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Abstract: This approach provides a thorough investigation of Barrett’s esophagus segmentation
using deep-learning methods. This study explores various U-Net model variants with different
backbone architectures, focusing on how the choice of backbone influences segmentation accuracy.
By employing rigorous data augmentation techniques and ensemble strategies, the goal is to achieve
precise and robust segmentation results. Key findings include the superiority of DenseNet backbones,
the importance of tailored data augmentation, and the adaptability of training U-Net models from
scratch. Ensemble methods are shown to enhance segmentation accuracy, and a grid search is
used to fine-tune ensemble weights. A comprehensive comparison with the popular Deeplabv3+
architecture emphasizes the role of dataset characteristics. Insights into training saturation help
optimize resource utilization, and efficient ensembles consistently achieve high mean intersection
over union (IoU) scores, approaching 0.94. This research marks a significant advancement in Barrett’s
esophagus segmentation.

Keywords: Barrett’s esophagus; deep learning; medical segmentation; U-Net; Deeplabv3+; data
augmentation; ensemble

1. Introduction

Barrett’s esophagus (BE) is a condition that affects the lining of the esophagus and
increases the risk of developing esophageal cancer. Early detection of neoplasia in BE is
crucial for effective treatment and better prognosis. However, the heterogeneity of BE
poses a challenge for exact diagnosis. In this study, we used public data from Kaggle’s
HyperKvasir dataset [1], which supplies a comprehensive collection of multi-class images
and videos for gastrointestinal endoscopy. Nonetheless, it is worth noting that this dataset
consisted of only ninety-four images depicting BE, which may be deemed inadequate for
effectively training deep-learning models. Considering this limitation, we conducted a
comprehensive review of the existing literature and ascertained that the detection of early
neoplasia in Barrett’s esophagus ranks as a paramount research priority [2]. Studies have
been conducted to find neoplasia in patients with BE, including de Groof et al. [3] and
Hashimoto R et al. [4]. However, these studies focused on the early detection of cancer
change or dysplasia in severe Barrett’s esophagus. The standard diagnosis of Barrett’s
esophagus typically involves a combination of clinical evaluation, endoscopy, and biopsy.
Barrett’s esophagus with no dysplasia can be reversed or prevented from deterioration to
cancer via early detection and just early conservative treatment deployed.

The U-Net architecture has shown excellent performance in biomedical image seg-
mentation tasks [5]. Its distinctive U-shaped design, including an encoder and decoder
pathway, enables the model to capture both local details and global context, making it well
suited for segmentation tasks, including BE change. The U-Net model can be considered
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the state of the art for medical image segmentation tasks. One of the reasons for the wide
popularity of U-Net in medical segmentation is its ability to manage less training data.
Medical datasets are often small, and the U-Net’s architecture, with or without a pretrained
backbone, allows for effective training even with scarce data. Additionally, U-Net has
shown robust performance across different medical imaging modalities, such as MRI, CT
scans, endoscopy, and microscopy images [6,7]. Numerous variants and extensions of
the U-Net model have been proposed to enhance its performance and address specific
challenges. For example, U-Net has been widely adopted in various medical imaging
applications, including cell segmentation, organ segmentation, and tumor detection. Pan
et al. [8] applied fully convolutional neural networks [9] to conduct Barrett’s esophagus
segmentation. They focused on the gastroesophageal junction(GEJ) and the squamous-
columnar junction(SCJ), respectively. Their study values of the IOU were 0.56 (GEJ) and
0.82 (SCJ), respectively. We aim to expand Barrett’s esophagus segmentation from severe
esophageal cancer to Barrett’s esophagus segmentation and focus on segmentation of the
isolated esophageal lesion involved with a free excellent APEER annotation tool. Our study
is also in line with early diagnosis and treatment of preventive medicine. Considering the
adaptable nature of input size, our approach is initiated by a platform of robust segmenta-
tion architectures, incorporating pre-trained models from the keras-unet-collection by Sha,
Yingkai [10].

2. Materials and Methods
2.1. Raw Images and the Annotation Method

This study commenced with a dataset comprising 94 images obtained from Kag-
gle open data, encompassing both short-segment and long-segment Barrett’s esophagus
lesions within Barrett’s esophagus cases. The raw images were diverse in shape, size,
and resolution.

