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Abstract: One of the most promising research initiatives in the healthcare field is focused on the
rising incidence of skin cancer worldwide and improving early discovery methods for the disease.
The most significant factor in the fatalities caused by skin cancer is the late identification of the
disease. The likelihood of human survival may be significantly improved by performing an early
diagnosis followed by appropriate therapy. It is not a simple process to extract the elements from
the photographs of the tumors that may be used for the prospective identification of skin cancer.
Several deep learning models are widely used to extract efficient features for a skin cancer diagnosis;
nevertheless, the literature demonstrates that there is still room for additional improvements in
various performance metrics. This study proposes a hybrid deep convolutional neural network
architecture for identifying skin cancer by adding two main heuristics. These include Xception and
MobileNetV2 models. Data augmentation was introduced to balance the dataset, and the transfer
learning technique was utilized to resolve the challenges of the absence of labeled datasets. It has been
detected that the suggested method of employing Xception in conjunction with MobileNetV2 attains
the most excellent performance, particularly concerning the dataset that was evaluated: specifically,
it produced 97.56% accuracy, 97.00% area under the curve, 100% sensitivity, 93.33% precision, 96.55%
F1 score, and 0.0370 false favorable rates. This research has implications for clinical practice and
public health, offering a valuable tool for dermatologists and healthcare professionals in their fight
against skin cancer.

Keywords: skin cancer; deep convolutional neural network; transfer learning; data augmentation;
deep learning

1. Introduction

Since the beginning of the 20th century [1], many people of all genders have been
diagnosed with skin cancer (SC). In 2012 in the United States, there were about 76,250 newly
diagnosed cases of melanoma and 8790 fresh fatalities attributed to melanoma [2]. It is
estimated that there were 165,580 new instances of non-melanoma SC in Brazil during the
biennium of 2018–2019 [3]. The progression of skin cancer is caused by several reasons,
including the long-life expectancy of the population, skin exposure to the sun, and the early
identification of SC. One of the most trustworthy early skin cancer identification procedures
is dermoscopy, a noninvasive imaging technique performed on the skin. The appearance
of skin lesions can alter dramatically from a dermoscopic picture to a dermoscopic image,
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depending on the state of the skin [4]. In addition, the presence of various artifact sources,
such as hair, skin texture, or air bubbles, might increase the likelihood of incorrectly recog-
nizing the border between the skin lesions and the healthy skin surrounding them. Even
though dermoscopy is a competent method for identifying SC, it is very challenging for
even the most experienced dermatologists to accurately categorize malignant and benign
skin lacerations from several dermoscopy pictures. As a result, it is of the utmost need
to create an effective computer-aided diagnostic (CAD) system that does not involve any
invasive procedures for categorizing skin lesions [5,6]. Image preprocessing, feature extrac-
tion, segmentation, and categorization are the four primary stages of the CAD scheme. It
is essential to remember that the categorization effectiveness of the entire CAD scheme is
strongly impacted by each step [7–9]. As a result, it is necessary to use practical algorithms
at each phase to accomplish excellent diagnostic performance. Figure 1 displays a portion of
the picture that is included in the dataset as a sample. The photos are saved in JPG format
and vary in the number of pixels they possess.
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Several research studies [10–13] looked at various machine learning strategies to detect
multiple forms of diseases such as cancer. Most of this research used classifiers with very
simple architectures that were trained on a collection of manually produced characteris-
tics taken from the photos [14,15]. Most algorithms for machine learning (ML) bring a
significant amount of computing time for an accurate diagnosis, and their effectiveness is
contingent on the characteristics chosen to define the malignant area. The utilization of DL
and convolutional neural networks (CNNs) [16–19], both neural networks, has emerged as
an effective method for the automated detection of many types of cancer [20]. The field of
picture categorization, which includes the examination of skin lesions, has seen remarkable
progress thanks to deep learning [21]. Transfer learning [22] and data augmentation [23] are
methods used in picture classification tasks to compensate for a data shortage and lower
computing and memory necessities.

Artificial intelligence (AI) is new; its revolution is analogous to the upheaval brought
about by adding technologies to all aspects of our life [24–26]. ML techniques eliminate the
time-consuming stage of manually extracting features and facilitate the quick completion
of classification projects [27]. Recently, there has been an increasing interest in using
ML techniques to identify cancer precisely [27,28]. Over the last several decades [28],
advancements in ML procedures have enhanced cancer identification accuracy by 15 and
20 percent. Deep learning (DL) is one of the domains of artificial intelligence that is
expanding at the fastest rate owing to the many fields in which it is used [29–33]. DL, and
especially CNNs, driven by advanced computer algorithms and enormous datasets, has
become one of the greatest effective and widespread ML methods in picture recognition
and categorization [34]. It has also been utilized to identify skin lesions [35,36]. There is
no longer a necessity for the preliminary information and intricate picture pretreatment
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procedures necessary for image classification when utilizing classic ML approaches. It
has been established that some deep learning-based classifiers can classify skin cancer
photos with the same level of accuracy as dermatologists [36]. Consequently, CNNs can
potentially contribute to developing computer-aided fast skin lesion classifiers on par with
dermatologists’ use.

Transfer learning (TL) has shown to be beneficial for dealing with relatively small
datasets, such as medical photographs, which are more difficult to gather in large quantities
than other datasets. It is frequently more practical to employ a model that has already
been trained and fine-tune its efficacy to shorten and speed up the procedure. Prepar-
ing a NN from scratch would necessitate actual data and a lot of processing effort. On
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) dataset, many already
pre-trained CNNs were trained. These CNNs include AlexNet, Inception, ResNet, and
DenseNet [37,38]. Several CNNs that had been pre-trained accomplished good categoriza-
tion efficacy in detecting skin cancer [39].

The term “data augmentation” refers to a technique that generates additional data
based on the original data that are being supplied [39]. This helps to increase the amount
of data that is being input. Image enhancement techniques may be used to make up for the
shortcomings of the dataset about skin cancer. Data augmentation might be proficient in a
diversity of ways, such as by rotating the data, scaling it, cropping it at random, or modify-
ing its color. Data augmentation is used extensively when pre-trained CNN architectures
are used. In [40], the effectiveness of skin lesion categorization is improved by applying
data augmentation (DA) with geometric transformations (rotations by multiples of 90 de-
grees and lesion-preserving cropping). This is accomplished by improving the classification
accuracy [41]. In [39], the impact of DA was examined across several binary classifiers
trained using features retrieved by a pre-trained Inception-v4 system. Dermoscopic pictures
were used in the study referenced in [29] to classify melanoma, seborrheic keratosis, and
nevocellular nevus utilizing a deep learning technique. A deep CNN prediction technique
built on a novel regularized approach was used in [42] to categorize skin lesions, achieving
an accuracy of 97.49%.

For the last ten years, many novel and, generally speaking, more effective methods
for treating cancer have evolved [43–46]. These methods include immunotherapies and
targeted medicines. Researchers are presently focusing on creating medications that directly
target particular mutations in melanoma cells or employ the body’s immune system to
combat melanoma [47]. Thanks to contemporary epigenetics [48], these efforts are already
underway. It is thought that modifying one’s behavior, being vaccinated, and taking certain
drugs may prevent more than half of all malignancies. According to the findings of the
study [49], it is possible that a significant number of cases of skin cancer may be avoided.
Examining the skin for abnormal changes at an early stage may assist in diagnosing skin
cancer and prevent the disease from spreading to other organs. It is essential to the patient’s
health that malignant tumors be diagnosed and graded as early as possible. In cases when
melanoma is identified too late, the disease may have already spread to deeper layers of
the skin. Treatment options become increasingly limited when the condition progresses to
a later stage. Dermatoscopy is now the method of choice for early detection, even though
it is a challenging technique for seasoned dermatologists. Patients are at an additional
disadvantage because they need to make numerous visits to the doctor to monitor and spot
changes in their skin color. This therapy takes a very long time, and there is a high risk of
making mistakes, which puts the patient’s life in danger. Because of this, technology is
needed to identify and categorize skin cancer cases more quickly and accurately [50].

Many different strategies have been published in the research literature [50–53] that
can detect cancer from relatively few datasets. However, the influence this will have on a
vast database has not been well researched. There are several categorization algorithms,
most of which depend primarily on manually produced feature sets. However, these
feature sets have limited ability for generalization in dermatoscopic skin pictures. