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Abstract: Real-time stress distribution data for implants and cortical bones can aid in determining
appropriate implant placement plans and improving the post-placement success rate. This study
aims to achieve these goals via a parametric reduced-order model (ROM) method based on stress
distribution data obtained using finite element analysis. For the first time, the finite element analysis
cases for six design variables related to implant placement were determined simultaneously via
the design of experiments and a sensitivity analysis. The differences between the minimum and
maximum stresses obtained for the six design variables confirm that the order of their influence is:
Young’s modulus of the cancellous bone > implant thickness > front–rear angle > left–right angle
> implant length. Subsequently, a one-dimensional (1-D) CAE solver was created using the ROM
with the highest coefficient of determination and prognosis accuracy. The proposed 1-D CAE solver
was loaded into the Ondemand3D program and used to implement a digital twin that can aid with
dentists’ decision making by combining various tooth image data to evaluate and visualize the
adequacy of the placement plan in real time. Because the proposed ROM method does not rely
entirely on the doctor’s judgment, it ensures objectivity.

Keywords: finite element analysis; computer-aided engineering; implant; reduced-order model; 1-D
CAE solver; digital twin

1. Introduction

A digital twin connects physical and digital objects in real time and utilizes simulation
methods to support decision making for optimizing the functions of physical objects. Cur-
rently, digital twins are used in the manufacturing, automobile, and energy industries and
have been developed into a form that integrates physical and virtual spaces via continuous
information transmission [1–3]. Recently, digital twins were adopted in the medical field to
build an innovative process for simultaneously performing disease diagnosis, prognosis,
and treatment [4,5]. In the field of dentistry, the digital twin technology is gradually being
applied to advance digital dentistry [6]. Therefore, a method that can improve the prog-
nosis after treatment by predicting results via real-time simulations using patient data is
highly desired.

Dental implants are used in dental treatment to replace the teeth of partially and
completely edentulous patients [7]. The implant placement process involves placing an
implant in the jawbone, combining the implant with a small metal pillar, and inserting a
tooth-shaped prosthesis into the oral cavity [8,9]. The 10-year survival rate of implants is
more than 90%, and with proper management, they can be used for decades or more [10].
However, resorption of the bone and other medical complications have been observed in
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some cases. These issues can be attributed to factors such as trauma during implant surgery,
bacterial infiltration in the micro gap, and tissue deformation around the implant [11–13].
Many clinical trials are currently underway to solve this problem [14,15]. Further, implant
stability has been determined by confirming the degree of the osseointegration of the
implant via resonance frequency analysis [16–18].

Existing methods are employed after implant placement; therefore, the abovemen-
tioned problems cannot be identified in advance, which makes determining the stress
distribution difficult. Finite element analysis (FEA), which can be used to obtain approxi-
mate solutions via partial differential equations using the finite element method (FEM), has
been used to solve complex numerical problems [19]. FEA can also determine the stress dis-
tribution and deformation that occurs in implants and bones [20]. Such stress distribution
and deformation data are utilized to verify stability via a stress structure analysis before
implant placement [21,22].

Factors such as the diameter and length of the implant, placement location, left–
right angles, front–rear angles, Young’s modulus of the cancellous bone, and thickness
of the cortical bone can affect implants [23–27]. The effect and stability of each of these
factors should be determined because they can introduce variations in the results such as
osseointegration. The largest force is applied to the cortical bone, which has a high Young’s
modulus, because the force acts on the top of the implant owing to masticatory and dental
grip forces [28,29]. Further, stability is evaluated based on the Von mises stress that occurs
in the cortical bone because this area has the most nerves [30].

Previous studies have reported a decrease in stress values in the cortical bone with
an increase in the implant length and thickness [31–33]. Further, the generated stress
was reported to increase with an increase in the front–rear and left–right angles of the
implant [34–36]. The implant placement location has been divided into anterior, premolar,
and posterior teeth, and the magnitude of stress has been reported to decrease in the order
of posterior teeth, premolars, and anterior teeth [37]. Although many studies have focused
on implant stress for each variable, to the best of our knowledge, no study analyzes all
variables simultaneously.