We annotated the images using the free APEER annotation tool that is now ZEISS
arivis Cloud. In this binary segmentation task, Barrett’s lesion in each image was annotated
as foreground (ground truth). Other areas, including gastric folds, were annotated as
background. The resultant images and corresponding annotated masks were further sent
to 2-step data augmentation. An example image with its corresponding annotated mask is
shown in Figure 1.
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2.2. Data Augmentation
2.2.1. Step 1: Data Augmentation to Create Dataset-192

To enhance dataset diversity and scale, we meticulously applied a series of data
augmentation techniques. These techniques included random cropping, Gaussian blur, and
the introduction of random noise, orchestrated to imbue the dataset with more richness
and variability. Under the principle of maintaining the major features of the images, the
first stride involved resizing the images to a size of 512 × 512 pixels, ensuring uniformity
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in later processing. To introduce controlled variability, we incorporated a crop percentage
parameter set at 10%. This parameter dictated that 2.5% of the image dimensions would be
symmetrically cropped from all sides, ensuring even distribution across the images and
their associated masks. To further amplify diversity and intricacy within the training set,
we introduced a Gaussian noise transformation. This augmentation was achieved using
the PyTorch library’s transforms.Compose function, executed in a two-step sequence. The
first step involved Gaussian blurring using a kernel size of 5, followed by the subsequent
introduction of Gaussian noise. Gaussian noise was incorporated using a lambda function,
involving the generation of random values from a standard normal distribution, which
was then multiplied by a designated standard deviation of 0.5. These randomized values
were then added to individual pixels throughout the input image. Through the procedures,
our initial dataset, referred to as Dataset-192, was assembled. This dataset consisted of
192 images, which included the original 94 images, augmented by an additional 46 images
obtained via cropping, and 52 images generated by applying Gaussian blur and introducing
Gaussian noise in a random manner.

2.2.2. Step 2: Data Augmentation to Create Dataset-360

With this refined augmentation approach, our method aimed to capture the intricacies
of Barrett’s esophagus images, improve model robustness, and enhance the segmentation
performance. We defined the color jittering transformation as follows: brightness = 0.1,
contrast = 0.1, saturation = 0.1, hue = 0.1. For affine transformation, we set the angle range
between −5 and 5 degrees, the range of scaling factors between 0.95 and 1.05, and the
range of translations between −0.01 and 0.01. We implemented a randomized approach for
selecting transformation parameters during data augmentation. This approach involved
randomly generating values for rotation angle, scaling factor, horizontal translation, and
vertical translation. The use of random values within specified ranges for these parameters
added variability to the data augmentation. Only one image (about 1%) in the original
dataset showed colorful afterimages, as shown in Figure 2a. Figure 2b shows the image
after color jittering transformation. We demonstrate an image of the affine transformation
in Figure 3b from the original image shown in Figure 3a. By integrating additional aug-
mentation techniques, which involved incorporating 38 images from affine transformation,
6 images from color jittering, and 30 and 94 images from crop ratios of 8% and 12%, respec-
tively, we skillfully expanded the initial dataset into a comprehensive collection comprising
360 images, denoted as Dataset-360. These augmented datasets serve as the foundational
cornerstone for our thorough exploration of Barrett’s esophagus image segmentation using
advanced deep-learning methodologies.
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2.3. The Implementation Platform

We imported models from keras-unet-collection by Sha, Yingkai [10] to explore the
Unet variants with available pretrained backbones and made a comparison with the
Deeplabv3+ model based on the metric of meanIoU (intersection over union). Further,
we conducted thorough ensemble learning across models and backbones. The keras-unet-
collection has been enrolled in the Keras libraries and continuously maintained on the web-
site https://github.com (accessed on 29 October 2023). We defined the hyper-parameters
as follows:

model = models.unet_2d((128, 128, 3), filter_num = [64, 128, 256, 512, 1024];
n_labels = 1;
stack_num_down = 2, stack_num_up = 2;
activation = ‘ReLU’;
output_activation = ‘Sigmoid’;
batch_norm = True, pool = False, unpool = False;
backbone = ‘DenseNet121’, weights = ‘imagenet’;
freeze_backbone = True, freeze_batch_norm = True;
name = ‘unet’)

We first set the following hyperparameters: an input size or dimension (as 128, 128,
3), the convolutional filters (per down- and up-sampling blocks) and depth, n_labels = 1
(Binary), 2 convolutional layers per down sampling level, 2 convolutional layers (after
concatenation) per up sampling level, activation of hidden layers = ‘ReLU’, output acti-
vation = ‘Sigmoid’, the configuration of down sampling and up sampling set as 2-by-2
convolution kernels with 2 strides. Usually, we adopted the default value except for VGG
groups not using batch normalization, and we also set backbone parameter of those models
from scratch to none. The details are available from the python helper function to run in
models. Then, we compiled the program as follows:

model.compile(loss = ‘binary_crossentropy’, optimizer = Adam(learning_rate = 1 × 10−5),
metrics = [‘accuracy’, losses.dice_coef])

After adding a well-known model Deeplabv3+, for comparison, we also selected some
models that obtained higher meanIoU to carry out further ensemble via grid search. The
details will be described in the following subsection.

