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Abstract: To examined alkaline phosphatase enzyme (ALP) activity and the effects of incorporat-
ing it in the thickener solution of a hydrogen-peroxide-based bleaching gel containing calcium-
polyphosphate (CaPP) on the orthophosphate (PO4

3−) levels, bleaching effectiveness, and enamel
microhardness. ALP activity was assessed at different pH levels and H2O2 concentrations, and in
H2O- and Tris-based thickeners. Circular dichroism (CD) was used to examine the ALP secondary
structure in water-, Tris-, or H2O2-based mediums. The PO4

3− levels were evaluated in thickeners
with and without ALP. Enamel/dentin specimens were allocated into the following groups: con-
trol (without bleaching); commercial (Whiteness-HP-Maxx); Exp-H (H2O-based); CaPP-H; ALP-H
(CaPP+ALP); Exp-T (Tris-based); CaPP-T; and ALP-T (CaPP+ALP). Color changes (∆E/∆E00) and
the bleaching index (∆WID) were calculated, and surface (SMH) and cross-sectional microhardness
(CSMH) were assessed. The two-way ANOVA and Tukey’s post-hoc tests were used to compare ALP
and PO4

3− levels; generalized linear models were used to examine: ∆E/∆E00/SMH/CSMH; and
Kruskal–Wallis and Dunn’s tests were used for ∆WID (α = 5%). The ALP activity was higher at pH 9,
lower in H2O2-based mediums, and similar in both thickeners. The CD-spectra indicated denatura-
tion of the enzyme upon contact with H2O2. The PO4

3− levels were higher after incorporating ALP,
and the ∆E/∆E00/∆WID were comparable among bleached groups. SMH was lower after bleaching
in Exp-H, while CSMH was highest in ALP-T.

Keywords: biomimetic; tooth bleaching; polyphosphates; alkaline phosphatase; hydrogen peroxide;
circular dichroism

1. Introduction

The emergence of new biomimetic materials is accompanied by an increase in their
use for the purpose of remineralizing dental hard tissues [1,2]. Calcium–polyphosphate
sub-microparticles (CaPP), which are amorphous polymers containing ±40 phosphate
units linked by phosphoanhydride bonds, have previously been synthetized using co-
precipitation [3]. CaPP can act as a precursor for the formation of crystalline materials that
repair altered dental hard tissues, with the orthophosphates’ (PO4

3−) releasement from the
polymers acting as a building block for enamel remineralization [4,5].

Upon the completion of polymerization, the PO4
3− and calcium divalent cations

(Ca2+) in the CaPP become unavailable for mineralization. For this, polyphosphates deliver
phosphates to the mineralization sites, preventing “off-site” mineral precipitation [6,7].
CaPP can release ions through the following: (1) spontaneous hydrolytic degradation of the
polyphosphate chain at a slower rate; (2) cleavage of the chain by a phosphatase enzyme
(e.g., alkaline phosphatase [ALP]) at an accelerated rate, especially in mediums with higher
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pH levels (e.g., buffer solutions) [7–9]. The latter method ensures precise apatite saturation
at the mineralization site [6].

Much of the evidence on hydrogen-peroxide-based (HP) bleaching gels to date has
focused on the preservation of their clinical effectiveness while reducing their main adverse
effects, such as dental sensitivity and defects in hard tissue surfaces [10–12]. Although some
experimental HP bleaching gels have reported promising results after the incorporation of
chemical activators [13,14] or remineralizing agents [15–18], evidence in this field remains
unclear, necessitating the development and assessment of new materials [19,20].

The CaPP has the advantage of being a biocompatible compound that can integrate into
the tooth surface and release Ca2+ and PO4

3−, facilitating the biomineralization of the dental
tissues through the transformation of the amorphous precursors into crystalline materials
(Figure 1) [3,18,21]. This process is biologically upregulated by the enzymatic activity
of ALP [22–24]. This boosting of CaPP degradation is a biological process that, within a
remineralizing–bleaching system, could facilitate enamel bleaching and the concurrent
preservation of its physical properties. However, as ALP activity is pH-dependent [25], the
properties of such a bleaching system should be assessed in both water and buffer thickener
solutions (e.g., Tris-buffer) that do not interfere with the H2O2 action.
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Figure 1. Schematic description of the remineralization mechanism of the calcium polyphosphate
(CaPP) by direct integration with the tooth surface via ionic bonding (a), and/or through the release
of Ca2+ and PO4

3− by hydrolytic degradation, facilitating the biomineralization of the dental tissues
through the transformation of the amorphous precursors into crystalline materials (b).