This study aims to improve the post-placement success rates of dental implants by
making real-time stress distribution data for implants and cortical bones available. To
this end, for the first time, the six important variables related to establishing an implant
plan were analyzed simultaneously to derive results for all possible cases. A real-time
simulation was performed using a parametric reduced-order model(ROM) instead of
deriving the results obtained by analyzing all cases before implantation. Parametric ROM
is a mathematical modeling technique that can solve the problem of inefficiency in the
analysis time attributed to the complexity and high degree of freedom of a model. Herein,
46,787 cases were created by combining the six variables, and they were simplified to
25 cases via the design of experiment (DOE). Subsequently, the results were obtained via
analysis. These results were used to obtain a 1-D CAE solver from the ROM by considering
factors that afforded the maximum accuracy via the coefficient of determination (CoD) and
coefficient of prognosis (CoP). Thus, the stress and deformation values in the cortical bone
and implant could be calculated instantaneously to evaluate stability.

The developed model was installed in ONDemend3D: version 1.0.11.1007 commercial
software that collects and processes existing dental image data, identifies areas of missing
teeth, inspects labeling, and projects cone-beam computed tomography images in two
dimensions. The program automatically calculates and visualizes the stress value of the
implant and cortical bone using patient information such as bone tissue and angle of
implant placement.

In contrast to existing implant placement plans determined based on the doctor’s
discretion and data obtained via X-ray, facial, and intra-oral photographs, an optimal
location and installation angle for implants can be suggested using objective indicators
with the proposed approach. Moreover, a function is developed to analyze and visualize
the stress and deformation information in real time based on the setting and changes
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in the long axis of the implant. The real-time stress value calculation and visualization
functions are expected to play important roles in the development of digital twins that can
aid dentists in determining appropriate implant placement plans.

2. FE Modeling Parameters and Boundary Conditions

In the implantation procedure, a hole is first drilled into the bone to place an implant.
The bone and implant combine after three to six months, and a crown is finally placed on
top of the bone. The implant can be used for at least 10 years after placement; therefore,
it should cause minimal stress on the cortical bone, where many nerves are also present.
Thus, the safest approach is to plant the implant vertically at a position where the cortical
bone is the thickest. However, in a few instances, the implant placement must be optimized
for the shape of the surrounding teeth and bones.

2.1. Implant Model
2.1.1. Basic Model Description

Figure 1 shows a 3D computer-aided-design (CAD) model of the implant and bone.
The shape of the bone was simplified to the most common CAD model and divided into
cortical and cancellous bones. An implant commonly uses a macro thread, which is a
specification that has been adopted by many companies. Therefore, a hole was drilled to
reproduce the state after the actual implant procedure once the implant was inserted into
fully combined cortical and cancellous bones.

Figure 1. The 3D CAD model of the implant body.

2.1.2. Boundary Conditions

The contacts used for the three bodies are presented in Figure 2a. Cortical and cancel-
lous bones are single bones, and therefore, a bonded contact is used in which the x, y, and
z directions are constrained; the contact length/area does not change, and separation is
not allowed. In addition, a frictional contact that transmits shear stress at a specific ratio is
used for the implant and cortical bone and for the implant and cancellous bone because
the screw is attached to the contact surface. The friction coefficient between the bone and
implant is set to 0.2.

Figure 2. Boundary conditions.
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The model shown in Figure 2b is analyzed considering the load conditions of the
dental grip force. Dental force is generated when the upper and lower teeth come in contact
and act in the vertical direction. A force of 100 N was applied downward from the top of the
abutment. When the implant is placed at an angle owing to interference from neighboring
teeth, the crown surrounding the abutment applies a force in the vertical direction on
the lower end in global coordinates rather than on the lower end in the local direction of
the implant.

Finally, the CAD model was expressed by cutting the bone to a size that could accom-
modate an implant. Therefore, the degrees of freedom in the x, y, and z directions were
constrained by a fixed support placed on the bone in the direction of the tooth.

2.1.3. Material Properties

Table 1 lists the physical properties considered in this analysis. The implant used in
this study is composed of titanium, and therefore, it has a large modulus of elasticity and
Poisson’s ratio. The modulus of elasticity is 13 GPa for the cortical bone, which is hard and
has many nerves. The analysis was conducted using a basic elastic modulus of 7.0 GPa for
the cancellous bone, which varies based on the patient [38].

Table 1. Material properties.