2.3.1. Model and Backbone Network

The approach commences by choosing a variety of robust segmentation architectures,
including U-Net [5], U-Net++ [11], Attention U-Net [12], and Recurrent Residual U-Net [13],
derived from the keras-unet-collection by Sha, Yingkai [10]. The U-Net++ extends the U-
Net architecture by introducing a series of nested and densely connected pathways, with
each level supplying multi-scale contextual information to enhance segmentation accuracy.
The Attention U-Net here is the variant that integrates attention gates into the U-Net ar-
chitecture, allowing the dynamic modulation of information flow within the network. By
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assigning different weights to different spatial locations, attention gates enable the model to
selectively focus on relevant regions while suppressing irrelevant features. The Recurrent
Residual U-Net (R2U-Net) architecture incorporates recurrent convolutional layers and
residual units. These architectural choices serve as the cornerstone of our segmentation
framework. To achieve optimal performance, we conduct a thorough parameter fine-tuning
process for each model, leveraging their inherent flexibility and configurability. In our
endeavor to enhance these segmentation architectures, we rigorously investigate a variety
of techniques and tools. These include altering the choice of backbone networks, with
options spanning VGG16, VGG19 [13], ResNet50, ResNet101, ResNet152 [7], ResNet50V2,
ResNet101V2, ResNet152V2 [14,15], DenseNet121, DenseNet169, and DenseNet201 [16].
The selection of a proper backbone is critical, as it directly affects the model’s ability to
extract features and comprehend complex patterns within medical imaging data. Through
this rigorous evaluation process, we aim to find and tailor segmentation models that are
best suited for our specific task of Barrett’s esophagus segmentation. The comprehensive
exploration and adaptation of well-established architectures constitute the fundamental
groundwork for our subsequent investigations. These investigations encompass the inte-
gration and comparative analysis of the Deeplabv3+ [17] architecture, aimed at augmenting
our segmentation strategy further.

2.3.2. Model Training and Testing Process

The augmented datasets of 192 and 360 images were used for training on our platform.
The datasets were resized to (128, 128) dimensions as the input image size, and we employed
a batch size of 4 to accommodate the RTX3070 GPU. During model training, in the step of
augmentation, we used the data generator configuration encompassing up to 15 degrees
of rotation to encourage viewpoint invariance and a zoom range of up to 5% to further
diversify the training set. We also augmented dataset-192 through both horizontal and
vertical flips, with width and height shift ranges set to 0. During model training on dataset-
360, the data generator configuration was same as mentioned above for dataset-192, except
flips were disabled to keep the orientation of dataset-360.

For post-processing, we implemented a two-step approach involving thresholding
and morphological operations on the predicted mask. We employed Otsu’s method to
determine an optimal threshold for converting probability values into a binary mask. These
operations are helpful in refining the binary mask, thereby enhancing the segmentation
quality. Figure 4 presents a test image along with its corresponding ground truth mask,
the prediction mask before post-processing, and the prediction mask after post-processing.
However, we did not apply the test time augmentation due to our adequate 2-step data
augmentation and the special dataset to be used.
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With the first learning rate of 1 × 10−3, after trial and error, our model was trained
with a learning rate of 1 × 10−5 for a total of 120 epochs for comparison of models selected.
During the training process, we implemented an early stopping criterion with a patience
level of 20 and employed model checkpointing to track and save the model’s progress. To
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evaluate the performance of our model, we employed two key metrics: the dice coefficient
and the mean intersection over union (meanIoU). We also recorded F1-Score for the test
dataset. Figure 5 shows an original image, its ground truth, and prediction in order from
left to right after the model training. We also ran more epochs for models gaining higher
meanIoU to obtain the saturation of feature extraction.
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2.4. Model Ensemble

We adopt a comprehensive ensemble strategy that includes all the available back-
bone configurations for each individual model. To improve the segmentation accuracy of
Barrett’s esophagus, we explored the concept of ensemble learning, which combines the
predictions of multiple models to create a more exact final prediction. To ensure reliable
predictions, we set a prediction threshold of 0.5 for our ensemble model. This means that
any pixel predicted with a probability equal to or higher than 0.5 is considered as Barrett’s
esophagus class, while pixels with probabilities below 0.5 are classified as non-Barrett’s
esophagus class. This approach ensures a thorough exploration of ensemble synergies
across the entire architectural spectrum. To optimize the performance of our ensemble,
we conducted an extensive grid search. This iterative process identifies the most effective
weight ratios for combining predictions from the highest-performing models, determined
based on their meanIoU scores. The workflow chart outlining this task is presented in
Figure 6.
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3. Results
3.1. Individual Model Performance