The objective of the current study was to assess ALP activity and examine its effects
on PO4

3− levels in the thickener solution of a highly concentrated, hydrogen-peroxide-
based bleaching gel containing CaPP (HP-CaPP-ALP). Furthermore, its bleaching efficacy
and its effect on enamel microhardness after in vitro treatment were also examined. The
research hypotheses were as follows: (1) ALP activity will be higher in the presence of Tris
and alkaline mediums but decrease in the presence of H2O2; (2) the PO4

3− levels of the
HP-CaPP-ALP (thickener compound) will be higher than that of gels without ALP; and
(3) color changes (∆E; ∆E00; and ∆WID) and the microhardness of enamel treated with
HP-CaPP-ALP will be similar to or superior to that of enamel treated with experimental
and commercial 35%-HP gels without CaPP and ALP.
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2. Materials and Methods
2.1. Assessment of ALP Activity and Its Secondary Structure Using Circular Dichroism
Spectroscopy (CD)

The activity of ALP derived from calf intestine (524572; Merck KGaA, Darmstadt,
Germany) was assessed under different conditions, including Tris-HCl buffers with varying
pH levels (six, seven, eight, nine, and ten); different concentrations of H2O2 (i.e., 7, 4,
and 0.6 mg/mL); and thickeners prepared with different mediums (i.e., Tris-based and
H2O-based). Assessments were carried out using colorimetric endpoint assays (ALP-Kit;
Labtest-Diagnóstico-S.A., Lagoa Santa, Brazil), and all analyses were performed within
10 or 30 min of incorporating ALP into the medium of choice. At this point, 250 µL of a
buffer solution was added to 25 µL of a thymolphthalein monophosphate solution and
kept under 700 rpm agitation (Thermomixer Comfort; Eppendorf-SE, Hamburg, Germany)
at 37 ◦C (2 min). Thereafter, 25 µL of the sample was mixed with the solution and stored
under the previously mentioned conditions for 10 min, and then 1000 µL of a color reagent
was added to react with the hydrolyzed thymolphthalein and modify the final color of the
product [16]. The ALP absorbance values were determined using a microplate reader at
590 nm (Infinite-200-PRO; Tecan, Mannedorf, Switzerland), and then converted into units
per liter (U/L) according to the manufacturer’s formula, as follows:

ALP = (Asamp/Astand) × 45 (1)

where Asamp represents the absorbance of the sample and Astand represents the ab-
sorbance of the standard.

Structural changes in the ALP according to the medium that was used (i.e., MilliQ
water; Tris-buffer; HP-35%-H (water-based); HP-35%-T (Tris-based); and Sol-B (Tris-based))
were characterized by circular dichroism (CD) spectra using an Applied Photophysics
Chirascan spectrometer running the Pro-Data Chirascan software (v4.2.22). At least three
scans were recorded for each sample under the following conditions: temperature = 25 ◦C;
wavelength range of 190–250 nm using intervals of 1 nm in Suprasil quartz cells (Hellma
U.K. Ltd., Southend-on-Sea, UK), with a path length of 0.02 mm. The mean values of
the scans were then calculated, and the respective baseline values were subtracted. The
resulting net spectra were smoothed using a Savitzky–Golay filter with smoothing windows
of 5–10 data points.

The mean residue ellipticity (ΘMRE) was defined as follows:

ΘMRE = Θ/(c × n × l)

where Θ is the raw CD ellipticity (mdeg); n is the number of amino acids in the solvated
peptide; l is the path length of the quartz cuvette that was used (mm); and c is the molar
concentration of the peptides. The CD spectra were analyzed using the BeStSel web server
to allow for an estimation of the relative amount of specific secondary conformational
elements in the samples.

