deviation

Accuracy 0.909 0.015 0.942 0.029

Precision 0.971 0.025 0.980 0.014

Recall 0.857 0.040 0.933 0.032

Specificity 0.970 0.027 0.961 0.027

F1 Score 0.910 0.017 0.956 0.023
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box for images captured with Sonosite Edge.

4. Discussion

Junctional and pelvic hemorrhage continue to be a significant cause of early pre-
ventable death among trauma casualties, and there is a need for a solution that can provide
rapid and reliable hemostasis without requiring advance expertise. Here, we have demon-
strated the first part of the development of an artificial intelligence algorithm that can
serve to guide such a device, and that can confirm appropriate pressure and continuously
monitor the effectiveness of pressure.

An important step in setting up the training datasets for this application was defining
a threshold for flow or distal pressure decrement. We approached this from an AI training
perspective and a threshold of 70% resulted as the most optimal for model performance;
however, the reduction in performance may be preferred if a higher 90% occlusion threshold
could be tracked. Both were evaluated in the swine image sets at more than 90% accuracy.
More tuning is needed to settle on the optimal threshold. The threshold decision may
also impact the output category design of the model. We evaluated two-category (full
flow and no flow) and three-category (additional partial-flow category) classifier models,
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and the partial-flow classification had poor prediction performance. However, this is
likely due to the significantly low quantity of images in that partial occlusion window.
More data may help with training this intermittent category, which may be preferred in
a junctional tourniquet design so that progress toward the goal can be tracked. This may
also be accomplished by the use of a regression deep-learning model output as an output
to categorical outputs. This may allow for tracking the percent occlusion as opposed to
arbitrary categories defining proper occlusion.

The use of AI for ultrasound guidance of medical interventions is not unique—it has
been used, for instance, to guide central vascular access. However, to our best knowledge,
its use for hemorrhage control has never been described before, potentially due to the
relatively high cost of ultrasound machines. With the gradual decrease in its cost and size,
the use of ultrasound for hemorrhage control begins to appear feasible, making expertise
the limiting factor for use. AI offers a pathway to overcome this limit, allowing healthcare
providers, or even laypersons, not trained in sonography to utilize ultrasound technology
for this application. The AI models in this work were successfully developed for tracking
occlusion, a critical first step in automating a junctional tourniquet.

Another significant advantage of AI over “standard” use of ultrasound for this purpose
is its ability for continuous monitoring—the ultrasound system maintains “visualization”
of the obstructed vessel and can raise an alarm if this obstruction is no longer effective.
In the absence of such an alarm, the first sign of failure might be a pool of blood forming
under the casualty, or clinical deterioration in the casualty’s mental status or vital signs, all
signifying loss of a substantial amount of precious blood.

This work has several limitations. First, in this work we show an algorithm that can
identify appropriate pressure on the artery, but not guide the user to position the probe in
the right location. This work is already in progress and will be discussed in future studies.
Second, it is based on a simple phantom model, without complex anatomical features. This
approach of initial training using phantom data has been shown to be effective in reducing
the requirement of animal or human data [51], and the performance demonstrated in this
study on the ex vivo model supports that. However, acquisition of human data will be
necessary for further development. Lastly, the AI models developed currently rely on
color Doppler overlays, which may not be available as a feature on smaller, more portable
ultrasound devices. Prototypes will need to ensure that this feature is present, or AI models
can potentially be trained to bypass the need for this dependency.

5. Conclusions

Controlling junctional hemorrhage beyond current technology is a critical need for
trauma care for both military and civilian situations. The technology we have demonstrated
in this work highlights how an AI algorithm for monitoring vessel occlusion has the
potential to improve junctional tourniquet application. AI models were developed to
track vessel occlusion in phantom and ex vivo swine occlusion to more than 90% accuracy.
Inclusion of this AI model with an engineered prototype for actuating compression will
allow for automated vessel compression and real-time monitoring of tourniquet efficacy.
Future studies will evaluate effectiveness on animal models and/or human volunteers.
Further advancement of this technology will simplify junctional tourniquet use and help
reduce the high mortality associated with junctional hemorrhage.

6. Patents

G.A and E.J.S. are inventors on a filed provisional patent owned by the U.S. Army
related to the automated junctional tourniquet (filed 27 October 2023).
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