Materials Young’s Modulus (GPa) Poisson’s Ratio

Implant 105 0.37
Cortical bone 13 0.3

Cancellous bone 7 0.3

2.2. Implant Region and Design Variables
2.2.1. Regions of Anterior, Premolar, and Posterior Teeth

Teeth, including the thin and small front teeth to the thick and large inward teeth, are
referred to by different names, as shown in Figure 3 [39]. In this study, bones are classified
as anterior teeth, premolars, and posterior teeth, as shown in Figure 4.

Anterior teeth are the small and thin teeth from the central incisors to the cuspids that
are used to cut and tear food. Premolars are the two teeth that exist between the anterior
and posterior teeth. They are used to break down food particles, and they have a shape
similar to that of the anterior teeth; however, they are thicker. Finally, posterior teeth are
areas where all the molars are combined. These teeth have a flat shape, and they are only
used for crushing and grinding. These teeth have a shape different from that of the other
bones and are thicker. The thicknesses of the cortical bone of the anterior, premolar, and
posterior teeth used for the analysis were 1.5, 2.0, and 2.5 mm, respectively.

Figure 3. Lower jaw teeth.



Bioengineering 2024, 11, 84 5 of 20

Figure 4. Bones of the anterior, premolar, and posterior teeth.

2.2.2. Implant Length

Figure 5 indicates that an analysis is performed for five implant lengths: 8.5, 10, 11.5,
13, and 15 mm. Implants with lengths in the range of 8.5–11.5 mm are used for the posterior
teeth, and those in the range of 10–15 mm are used for the anterior teeth. Although shorter
implants exist, they are not used because of safety concerns. The lower part of a neural
tube must be considered in the lower jaw. In the upper jaw, there are cases where the gum
bone is insufficient, and therefore, implants exceeding 15 mm are not used often.

Figure 5. Variable 1—Implant length.

2.2.3. Implant Diameter

Figure 6 shows that an analysis is performed using five implant diameters of 3.0, 3.5,
4.0, 4.5, and 5.0 mm. Implants with diameters in the range of 3.0–3.5 mm are used in the
anterior teeth, and implants with diameters of 4.0 mm or more are used in the posterior
teeth. The larger the diameter, the safer is the result. Implants with different diameters are
used based on the scenario because an incorrect implant can invade the major anatomical
structures around it and cause damage.

Figure 6. Variable 2—Implant diameter.
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2.2.4. Young’s Modulus of the Cancellous Bone

Table 2 lists the Young’s modulus of the cancellous bone. In contrast to the hard
cortical bone, the cancellous bone has several different physical properties. For example,
it has a modulus of elasticity of 5.5–9.5 GPa in the anterior region and 0.5–2.0 GPa in the
posterior region; these values vary based on the individual in question. At a young age, the
bone density is high, and therefore, it exhibits a high elastic modulus. However, the elastic
modulus of the cancellous bone tends to decrease with age-related deterioration (decrease
in bone density). We investigated the stability in various cancellous bones using Young’s
moduli in the range of 0.5–9.5 GPa.

Table 2. Variable 3—Young’s modulus of the cancellous bone.

Materials Young’s Modulus (GPa) Poisson’s Ratio

Cancellous bone Type-1 0.5 0.3
Cancellous bone Type-2 2.0 0.3
Cancellous bone Type-3 4.5 0.3
Cancellous bone Type-4 7.0 0.3
Cancellous bone Type-5 9.5 0.3

2.2.5. Front–Rear Angle

Figure 7 shows that an analysis is performed by changing the implant angles to 0,
2.5, 5, 7.5, and 10°. The front–rear angle indicates the rotation inside or outside the oral
cavity based on the center of the implant and teeth. The implant plan may use a curved
abutment that can stand vertically when the implant cannot be placed vertically because of
the surrounding structures; the implant can therefore be tilted at angles exceeding 10°. In
this case, the tendency of the stress acting on the cortical bone is different. In this study, the
analysis was conducted only for angles up to 10°, which is the maximum range that does
not require the use of a curved abutment.

Figure 7. Variable 4—Implant front–rear angle.

2.2.6. Left–Right Angle

Left–right angles were analyzed by changing the implant angles to 0, 2.5, 5, 7.5, and
10°, as shown in Figure 8. The left–right angle is rotation in the direction of the oral tooth
based on the center of the implant and teeth. In the left and right directions, the stress
tendency is evaluated up to an angle of 10° and thus does not use an inclined abutment.

Figure 8. Variable 5—Implant left–right angle.
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2.2.7. Cortical Bone Thickness

As shown in Figure 9, an analysis is performed by changing the thickness of the cortical
bone to 1.5, 1.75, 2.0, 2.25, and 2.5 mm. The cortical bone covers the soft cancellous bone.
The size of the cortical bone varies for each individual, and the bone may be lost during
tooth extraction. Therefore, the stress tendency is determined by varying the thickness of
the cortical bone.

Figure 9. Variable 6—Cortical bone thickness.

3. Numerical Results (Finite Element Analysis Results)

The von Mises stress in the cortical bone is a factor that directly affects humans.
Figure 10 shows the von Mises stress results for the implant and cortical bone. The analysis
was conducted using the basic model without changing the angle or thickness. The largest
von Mises stress occurred at the top where the screw threads of the implant and cortical
bone contacted each other; the von Mises stress decreased toward the bottom of the screw.

Therefore, the tendency of the output was evaluated via a preliminary survey before
generating the DOE for each variable. The output was not linear because the input variables
were not completely linear, and the input variables remained in non-linear contact with the
screw. However, the accuracy of the ROM results inevitably decreases if wave-type results
are obtained without a clear effect on numerical change. In the analysis, only the tendency
of the cortical bone was considered because implants made of titanium are not as severely
affected by stress as the cortical bone.

Figure 10. The von Mises stress for the implant and cortical bone.

3.1. Structural Analysis Results Based on Implant Length

An analysis was conducted based on the implant length. The radius, Young’s modulus
of the cancellous bone, left–right angle, front–rear angle, and cortical bone thickness were
set as 4.0 mm, 7.0 GPa, 0°, 0°, and 1.5 mm, respectively, and these values were used as the
criteria to ensure that the same conditions were applied. The analysis was conducted for a
minimum thickness range of 8.5–15 mm. The largest stress occurred at the first point where
the implant screw and bone met. The results are summarized in Figure 11 and Table 3. The
magnitude of the implant stress acting on the bone decreases with an increase in the length
of the implant. This is because a longer implant allows the stress to be shared across a
wider area of the bone.
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Figure 11. Chart of cortical bone von Mises stress value (Implant length).

Table 3. Results of the cortical bone von Mises stress values (Implant length).

von Mises Stress 8.5 mm 10.0 mm 11.5 mm 13.0 mm 15.0 mm

Cortical bone 14.98 MPa 14.87 MPa 13.81 MPa 13.28 MPa 10.49 MPa

3.2. Structural Analysis Results Based on Implant Diameter

An analysis was performed by changing the thickness from 3.0 to 5.0 mm. The implant
length, Young’s modulus of the cancellous bone, left–right angle, front–rear angle, and
thickness of the cortical bone were set as 11.5 mm, 7.0 GPa, 0°, 0°, and 1.5 mm, respectively,
to ensure that the same conditions were used. In this case, the largest stress occurred at the
first point where the implant screw and bone met; the results are summarized in Figure 12
and Table 4. The surface area increases with an increase in the thickness of the implant,
which results in decreased stress.

Figure 12. Chart of the cortical bone von Mises stress value (Implant diameter).

Table 4. Results of the cortical bone von Mises stress values (Implant diameter).

von Mises Stress 3.0 mm 3.5 mm 4.0 mm 4.5 mm 5.0 mm

Cortical bone 20.08 MPa 16.14 Mpa 13.81 Mpa 9.91 Mpa 8.46 Mpa

3.3. Structural Analysis Results Based on the Young’s Modulus of the Cancellous Bone

An analysis was performed by changing the Young’s modulus of the cancellous bone.
The implant length, radius, left–right angle, front–rear angle, and thickness of the cortical
bone were set as 11.5 mm, 4.0 mm, 0°, 0°, and 1.5 mm, respectively, to ensure similar
conditions. Figure 13 and Table 5 indicate that the stress received by the cancellous bone
increases and the stress in the cortical bone decreases with an increase in the elastic modulus
of the cancellous bone.
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Figure 13. Chart of the cortical bone von Mises stress value (Young’s modulus of the cancellous bone).