Intestinal-type alkaline phosphatase solution in 6 mM Tris/HCI, 6 mM magnesium
chloride, 0.12 mM zinc chloride, and 40% glycerol pH 7.6 (Calbiochem, Darmstadt, Ger-
many; activity: 30,100.0 U/mL; molecular weight: 140,000 Da) were used. A total of 60 µL
of each solution was added to the enzyme (concentration 17.8 mg/mL) and left to react for
15 min before carrying out measurements.

2.2. Assessment of PO4
3− Levels

Orthophosphate (PO4
3−) levels in the thickener component of bleaching systems

containing 0.5 wt% of CaPP in H2O or Tris-HCl-buffer were assessed, with or without
ALP incorporation. A colorimetric Phosphate Assay Kit (MAK-308; Sigma-Aldrich, Saint
Louis, MO, USA) was used [26] to examine: CaPP-H (H2O-based/CaPP); ALP-H (H2O-
based/CaPP+ALP); CaPP-T (Tris-based/CaPP); and ALP-T (Tris-based/CaPP+ALP). The
thickener was weighed (25 mg), and 15 U of exogenous ALP from calf intestine (524572;
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Merck KGaA, Darmstadt, Germany) was added and kept in an incubator (700 rpm) at 37 ◦C
(Thermomixer Comfort 5355; Eppendorf SE, Hamburg, Germany). Thereafter, the gels
were further diluted to a final concentration of 1.6 mg/mL so that they remained within
the assay kit detection range (0.4–50 µM PO4

3−).
The prepared samples were mixed with malachite green in a 96-well-plate and kept

in an incubator (KS260; IKA®, Staufen, Germany) under agitation (250 rpm) at 37 ◦C. The
optical densities of the solutions were read in triplicate at 620 nm using a microplate reader
(Infinite 200 PRO; Tecan Trading, AG, Männedorf, Switzerland). The PO4

3− concentration
was determined by employing a calibration curve obtained from a series of aqueous
solutions containing known concentrations of PO4

3− (40, 32, 24, 16, 12, 8, 4, 0 µM), as per
the manufacturer’s instructions [27]. Moreover, thickeners without CaPP or ALP were used
as blank controls and subtracted from the group’s final values.

2.3. Enamel Preparation and Bleaching Treatment

After assessing the orthophosphate levels, an in vitro bleaching treatment of bovine
enamel specimens was carried out. Power calculations for the color (effect size = 0.35;
α = 0.05; β = 0.80; correlation = 0.5) and microhardness analyses (effect size = 0.35; α = 0.05;
β = 0.80; correlation = 0.2) were based on previous evidence, and the findings showed a
minimum sample size of 10 per group per analysis (GPower 3.1-software; Heinrich-Heine-
Universität, Germany).

A bench drill (FSB16; Schulz, Joinville, Brazil) was used to create 200 enamel–dentin
disks (5.7 × 2.3 mm) from bovine incisors previously disinfected with 0.1% Thymol solution.
The specimen surfaces were regularized using granulated silicon carbide paper (600, 1200,
2500, and 4000 grid) and polished using felt and diamond pastes (1 and 1/4 µm), mounted
in a polishing unit (Arotec S.A. Ltd.; Cotia, Brazil) [28]. The prepared specimens were
divided into two groups for color and microhardness analyses. The color specimens were
stained by immersing them in a black tea solution (1.6 g of black tea in 100 mL of boiled
distilled water for 5 min), which was renewed daily for 6 days, followed by one week of
immersion in artificial saliva.

After an initial color and surface microhardness (SMH) assessment (12% devia-
tion considering a 359KHN mean), the specimens were randomized into eight groups
(n = 10) including control (without bleaching); commercial (Whiteness-HP-Maxx, FGM);
Exp-H (water-based-thickener without CaPP); CaPP-H (0.5 wt%-CaPP); ALP-H (0.5 wt%-
CaPP+ALP); Exp-T (Tris-based-thickener without CaPP); CaPP-T (0.5 wt%-CaPP); and
ALP-T (0.5 wt%-CaPP+ALP; Table 1).