In the dataset-192, U-Net with a DenseNet121 backbone and attention U-Net with
DenseNet169 exhibited the highest meanIoU scores of 0.85, both outperforming the deeplabv3+
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that obtained the highest meanIoU of 0.78 with the DenseNet169, as shown in Table 1. Simi-
larly, for the dataset-360, U-Net with a VGG16 backbone and deeplabv3+ with DensNet169,
as shown in Table 2, achieve the highest meanIoU 0.90. It is noted that the Dense Net
backbone consistently exhibited superior performance compared to other backbones across
various U-Net variants, while Deeplabv3+ consistently performed well on both datasets.
In Tables 1 and 2, the empty cells indicate instances where the backbones failed to achieve
a meanIoU score.

Table 1. Ensemble MeanIoU of models with backbones (Dataset-192).

Model Backbone Unet Unet2plus Attension Unet Deeplab v3+ Ensemble

VGG16 0.81 0.51 0.80 0.77 0.81

VGG19 0.80 0.46 0.78 0.76 0.81

ResNet50 0.56 0.42 0.58 0.52

ResNet101 0.53 0.42 0.53 050

ResNet152 0.59 0.42 0.58 0.55

ResNet50V2 0.83 0.81 0.83 0.85

ResNet101V2 0.83 0.78 0.80 0.83

ResNet152V2 0.83 0.77 0.80 0.83

DenseNet121 0.85 0.83 0.84 0.86

DenseNet169 0.84 0.84 0.85 0.78 0.86

DenseNet201 0.83 0.83 0.83 0.78 0.85

Ensemble 0.87 0.76 0.80 0.80

Table 2. Ensemble MeanIoU of models with backbones (Dataset-360).

Model Backbone Unet Unet 2plus Attension Unet Deeplab v3+ Ensemble

VGG16 0.90 0.75 0.88 0.89 0.90

VGG19 0.88 0.73 0.84 0.90 0.89

ResNet50 0.65 0.47 0.68 0.79 0.77

ResNet101 0.69 0.51 0.69 0.76 0.73

ResNet152 0.71 0.44 0.62 0.71

ResNet50V2 0.86 0.84 0.87 0.88

ResNet101V2 0.87 0.82 0.86 0.88

ResNet152 V2 0.83 0.76 0.84 0.84

DenseNet121 0.88 0.87 0.88 0.89

DenseNet169 0.86 0.86 0.87 0.90 0.89

DenseNet201 0.88 0.86 0.88 0.90 0.90

Ensemble 0.90 0.87 0.90 0.90

3.2. Ensemble Performance

The ensemble approach improved meanIoU in the dataset-360, demonstrating the
synergistic strength of combining models. In the case of the dataset-192, the ensemble
methods yielded more substantial improvements, resulting in an impressive meanIoU
score increase of about 0.03. We noted that ResNet models might have adverse effects on
models’ hybrid ensemble or backbone-based ensemble across all backbones enrolled.
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3.3. Backbone-Based Ensemble Comparison

The ensemble that combines U-Net with various diverse backbones significantly
increased meanIoU to 0.87 on the dataset-192. Moreover, on dataset-360, this ensemble
consistently outperformed most individual models, underscoring its robustness and efficacy
when dealing with diverse datasets. We observe that in dataset-360, the increase in meanIoU
is smaller than that in dataset-192. This may be because the image features of dataset-360
are more fully extracted than those in dataset-192.

3.4. Comparison with Deeplabv3+

The comparison with Deeplabv3+ reveals the superiority of our approach on dataset-
192, where our best ensemble outperformed Deeplabv3+. Remarkably, on dataset-360, the
meanIoU values of our best ensemble matched those of Deeplabv3+, providing further
validation of the effectiveness of our approach. Detailed comparisons between U-Net and
Deeplabv3+ with the VGG16 backbone are presented in Tables 3 and 4.

Table 3. Comparison of UNet and Deeplabv3+ with backbone VGG16 (Dataset-192).

Metrics IoU Dice F1-Score

UNet 0.82 0.76 0.82

Deeplabv3+ 0.77 0.68 0.78

Table 4. Comparison of UNet and Deeplabv3+ with backbone VGG16 (Dataset-360).