Table 5. Results of the cortical bone von Mises stress values (Young’s modulus of the cancellous
bone).

von Mises Stress Type-1 Type-2 Type-3 Type-4 Type-5

Cortical bone 44.53 MPa 22.50 MPa 15.74 MPa 13.81 MPa 12.51 MPa

3.4. Structural Analysis Results Based on the Front–Rear Angle

An analysis was performed by changing the angle from 0° to 10° in the inward and
outward directions of the oral cavity. The implant length, radius, Young’s modulus of the
cancellous bone, left–right angle, and thickness of the cortical bone were set as 11.5 mm,
4.0 mm, 7.0 Gpa, 0°, and 1.5 mm, respectively, to ensure similar conditions. In this case,
the largest stress occurred in the curved part because the force was received in the oblique
direction of the bone and not in the area where the implant screw thread and bone first
met. Figure 14 and Table 6 indicate that the stress increased with an increase in the implant
placement angle.

Figure 14. Chart of the cortical bone von Mises stress value (Implant angle front–rear).

Table 6. Results of the cortical bone von Mises stress values (Implant angle front–rear).

von Mises Stress 0° 2.5° 5° 7.5° 10°

Cortical bone 13.81 MPa 13.86 MPa 14.87 MPa 19.94 MPa 24.03 MPa

3.5. Structural Analysis Results Based on the Left–Right Angle

An analysis was performed by changing the direction of the teeth from 0° to 10°. The
implant length, radius, Young’s modulus of the cancellous bone, front–rear angle, and
thicknesses of the cancellous, front–rear, and cortical bones were set as 11.5 mm, 4.0 mm,
7.0 GPa, 0°, and 1.5 mm, respectively, to ensure that the conditions remained the same. The
highest stress occurred in the bending direction with a change in the angle. As shown in
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Figure 15 and Table 7, the stress acting on the cortical bone increased with an increase in
the angle, similar to that for the front–rear angle.

Figure 15. Chart of the cortical bone von Mises stress value (Implant angle left–right).

Table 7. Results of cortical bone von Mises stress values (Implant angle left–right).

von Mises Stress 0° 2.5° 5° 7.5° 10°

Cortical bone 13.81 MPa 15.04 MPa 15.30 MPa 18.81 MPa 23.83 MPa

3.6. Structural Analysis Results Based on Cortical Bone Thickness

An analysis was performed by changing the thickness of the cortical bone from 1.5 to
2.5 mm. The implant length, radius, Young’s modulus of the cancellous bone, left–right
angle, and front–rear angle were set to 11.5 mm, 4.0 mm, 7.0 GPa, 0°, and 0°, respectively, to
ensure that the conditions were the same. Further, there was no clear trend according to the
changes in the cortical bone thickness. The stress on the cortical bone was distributed with
an increase in the thickness; however, the size of the cancellous bone decreased, resulting
in a decrease in the Young’s modulus. Therefore, the results canceled each other. Figure 16
and Table 8 show that the results change with the thickness. The thickness variable of
the cortical bone affected the accuracy of the results during ROM production because the
deviation was severe.

Figure 16. Chart of the cortical bone von Mises stress value (Cortical bone thickness).

Table 8. Results of cortical bone von Mises stress values (Cortical bone thickness).

von Mises Stress 1.5 mm 1.75 mm 2.0 mm 2.25 mm 2.5 mm

Cortical bone 13.81 MPa 9.26 MPa 17.22 MPa 10.04 MPa 11.58 MPa
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3.7. Selecting Important Design Variables

The analysis criteria were set to the most commonly used criteria in actual implants:
length = 11.5 mm; radius = 4.0 mm; Young’s modulus for the cancellous bone = 7.0 GPa;
left–right and front–rear angles = 0°; and cortical bone thickness = 1.5 mm.

The differences between the largest and smallest stress values for the implant length,
thickness, Young’s modulus of the cancellous bone, front–rear angle, and left–right angle
were 30.0%, 57.9%, 71.9%, 42.5%, and 42.0%, respectively. The cortical bone thickness did
not show a clear trend. Although there may be some errors because of differences in the
scales of the input variables in each condition, the results of selecting the minimum and
maximum values used in the implant process significantly affect the Young’s modulus of
the cancellous bone. The order of influence on the stress occurring in the cortical bone is
as follows: Young’s modulus > implant thickness > front–rear angle > left–right angles >
implant length.

4. Simulation Data and Parametric ROM for Implant Placement Planning

The proposed ROM model was employed to connect implant simulation data to
images and oral scan data for implant placement guidance. The ROM reproduces a high-
precision analysis model and enables 3D simulations for use as simple mathematical models
or embedded software. General ROM theories include data-based metamodel methods
and physics-based proper orthogonal decomposition (POD), singular value decomposition
(SVD), and Karhunen–Loeve decomposition methods.

In this study, six design variables, including implant length, radius, front–rear angle,
left–right angle, Young’s modulus of the cancellous bone, and cortical bone thickness
for the anterior, premolar, and posterior teeth were used to enable real-time 3D implant
placement planning.

4.1. Simulation Data Generation Using Design of Experiment

The Taguchi orthogonal array, volume 5, level L25, was used for the study. Figure 17
shows the six design variables and the ranges required for implant placement planning.
Figure 18 shows an example of the experimental arrangement (design matrix) and FEA
results of the L25 (56) orthogonal array table for the six design variables.

Figure 17. Controllable parameters and their associated levels.

Figure 18. Taguchi orthogonal array level 25.
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4.2. Parametric ROM

Model reduction and surrogate modeling are used to obtain outputs in real time for
large complex systems or specific inputs in a quick and efficient manner. A parametric ROM
is used to create a reduced model to respond to the changes in parameters constituting a
system. Therefore, the parametric ROM involves fitting a reduced model or reducing the
bias based on input parameters such as shape, load, and boundary conditions.

In this study, the parametric ROM employed for implant placement planning used
high-fidelity polynomials, support vector regression (SVR), genetic algorithm for the iden-
tification of a robust subset (GARS), and deep feature fusion network (DFFN). The DFFN
implements a metamodel based on the artificial neural network (ANN) paradigm using
the Keras library with TensorFlow as the back-end to create a metamodel by building and
training a network [40–42].

The quality of the parametric ROM was evaluated using the CoD and CoP.

CoD =
∑N

k=1(ŷ
(k)
j (x1, x2, · · · , xj, · · · , xn)− µyj)

2

∑N
k=1(y

(k)
j (x1, x2, · · · , xj, · · · , xn)− µyj)

2
(1)

The CoD can be used to assess the approximation quality of a polynomial regression
model. This measure is defined as the relative amount of variation explained by the
approximation [43,44]

CoP = [
E[YTestŶTest]

2

σYTestσŶTest
]2 = [

∑N
k=1(y

(k) − µy)(ŷ(k) − µy)

(N − 1)σyσŷ
], 0 ≤ CoP ≤ 1 (2)

where y represents the test value, ŷ represents the estimate of the parametric ROM, and σ
and µ represent the mean and standard deviation, respectively, calculated from each of the
N-many DOE data. The degree of agreement between the DOE data and the estimate of
the parametric ROM was measured using the CoP value in Equation (2) for additional test
design points [45,46].

The CoP y(k) is calculated in a similar manner as the more common CoD or R2 values;
however, it is calculated via a cross-validation process whereby the data are partitioned into
subsets used either for the metamodel or CoP calculation. Therefore, the CoP is preferred
as a measure of the effectiveness of a model for predicting unknown data points, which is
valuable for this type of parametric ROM application.

The generalized CoD can be applied to all parametric ROMs and is equivalent to
the square of the linear correlation coefficient between the true sample values and model
predictions. The quality of the prognosis must be evaluated to determine the quality of an
approximation; therefore, an additional test dataset is used, and the agreement between
these real test data and parametric ROM estimates are measured using the CoP.

Figure 19 shows the approximation accuracy of the high-fidelity surrogate model.
GARS is a parametric ROM with high approximation quality. The CoD of the three implant
areas is greater than 97% for both stress and strain; the stress values of the most important
cortical bone for arbitrary design points are approximately 90%, 88%, and 97% for the
anterior, premolar, and posterior regions, respectively, which indicates good quality.