Table 1. Treatment groups for the study, composition, batch/manipulation details.

Treatment Groups Composition Batch Manipulation

Control No bleaching gel - -

Commercial Glycol, inorganic fillers, H2O2-30–35 wt%,
mixture of pigments, deionized water, thickener. 061222

Mix the components in a 3:1
proportion for 30 s.

Exp-H/Exp-T
Glycerol, propylene glycol, H2O2-35 wt%,

deionized water or Tris buffer solution, acrylic
acid thickener.

23/16101

CaPP-H/CaPP-T
Glycerol, propylene glycol, H2O2-35 wt%,

deionized water or Tris buffer solution, acrylic
acid thickener, CaPP 0.5 wt%.

23/16102

ALP-H/ALP-T
Glycerol, propylene glycol, H2O2-35 wt%,

deionized water or Tris buffer solution, acrylic
acid thickener, CaPP 0.5 wt%, ALP (thickener).

23/16103

The specimens were then subjected to three bleaching sessions at weekly intervals,
with each session including three applications lasting 15 min each. In the ALP-H and
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ALP-T groups, ALP was first mixed with the thickener solutions and left to react for 10 min,
in order to allow for it to react with the CaPP before denaturation upon contact with
H2O2. Thereafter, similar to the other groups, an H2O2-based solution was mixed with the
thickener (3:1 weight proportion), and 0.02 g of the bleaching gel was applied to the enamel
surface. The specimens were stored in artificial saliva (1.5 mM Ca2+, 0.9 mM P, 150 mM
KCl, 0.05 µg F−/mL, and 0.1 M Tris-buffer at pH 7) at 37 ◦C throughout the bleaching
process and up to 14 days after the completion of treatment [18].

2.4. Color (∆E, ∆E00, ∆WID) Assessment

To determine the bleaching effectiveness of the products, the dental/enamel specimens
had their color assessed using a calibrated spectrophotometer (CM 700d; Minolta, Tokyo,
Japan) in a standardized light environment (GTI Mini Matcher MM-1; GTI, Cedar Rapids,
IA, USA). Three readings were recorded at baseline, after the 1st, 2nd, and 3rd sessions, and
7 and 14 d after the completion of bleaching, and the spectral distribution was quantified
using the CIELab color space. For the five assessment points (T1 = after 1st session;
T2 = after 2nd session; T3 = after 3rd session; T4 = 7 days after bleaching; T5 = 14 days after
bleaching), the total color change (∆E/∆E00) and bleaching indices (∆WID) [29,30] were
calculated using the following formulas, with baseline readings serving as the reference:

∆E = [(∆L*)2 + (∆a*)2 + (∆b*)2]
1/2 (2)

∆E00 = [(∆L′/KLSL)2 + (∆C′/KCSC)2 + (∆H′/KHSH)2 + RT (∆C′/KCSC) (∆H′/KHSH)]
1/2 (3)

∆WID = 0.511∆L* − 2.324∆a* − 1.100∆b* (4)

where: ∆L = assessment time L*—baseline L*; ∆a = assessment time a*—baseline a*;
∆b = assessment time b*—baseline b*. As per the CIEDE2000 metric, ∆L′, ∆C′, and ∆H′

represent changes in brightness, chrome, and hue values, respectively. SL, SC, and SH
are parameters that regulate the values of the coordinates; KL, KC, and KH are correction
parameters for the experimental conditions; and RT takes into account the interaction
between differences in chroma and hue in the blue region [30].

2.5. Surface Microhardness (SMH) and Cross-Sectional Microhardness (CSMH) Assessment

Enamel SMH was assessed using a microdurometer (FM-100; Future-Tech-Corp, Kana-
gawa, Japan) at baseline (prior to 1st bleaching session) and again after completion of the
third bleaching session. A Knoop indenter (25 gf/5 s) was used to make five indentations
100 µm apart [31].