Metrics IoU Dice F1-Score

UNet 0.90 0.87 0.91

Deeplabv3+ 0.89 0.87 0.91

3.5. Grid Search Ensemble

The grid search ensemble, comprising models from three distinct backbone families,
i.e., VGG16, ResNet50V2, and DenseNet121, achieved an optimal meanIoU of 0.86 on
dataset-192. This outcome underscores its potential for fine-tuning model combinations.
The models in this ensemble were based on U-Net with backbones from groups such as
VGG16, ResNet101V2, and DensNet121, as outlined in Tables 5 and 6. Similarly, significant
success was observed on dataset-360, where the grid search ensemble contributed to the
same meanIoU score of 0.91 for both the average ensemble and weighted ensemble with a
weight ratio of 0.3, 0.2, and 0.3, as shown in Table 6. An ensemble of Deeplab3+ with three
backbones as VGG16, ResNet50, and DenseNet201 obtained an average ensemble meanIoU
of 0.90 and a weighted ensemble meanIoU of 0.91 but with a weight ratio of 0.4, 0.0, and
0.4, as shown in Table 6. Such results seem to mean that ResNet50 does not contribute to
this task or is even harmful.

Table 5. Ensemble MeanIoU of each model with three backbones (Dataset-192).

Model Backbones Average Ensemble

Unet
VGG16

ResNet50V2
DenseNet121

0.86

Unet 2plus
VGG16

ResNet50V2
DenseNet169

0.84
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Table 5. Cont.

Model Backbones Average Ensemble

Attension Unet
VGG16

ResNet50V2
DenseNet169

0.84

Deeplabv3+
VGG16,

DenseNet169
DenseNet201

0.80

Table 6. Ensemble MeanIoU of each model with three backbones (Dataset-360).

Model Backbones Average
Ensemble

Weighted
Ensemble Weighted Ratio

Unet
VGG16
ResNet101V2
DenseNet121

0.91 0.91 [0.3, 0.2, 0.3]

Unet 2plus
VGG16
ResNet50V2
DenseNet121

0.87 0.88 [0.1, 0.3, 0.4]

Attension Unet
VGG16
ResNet50V2
DenseNet121

0.90 0.90 [0.4, 0.1, 0.3]

Deeplabv3+
VGG16
ResNet50
DenseNet201

0.90 0.91 [0.4,0.0, 0.4]

3.6. Model Ensemble from Scratch

To provide a comprehensive comparison, we evaluated several models that did not
utilize a pretrained backbone in contrast to those with pretrained models. As depicted in
Tables 7 and 8, the ensemble of models consistently exhibited superior meanIoU compared
to individual models, underscoring the benefits of model ensembling.

Table 7. Ensemble MeanIoU of variants of Unet without a backbone (Dataset-192).

Model Unet Unet2plus Attention
Unet R2Unet Ensemble

MeanIoU 0.80 0.80 0.82 0.78 0.83

Table 8. Ensemble MeanIoU of variants of Unet without a backbone (Dataset-360).

Model Unet Unet2plus Attention
Unet R2Unet Ensemble

MeanIoU 0.88 0.82 0.84 0.87 0.89

3.7. Saturation of Learning Rate and Ensemble Learning via Grid Search

From the models listed in Table 2, we chose seven models to undergo the training
process with the previously mentioned settings. The training continued until the early
stopping criterion was met, which allowed us to identify the saturation epochs for feature
extraction. This process helped determine the optimal point at which feature extraction
was most effective for our segmentation task. The models selected are listed as follows:

• Model 1: Unet with a backbone VGG16;
• Model 2: Unet with a backbone DenseNet121;
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• Model 3: Attention Unet with a backbone DenseNet121;
• Model 4: deeplabv3+ with a backbone VGG16;
• Model 5: deeplabv3+ with a backbone VGG19;
• Model 6: deeplabv3+with a backbone DenseNet169;
• Model 7: deeplabv3+ with a backbone DenseNet201.

The training loss and dice curves reaching the learning rate saturation of model 1 are
shown in Figure 7, with a training loss of 0.0325, training accuracy of 0.9334, training dice
coefficient of 0.9409, validation accuracy of 0.9391, validation dice coefficient of 0.9166.

Bioengineering 2024, 11, x FOR PEER REVIEW 10 of 15 
 

 
Figure 7. The training curve of Unet with a backbone VGG16. 