Figure 20 shows the polynomial equations used to calculate the stress and strain
values for the anterior, premolar, and posterior regions for real-time implant placement
planning that requires selecting the order of importance of design variables and considering
interactions. The approximation quality in all areas is approximately 96% or higher.

Figures 21–23 compare the implant FEA results and data-driven parametric ROM
based on the anterior, premolar, and posterior regions, respectively. Although there was an
error in the approximation, the location and analysis of the ROM prediction values were
approximated effectively.
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Figure 19. Configurations of the high-fidelity parametric ROM.

Figure 20. Data-driven parametric ROM to predict the anterior, premolar, and posterior regions at
three different locations.

Figure 21. Comparison of the maximum stress in the implant, cortical bone, and deformation
predicted by the parametric ROM and FEA results (Anterior teeth).
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Figure 22. Comparison of the maximum stress in the implant, cortical bone, and deformation
predicted by the parametric ROM and FEA results (Premolar teeth).

Figure 23. Comparison of the maximum stress in the implant, cortical bone, and deformation
predicted by the parametric ROM and FEA results (Posterior teeth).

Table 9 presents a comparison of the time required to obtain the results via FEA and
parametric ROM. In contrast to FEA, which requires 2 h and 25 min to obtain the results,
parametric ROM can obtain the analysis results from the 1-D CAE solver in 1 s by entering
the variables.

Table 9. Comparison of Solving Time for FEA and Parametric ROM.

Solution FEA Parametric ROM

Solving time 2 h 25 min 1 s

5. OnDemand3D Program for Real-Time Implant Placement Guide

The landscape of dental implant technology is continually evolving. The current
trend involves integrating intra-oral scan data and digital twin technologies into implant
planning software.

This technology enables meticulous pre-surgical planning (planning the precise loca-
tion, angle, and depth of implant placement) using 3D imaging and digital twin models.
During the implantation procedure, a skilled dentist needs a plan to establish the location
and angle of implantation. Parametric ROM technology provides real-time, physical behav-
ior (bone strength around the implant), and visual guidance to doctors using CT data to
locate a suitable implant position and select the necessary implants.

The 1-D formula obtained using structural analysis and ROM data was applied to
the OnDemand3D software, which is highly advanced 3D imaging software developed
for dentists, clinicians, and research experts for use in planning and simulation of patient
treatment, accurate diagnosis, and advanced research. OnDemand3D utilizes DICOM data
across modalities to reconstruct 3D volumes using the latest and best in 3D technology.
OnDemand3D provides specialized layouts, reconstructed images, and tools for accurate
and precise diagnoses.

The software consists of modules such as demineralized bone matrix, Dental, 3D,
3D Cephalometric, Fusion, Dynamic LightBox, Report, Xlmage, and In2Guide, and each
module functions independently. The dental module applied in this study is the standard
for 3D dental reconstruction. This module contains eight different layouts, including dental,
verification, multiplanar reformation (MPR), panorama, temporomandibular joint (TMJ),
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bilateral-TMJ, orthodontic, and airway. As shown in Figure 24, implant surgery can now
be fully simulated using the dental module with the help of our real-size library of implant
fixtures and abutments as well as the intra-oral/3D model scan data alignment function.

Figure 24. Layout of the dental module.

This module plays an auxiliary role for the user by integrating the implant ROM
model to provide additional information. All necessary parameters from the implant ROM
can be obtained from this module. As shown in Figure 25, the implant to be used is selected
from the implant library by selecting the location of the tooth to be installed. Based on the
selected location, appropriate bone material property values can be obtained, as shown in
Figure 26.

Figure 25. Implant library.

As shown in Figure 27, the empty space between the teeth is determined from the
photographic data, and the implant is placed. The six variables are subsequently changed,
as shown in Figure 28, and are input in the 1-D CAE solver for automatic calculation. The
stress level in the cortical bone is displayed in green for under 40 MPa and in red for higher.

In the future, we plan to subdivide the range based on the experiences of actual
dentists and present it as a gradation from safe (green) to dangerous (red).
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Figure 26. Bone information.

Figure 27. OnDemand3D featuring implant planning and surgical guide design.

Figure 28. Real-time implant FEA results using 1-D CAE solver.