To assess the in-depth microhardness of the enamel, after the completion of bleaching
treatment, the specimens were first cut longitudinally using a double-faced diamond disk,
and one of the sections was immersed in epoxy resin (2001; Redelease, São Paulo, SP, Brazil).
Grinding and polishing were carried out as described previously to expose the specimen
surface. A Knoop indenter (25 gf/5 s) was used to create three columns (spaced at least
100 µm apart) of indentations at depths of 10, 20, 40, 60, 80, 100, 120, 140, 160, 180 µm from
the enamel surface to allow for the measurement of CSMH using a microdurometer [28,32].

2.6. Statistical Analyses

After descriptive and exploratory analyses, the two-way ANOVA and Tukey’s post-hoc
tests were used to compare ALP and PO4

3− levels according to pH and H2O2 concentration.
A t-test (GraphPad-Software-Prism-8; Boston, MA, USA) was used to compare ALP levels
according to type of thickener. Generalized linear models (GLM) were used to examine the
∆E and ∆E00, while ∆WID was analyzed using the Kruskal–Wallis and Dunn’s tests. SMH
was analyzed using a mixed GLM model adjusted for repeated measures in time, while
CSMH was analyzed using a GLM model, considering the effects of bleaching treatment
with subdivided plots in the depths (R Core Team; Computing, Vienna, Austria). All
analyses were carried out at a significance level of 5%.
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3. Results
3.1. Activity and Secondary Structure of ALP

The lowest and highest ALP activities were observed at pH levels of 6 (p < 0.04) and 9,
respectively, after 10 and 30 min of incubation (p < 0.009; Figure 2a). In H2O2-containing
solutions, the highest ALP activity was observed at a concentration of 0.6 mg/mL (p < 0.01),
regardless of the time (Figure 2b). Both thickeners exhibited a similar ALP activity after
10 min; however, the Tris-based medium was seen to exhibit a higher ALP activity after
30 min (p = 0.0006; Figure 2c).
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Figure 2. Alkaline phosphatase (ALP) activity, as determined by the spectrophotometric technique
(590 nm) after 10 and 30 min of assessment in: (a) different pH levels; (b) different concentrations
of hydrogen peroxide; and (c) thickeners based on water or Tris. The lowercase letter indicates a
statistically significant difference between the groups.

Significant changes in the CD spectra were observed in the HP-35%-H and HP-35%-T
groups, with the negative centered at 225 nm decreasing. Furthermore, a single negative
band at 205 nm was present in the HP-35%-H group (Figure 3), and a decrease in the
α-Helix (%) of samples diluted with peroxides was observed (Table S1).
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3.2. PO4
3− Levels

The incorporation of ALP significantly increased free PO4
3− levels (p < 0.001) in both

water-based (ALP-H) and Tris-based (ALP-T) thickener solutions. However, PO4
3− levels

did not increase significantly upon prolonging incubation time from 10 to 30 min (p > 0.32;
Figure 4).
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Figure 4. PO4
3− concentrations (P µM) in the thickeners after 10 or 30 min of the ALP incorporation

(15 U): CaPP-H (H2O-based with 0.5 wt% CaPP); ALP-H (H2O-based with 0.5 wt% CaPP + ALP);
CaPP-T (Tris-based with 0.5 wt% CaPP); ALP-T (Tris-based with 0.5 wt% CaPP + ALP). The lowercase
letter indicates a statistically significant difference between the groups.

3.3. Color (∆E, ∆E00, ∆WID)

The color difference parameters (∆E and ∆E00) were higher in the bleached groups
compared to the control group (p < 0.05), although no statistically significant differences
were observed between the commercial and experimental bleaching gels, regardless of
composition (p > 0.05). Similarly, the ∆WID values were significantly higher in the bleached
groups compared to the control group (p < 0.05), although no inter-group differences were
observed in the former (p > 0.05; Figure 5 and Table S2).
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3.4. Surface Microhardness (SMH)

All groups exhibited similar SMH values at baseline (p > 0.05), although these were
seen to be significantly decreased in the Exp-H and commercial groups after the third
bleaching session (p < 0.05). The ALP-T group exhibited the highest SMH values, and this
was significantly different from that of the commercial and control groups (p-value < 0.05).
In contrast, the Exp-H group exhibited the lowest SMH values, and these were significantly
different from that of the CaPP-H, ALP-H, Exp-T, CaPP-T, ALP-T, and control groups
(p < 0.05; Figure 6).
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3.5. Cross-Sectional Microhardness (CSMH)