In Table 9, the advanced meanIoU scores, as well as the corresponding epochs at 
which the selected models reached training saturation, are documented. These values pro-
vide insights into the model training process and help understand the point at which the 
models achieved optimal segmentation performance. It is a critical aspect of model devel-
opment and validation in the context of Barrett’s esophagus segmentation. Then, we con-
ducted a grid search to explore different combinations of two and three models among 
the seven selected models. These combinations were used in a thresholding soft voting 
ensemble learning approach. For the three-model combination, the best average ensemble 
meanIoU score of 0.918 was attained using the U-Net with a VGG16 backbone, Attention 
U-Net with a DenseNet121 backbone, and Deeplabv3+ with a DenseNet169 backbone, as 
listed in Table 10. The best average ensemble meanIoU score of 0.917 was achieved using 
a combination of two models, specifically the U-Net with a VGG16 backbone and 
Deeplabv3+ with a DenseNet169 backbone, as presented in Table 11. Furthermore, by em-
ploying weighted ensemble techniques for these model combinations, we obtained a 
meanIoU of 0.936, combining the U-Net with a VGG16 backbone and Deeplabv3+ with a 
DenseNet169 backbone, as illustrated in Table 12. These results demonstrate the effective-
ness of our ensemble strategies in achieving high meanIoU scores, further enhancing the 
segmentation accuracy for Barrett’s esophagus. 

Table 9. The advanced meanIoU and the epochs reaching training saturation. 

Models meanIoU Epochs 
Model 1 0.90 264 
Model 2 0.89 175 
Model 3 0.89 153 
Model 4 0.90 264 
Model 5 0.90 249 
Model 6 0.91 306 
Model 7 0.90 202 

Table 10. Top 6 average ensemble meanIoU of 3 model combinations. 

Model Combinations Average Ensemble meanIoU 
[model 1, model 3, model 6] 0.918 
[model 3, model 5, model 6] 0.917 
[model 1, model 5, model 6] 0.917 
[model 1, model 6, model 7] 0.917 
[model 1, model 4, model 6] 0.916 

Figure 7. The training curve of Unet with a backbone VGG16.

In Table 9, the advanced meanIoU scores, as well as the corresponding epochs at
which the selected models reached training saturation, are documented. These values
provide insights into the model training process and help understand the point at which
the models achieved optimal segmentation performance. It is a critical aspect of model
development and validation in the context of Barrett’s esophagus segmentation. Then, we
conducted a grid search to explore different combinations of two and three models among
the seven selected models. These combinations were used in a thresholding soft voting
ensemble learning approach. For the three-model combination, the best average ensemble
meanIoU score of 0.918 was attained using the U-Net with a VGG16 backbone, Attention
U-Net with a DenseNet121 backbone, and Deeplabv3+ with a DenseNet169 backbone, as
listed in Table 10. The best average ensemble meanIoU score of 0.917 was achieved using a
combination of two models, specifically the U-Net with a VGG16 backbone and Deeplabv3+
with a DenseNet169 backbone, as presented in Table 11. Furthermore, by employing
weighted ensemble techniques for these model combinations, we obtained a meanIoU of
0.936, combining the U-Net with a VGG16 backbone and Deeplabv3+ with a DenseNet169
backbone, as illustrated in Table 12. These results demonstrate the effectiveness of our
ensemble strategies in achieving high meanIoU scores, further enhancing the segmentation
accuracy for Barrett’s esophagus.

Table 9. The advanced meanIoU and the epochs reaching training saturation.

Models meanIoU Epochs

Model 1 0.90 264

Model 2 0.89 175

Model 3 0.89 153

Model 4 0.90 264
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Table 9. Cont.

Models meanIoU Epochs

Model 5 0.90 249

Model 6 0.91 306

Model 7 0.90 202

Table 10. Top 6 average ensemble meanIoU of 3 model combinations.

Model Combinations Average Ensemble meanIoU

[model 1, model 3, model 6] 0.918

[model 3, model 5, model 6] 0.917

[model 1, model 5, model 6] 0.917

[model 1, model 6, model 7] 0.917

[model 1, model 4, model 6] 0.916

[model 1, model 3, model 5] 0.916

Table 11. Top 6 average ensemble meanIoU of 2 model combinations.

Model Combinations Average Ensemble meanIoU

[model 1, model 6] 0.917

[model 1, model 7] 0.914

[model 3, model 6] 0.914

[model 5, model 6] 0.913

[model 4, model 6] 0.913

[model 1, model 5] 0.913

Table 12. Best weighted ensemble meanIoU of 2 and 3 model combinations.