6. Summary Remarks and Conclusions

Stress overload that occurs during implant placement can lead to osseointegration
and failure [47]. Therefore, many studies used FEA to reduce overload before implant
placement. Most studies conduct stress analysis based on new implants [48,49], changes
in implant materials [50–52], and various variables [53]. Although this can achieve better
implants and placement plans, it does not help with real-time placement depending on the
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condition of the patient. Therefore, this study presented a method that provides real-time
information on the optimal placement method considering the patient’s implant placement
location, bone condition, and distance from surrounding teeth.

The stress generated in the cortical bone and implant because of the masticatory force
of the implant was analyzed via structural analysis. The length and thickness of the implant,
Young’s modulus of the cancellous bone, front–rear angle, left–right angle, and thickness
of the cortical bone were used as the influencing design variables, and they were set as
11.5 mm, 4.0 mm, 7.0 GPa, 0 degree, 0 degree, and 1.5 mm, respectively, to ensure the
same conditions. The teeth were divided into three categories: anterior, premolar, and
posterior teeth.

A frictional contact was applied after the implant and bone were completely attached,
and the results were confirmed when the implant was fully installed. Subsequently, the anal-
ysis was conducted by applying a force from the top to the bottom based on a masticatory
force size of 100 N.

The analysis results indicated that less stress occurred from the top of the cortical
bone to the bottom of the cancellous bone, and the highest force occurred at the first
thread where the implant and bone met. Among the several implant variables, the stress
in the bone became widely distributed with an increase in the length and diameter of the
implant, which decreased the stress in the cortical bone. The force acting on the cortical
bone was distributed to the cancellous bone with an increase in the Young’s modulus of
the cancellous bone, thereby resulting in a decrease in stress. The force received by the
implant was not directed vertically downward in the local direction of the implant when
changing its installation angle. Thus, stress increased with an increase in the angle, and the
greatest force occurred at the first curved part, not at the first position of the implant or
screw thread. The cortical bone thickness did not show a clear trend based on the change.
The force was distributed and the stress decreased with an increase in the thickness of the
cortical bone; however, the overall Young’s modulus and stress increased with a decrease in
the size of the cancellous bone. No clear trend was observed because of the two offsetting
effects, which lowered accuracy while generating ROM data; an analysis was conducted
considering this point. Comparing the difference between the minimum and maximum
stresses within the design variables used confirmed that the order of influence was as
follows: Young’s modulus of the cancellous bone > implant thickness > front–rear angle >
left–right angle > implant length.

These results were used to create a parametric ROM for designing a reduced model
that responded to the changes in the parameters. The parametric ROM production was
evaluated using the polynomial, SVR, GARS, and DFFN methods. These methods were
tested and the the highest accuracy method was selected. COD was used to evaluate the
approximation quality of the polynomial regression model, and COP was used to evaluate
the prognostic quality.

Compared to the other methods, GARS showed an average COD accuracy of 99% and
COP accuracy of 83%. For the cortical bone stress, the parametric ROM using GARS was
selected because it showed an accuracy of COD of over 97% and a COD of over 88% under
all three tooth conditions. The data-driven parametric ROM obtained using this, i.e., a 1-D
CAE solver, was created to calculate the expected stress in the cortical bone by determining
the values when inputting the values for each variable.

The calculated values were loaded into OnDemand3D software, and the position
and angle of the implant, as determined from the data obtained through the video, were
applied to the parameter column. The 1-D CAE solver was automatically calculated when
the implant length, diameter, and Young’s modulus of the cancellous bone were entered
according to the patient’s condition; subsequently, the results were derived. If the maximum
stress generated in the cortical bone was more than 40 MPa, the implant was displayed in
red; if it was less than that, the implant was displayed in green. The stress value under the
condition was derived such that stability could be confirmed visually.
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In contrast to the existing method of establishing an implantation plan based on the
doctor’s judgment, the proposed ROM method ensures objectivity. Further, various virtual
placement methods can be considered because the stress at the placement location is deter-
mined in real time using data obtained from image data and existing data according to the
placement location. However, the proposed method has a limitation in that an implantation
plan has been established considering only six variables. In future research, a ROM with
additional variables will be produced to create a safer and more comprehensive implanta-
tion plan. Thus, the parametric ROM-based method for analyzing implant placement plans
is expected to be used as an important module in building dental digital twins.
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