The CSMH values after treatment were significantly higher in the ALP-T group when
compared to the other groups (p < 0.05). In contrast, the CSMH values were significantly
lower in the Exp-H and commercial groups when compared to the control, CaPP-H, CaPP-T
and ALP-T groups (p < 0.05). Moreover, CSMH was seen to increase up to a depth of 100 µm
(p < 0.05) and then stabilize in all groups (p > 0.05; Table 2).
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Table 2. Cross-sectional microhardness (CSMH) values according to the treatment group and distance
from the enamel surface.

Distance
(µm)/Multiple
Comparisons

(Distances)

1 Group

Control Commercial Exp-H CaPP-H ALP-H Exp-T CaPP-T ALP-T

Mean (Standard Deviation)

10/d 253.80
(46.09)

229.27
(48.36)

225.79
(33.32)

261.52
(44.47)

257.23
(63.62)

252.63
(41.45)

268.00
(41.14)

282.98
(44.07)

20/c 315.00
(38.43)

299.19
(42.05)

290.14
(39.99)

327.24
(29.84)

325.07
(56.57)

308.15
(46.48)

338.72
(44.76)

354.99
(18.63)

40/b 357.19
(29.88)

343.43
(25.72)

309.19
(35.97)

352.00
(26.87)

354.71
(47.32)

346.58
(28.99)

354.93
(36.11)

381.47
(20.81)

60/b 356.66
(26.13)

352.95
(26.42)

317.96
(47.54)

359.04
(23.27)

358.61
(58.31)

340.80
(42.03)

359.27
(37.05)

382.85
(19.23)

80/b 363.74
(28.75)

345.53
(29.77)

322.34
(41.43)

352.46
(18.62)

352.47
(57.49)

339.12
(31.32)

362.22
(36.78)

386.80
(19.36)

100/a 370.85
(39.25)

346.59
(30.10)

329.56
(42.04)

359.77
(18.33)

360.73
(62.74)

349.64
(29.56)

367.34
(40.88)

390.13
(15.44)

120/a 370.64
(32.70)

354.94
(25.09)

329.87
(42.09)

369.51
(19.73)

357.56
(58.48)

348.79
(30.21)

367.02
(39.38)

384.07
(15.88)

140/a 371.80
(36.63)

342.79
(31.93)

330.85
(45.03)

370.35
(15.59)

360.98
(61.72)

343.10
(29.79)

368.86
(48.97)

394.55
(18.15)

160/a 374.00
(36.79)

350.06
(39.45)

335.78
(46.73)

364.65
(18.90)

360.43
(63.80)

344.84
(27.62)

370.25
(36.30)

393.73
(12.76)

180/a 371.32
(36.31)

348.36
(38.10)

330.31
(44.89)

369.91
(28.38)

365.69
(61.55)

348.78
(26.32)

365.95
(36.70)

402.54
(16.18)

Multiple
comparisons

(groups)
B C C B BC BC B A

1 Control (without bleaching); commercial (HP35%-Whitenes HP-Maxx); Exp-H (water-based); CaPP-H (0.5 wt%
CaPP); ALP-H (0.5 wt% CaPP + ALP); Exp-T (Tris based); CaPP-T (0.5 wt% CaPP); ALP-T (0.5 wt% CaPP + ALP).
p(group) = 0.0025; p(distance) < 0.0001; p(interaction) = 0.2899. Different letters (uppercase in the groups and
lowercase in the distance) indicate statistically significant differences (p ≤ 0.05)—pooled mean.

4. Discussion

An examination of the effects of ALP on experimental bleaching gels containing
35%-HP and 0.5 wt% CaPP (HP-CaPP-ALP) showed increased activity in Tris-based and
alkaline mediums (pH 9) and decreased activity in the presence of H2O2. Therefore, the first
research hypothesis was accepted. The findings of this study also showed that PO4

3− levels
increased upon the incorporation of ALP; similar color changes (∆E; ∆E00; ∆WID) were
observed in all groups; and the SMH and CSMH values were higher after treatment using
gels containing ALP in a Tris-based medium (ALP-T) when compared to the experimental
and commercial gels without CaPP. Therefore, the second and third research hypotheses
were also accepted.