Model Combinations Weighted Ensemble meanIoU Weight Ratio

[model 1, model 3, model 6] 0.936 [0.4, 0.0, 0.2]

[model 1, model 6] 0.936 [0.4, 0.2]

4. Discussion

Pan et al. [8] first applied fully convolutional neural networks to perform Barrett’s
esophagus segmentation. Their work inspired us to expand Barrett’s esophagus segmenta-
tion from severe esophageal cancer to early Barrett’s esophagus segmentation, which is also
in line with early diagnosis and preliminary treatment of preventive medicine. In this study,
we embarked on a comprehensive exploration of Barrett’s esophagus segmentation using
deep-learning techniques. Through a rigorous method encompassing a diverse range of
U-Net variants, extensive backbone selections, data augmentation strategies, and ensemble
techniques, we aimed to achieve exact and robust segmentation results. The following key
findings appear from our research.

4.1. Model Selection and Performance

Our investigation into various U-Net variants with different backbones revealed dis-
tinct performance patterns. In particular, U-Net with a DenseNet121 backbone and attention
U-Net with DenseNet169 exhibited superior segmentation accuracy on the dataset-192,
while on the more extensive dataset-360, U-Net with a VGG16 backbone showed a potential
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ability in this specific Barrett’s esophagus segmentation task. DenseNet models showed
impressive segmentation accuracy, while ResNet models proved less effective for this task.
DenseNet models use the famous dense connectivity pattern that enhances information
flow throughout the network and promotes feature reuse, making it particularly well-suited
for scenarios where capturing fine-grained details and exact segmentation boundaries are
crucial. Nabil Ibtehaz and M. Sohel Rahman [18] made modifications to U-Net using their
designed MultiRes Block and the residual path-like dense connectivity pattern. Their
study called MultiResUNet attained a much higher Jaccard Index, a metric like IoU, than
U-Net on diverse medical datasets. Their excellent study showed room for improvement of
ResNet at specific tasks consistent with our research.

4.2. Impact of Data Augmentation

The application of data augmentation techniques played a pivotal role in enhancing
model robustness and generalization. It is noted that augmenting the dataset-360 with
added cropping, affine transformations, and color jittering leads to improved segmentation
results, highlighting the importance of tailored augmentation strategies. However, we just
applied affine transformations, color jittering, and other data augmentation techniques
to about 25% of the dataset-360 except cropping. Cropping forms the majority (75%) of
the augmentation in dataset-360. Thus, the core structure of the images is still relatively
consistent, especially their spatial dimensions. Consistency can be important for medical
image segmentation tasks to ensure that the model learns the fundamental anatomical
features. On the other hand, the remaining 25% of augmentation is composed of affine
transformations, color jittering, Gaussian blur, and noise. These techniques introduce
variability, which can help the model to fit diverse real-world scenarios. While this per-
centage may seem small, it still contributes to diversifying the training data. The balance
between consistency and variability is crucial for trading off between model overfitting
and generalization. In this study, we adopted the limited rotation and zoom range for
data augmentation and different flip choices between dataset-192 and dataset-360. In
medical imaging, it is often essential to maintain anatomical correctness. Therefore, to keep
consistency while introducing some variability using techniques like affine transformations,
color jittering, and noise is a reasonable approach. The chosen balance is effective in this
context. Data augmentation can be helpful for improving the performance of deep-learning
models on medical image datasets; however, it cannot inherently increase the amount of
data available, like novel data acquisition.

4.3. Models with vs. without a Backbone

Models utilizing specific backbones, such as those from the VGG and DenseNet
groups, achieved higher meanIoU scores. Nevertheless, it is noteworthy that a U-Net
model trained from scratch managed to attain a commendable meanIoU of 0.88 on dataset-
360, underscoring its performance in this context.

4.4. Ensemble Strategies

Our ensemble strategies have demonstrated their potential to achieve superior seg-
mentation accuracy. The ensemble of U-Net models on dataset-360 achieves a remark-
able meanIoU score of 0.91, confirming the efficacy of combining diverse variants for
enhanced performance. The fine-tuning of ensemble weights through grid search further
contributes to the improved results. It is noted an average ensemble of Vgg16, ResNet50,
and DenseNet201 in Deeplabv3+ obtained a meanIoU of 0.90, while a weighted ensemble
with ratios 0.4, 0.0, and 0.4 obtained 0.91. This aligns with the observations in our study,
where ResNet variants exhibited mixed results. In particular, ResNet50V2 and ResNet101V2
demonstrated competitive segmentation accuracy, while other variants showed limitations
in managing the increased dataset complexity.
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4.5. Comparison with Deeplabv3

Through a comprehensive comparison with the popular Deeplabv3+ architecture,
we highlighted the influence of backbone choice on segmentation performance. While
the U-Net variants with specific backbones outperformed Deeplabv3+ on dataset-192, the
importance of aligning models to data characteristics became evident. Intriguingly, we
observed that some backbone combinations struggle to achieve satisfactory results on
dataset-192, showing the impact of data characteristics on model training. Extending the
comparison to dataset-360, we observed similar best meanIoU scores among U-Net variants
and Deeplabv3+, reaching a noteworthy score of 0.91. This observation underscores the
adaptability of our approach to larger datasets, facilitating robust and accurate Barrett’s
esophagus segmentation. The integration of transfer learning, data augmentation, and
ensemble techniques collectively contributed to surpassing the performance of a well-
established architecture such as Deeplabv3+.