ALP is a metalloenzyme that catalyzes the hydrolysis of phosphomonoesters such
as polyphosphates. It plays a vital role in hard tissue formation due to its increased
expression in mineralized tissue cells [22,25], and is use as a relevant indicator of osteoblast
differentiation [33,34]. The current study measured ALP activity in different mediums and
concentrations, which were chosen based on pilot studies and adjusted to be within the
range of activity of a test based on thymolphthalein monophosphate hydrolysis, to enable
the identification of the most appropriate method of incorporating it into bleaching gels
containing CaPP [16].

H2O2 was seen to downregulate ALP activity. This was in agreement with the findings
of a previous cell analysis [35]. Alkaline mediums with pH nine were considered to be
ideal [23], as the ALP catalytic mechanism is favored by the formation of serine phosphate
at the enzyme active site, which then reacts with water to form inorganic phosphates [25].
The thickener solutions did not decrease ALP activity and, as a result, both formulas were
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used for the incorporation of ALP in the subsequent phases of the study. Since the enzyme’s
conformational integrity influences its activity [36], the CD spectra support the findings
regarding ALP activity. Exposure to H2O2 induced changes in the secondary structure of
the enzyme, as evidenced by the observation of decreased ALP activity in H2O2-containing
solutions.

Although encouraging results have been observed upon incorporating CaPP in bleach-
ing gels containing hydrogen peroxide [18], the addition of ALP can increase the free
orthophosphate levels (PO4

3−) and facilitate its subsequent precipitation during bleaching
treatment. In this study, the enzymatic effects on PO4

3− were assessed using a method
based on the complexation of triarylmethane dye, malachite green, with phosphatemolyb-
date ions, as this has greater sensitivity and simplicity [26]. The two-fold-increase in PO4

3−

levels observed in both thickener solutions within 10 min of ALP incorporation suggests
scission of the polyphosphate chain, mediated by the exopolyphosphatase. The main-
tenance of CaPP in an amorphous state can aid this process as it is more susceptible to
enzymatic cleavage by ALP [21].

Although the majority of bleaching gels are water-based, previous evidence suggests
that Tris-HCl buffers are more suitable when greater ALP activity is required [37] Therefore,
two types of thickeners were formulated, and the ALP activity, PO4

3− levels, bleaching
efficacy, and enamel microhardness after treatment were assessed using both. The findings
showed that both water- and Tris-based thickeners exhibited similar PO4

3− levels, even 30
min after incorporation. This could likely be attributed to the fact that higher Ca2+ concen-
trations during CaPP hydrolysis lowered ALP activity up to a certain point, regardless of
the medium used [27].

The color changes observed in the specimens confirmed the efficacy of all treatments
examined in this study, with the observed values being above the acceptability level (∆E >
5.4 and ∆E00 > 3.6) [30]. Similarly, the bleaching index (∆WID) exhibited the highest values
when compared to the control group, confirming that CaPP [18] and ALP incorporation did
not alter bleaching effectiveness when compared to a commercially established product.
Examination after 7 and 14 d showed maintenance of the bleaching effect even after color
stabilization. To the best of our knowledge, this is the first study to provide a scientific
description of the association between phosphatase and bleaching gel formulations. Based
on the initial ALP analysis, it can be inferred that, due to the reduction in its activity in the
presence of H2O2, the last mechanism of action was not altered.

A reduction in SMH was observed after bleaching in the commercial and Exp-H
groups, with the latter exhibiting the greatest overall reduction, potentially due to the
oxidizing action of H2O2 [32]. In agreement with previous results [18], the incorpora-
tion of CaPP in a bleaching gel was seen to exert a positive effect on enamel properties
after treatment, as observed in the CaPP-H and CaPP-T groups. With regards to ALP
incorporation, the highest SMH values were observed in the ALP-T and ALP-H groups,
suggesting mineral deposition on the surface and/or maintenance of the enamel mineral
content potentiated by ALP [5]. Previous studies examining other re-mineralizing agents,
such as trimethaphosthate with fluoride or hydrated calcium silicate, suggest that mineral
deposition can be effective in preventing surface mineral loss after bleaching [16,17].

The CSMH analysis examined the efficacy of the experimental gels in preventing
in-depth mineral loss in the enamel [38], and the findings showed that remineralization
was more effective after incorporating CaPP and ALP in Tris-based thickeners (ALP-T),
compared to water-based thickeners (ALP-H) or CaPP alone (CaPP-H and CaPP-T). This
suggests that the presence of ALP in the water-based thickener was unable to translate into
an increase in the release of ions, as reported in the PO4

3− levels, into the CSMH values.
This potentially indicates that the lower pH values of this formula (≈5) induced greater
demineralization than that generated by Tris-based thickeners with a more neutral pH (≈6).
Therefore, the formerly induced mineral loss that could not be compensated by the ionic
burst, unlike the latter, which exhibited CSMH values that surpassed those observed in the
control group (without bleaching).



Bioengineering 2024, 11, 83 11 of 14

In summary, the hardness values indicate that successful mineral gain and/or preserva-
tion is induced by the effect of ALP on CaPP. The upregulation of apatite biomineralization
by ALP is initiated by the enzymatic cleavage of one terminal hydrogen–phosphate and
one additional proton per anhydride linkage of CaPP [5]. This process releases PO4

3− and
Ca2+ from the polyphosphate chain, making them locally available. The precipitation of the
ions on the dental surface can result in formation of apatite derived from the amorphous
precursors (Figure 7) [39]. The main limitations of the current study were that simulations
of other oral environments were not considered and more extensive analyses of the chemi-
cal properties of the enamel were not undertaken, and future studies should aim to address
these aspects.
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Figure 7. Schematic description of the cleavage of the calcium polyphosphate (CaPP) chain upregu-
lated by the alkaline phosphatase (ALP) within the thickener solution (a), and the subsequent release
of PO4

3− and Ca2+ from the polyphosphate chain, making them locally available to deposit and
interact with the enamel tissue during the bleaching treatment (b).

Previous studies examining enzymatic action within bleaching gels, with a high H2O2
concentration (35 wt%), incorporated peroxidase and/or catalase enzymes in HP-based
gels and reported promising outcomes with regard to bleaching effectiveness and trans-
tissue diffusion [14,40]. However, to the best of our knowledge, this is the first study
to demonstrate that a phosphatase enzyme increases ionic availability in a bioinspired
way. Moreover, this was also found to be beneficial for the physical properties of the
enamel in vitro, likely due to the bioinspired remineralization potential. The elucidation
of the biomimetic principles can lead to the development of modified bleaching gels,
such as those used in the current study (i.e., containing CaPP and ALP), and facilitate an
examination of their effects on the undesirable clinical symptoms associated with dental
bleaching treatments.

5. Conclusions

Following examination of the effects of incorporating ALP into highly concentrated
hydrogen-peroxide-based bleaching gels containing CaPP (HP-CaPP-ALP), the following
is concluded:

- ALP activity was higher in mediums with pH 9, reduced in H2O2 mediums, and
remained similar in Tris- or water-based thickeners.
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- The PO4
3− levels were higher following the incorporation of ALP into gel thickener

solutions, indicating high polymer scission.
- Both HP-CaPP-ALP (ALP-H and ALP-T) solutions demonstrated adequate bleaching

effectiveness.
- The HP-CaPP-ALP gels exhibited increased enamel surface microhardness after treat-

ment when compared to the commercial or experimental gels without CaPP. Moreover,
the ALP-T group exhibited the highest microhardness values after treatment.

- The higher PO4
3− levels in the ALP-T group increased microhardness without decreas-

ing bleaching effectiveness, which suggests a bioinspired remineralization potential.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering11010083/s1; Table S1: Secondary structure of the
alkaline phosphatase (ALP) dispersed in the different solutions; Table S2: Color variation (∆E; ∆E00;
∆WID) according to the treatment group and assessment period.
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