4.6. Training Saturation and Ensemble Learning

The selected seven models demonstrated high meanIoU scores, indicating their ef-
fectiveness in segmenting Barrett’s esophagus. All models reached training saturation,
and the number of epochs required for this varied across models. This information can be
used to optimize training resources and time for future experiments. Models with fewer
epochs might be preferable due to efficiency. The combination of models 1, 3, and 6 in
Table 9 achieved a weighted ensemble meanIoU of 0.936. The weight ratio used for this
combination was [0.4, 0.0, 0.2]. Like the previous combination, the ensemble consisting of
models 1 and 6 also achieved a weighted ensemble meanIoU of 0.936 with the weight ratio
[0.4, 0.2]. This means that in the ensemble, model 1 contributed 40% to the final prediction,
model 3 had no contribution (0%), and model 6 contributed 20%. This result indicates that
a simpler ensemble of two models can achieve the same high meanIoU score as the more
complex three-model combination.

To illustrate the transparency and interpretability of artificial intelligence, we visual-
ized the predictions from ensemble learning of model 1 and model 6. Figure 8e presents
the ensemble prediction of image Figure 8a. It removed the redundancy of predictions
of model 1 and model 6, noted as Figures 8c and 8d, and obtained a prediction closer to
the ground truth noted as Figure 8b. However, in Figure 9, the predictions of model 1
and model 6 noted as Figures 9c and 9d were limited due to the uneven heterogeneity of
image Figure 9a compared to the ground truth noted as Figure 9b. The ensemble prediction
Figure 9e showed that the annotation of the image was difficult to perfect and pointed out
the directions still to be worked on in the future.
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5. Conclusions

In this comprehensive study on Barrett’s esophagus segmentation, we have explored
the effectiveness of deep-learning techniques, model variations, data augmentation, and
ensemble strategies to achieve precise and robust results. Our findings provide essen-
tial insights and draw significant conclusions. Obviously, the choice of model variants
and backbones significantly impacts segmentation accuracy. Models with DenseNet back-
bones demonstrated superior performance, attributed to their dense connectivity pattern,
which enhances feature reuse and information flow. Tailored data augmentation strate-
gies, combining spatial consistency with variability, proved crucial for enhancing model
generalization. They strike a balance between consistency, crucial for maintaining anatom-
ical correctness, and variability, essential for real-world scenarios. Models with specific
backbones, particularly from the VGG and DenseNet groups, consistently achieved higher
meanIoU scores. Surprisingly, a U-Net model trained from scratch showed commendable
performance, indicating its potential in Barrett’s esophagus segmentation. The ensemble of
U-Net models resulted in improved segmentation accuracy, and the finetuning of ensemble
weights via grid search further enhanced the segmentation results. This ensemble strategy
effectively leveraged the strengths of different U-Net models to create a more accurate and
robust final segmentation output. It highlights the significance of ensemble learning in
achieving superior segmentation performance. These findings underscore the effectiveness
of combining diverse model variants.

Our approach has demonstrated significant improvements in Barrett’s esophagus
segmentation, and it has outperformed the Deeplabv3+ architecture on the dataset-192. This
highlights the importance of selecting the right models that match the data characteristics
for optimal performance. On the larger dataset-360, both U-Net variants and Deeplabv3+
achieved high meanIoU scores, showcasing the adaptability of our approach to larger
datasets. Our research also provides insights into the training process, indicating that
models reach training saturation at varying epochs, which can help optimize training
resources. Additionally, our findings show that combining models with fewer epochs in
simpler ensembles can achieve similar high meanIoU scores as more complex combinations,
emphasizing the efficiency of simpler approaches. The visible predictions of ensemble
models have emphasized the importance of high-quality annotations in segmentation
tasks, and our approach represents a significant advancement in Barrett’s esophagus
segmentation, facilitating precise and reliable medical image analysis. The ensemble
strategies, combined with data augmentation and model collaboration, offer a robust
solution. These insights have the potential to contribute to further advancements in medical
image analysis.
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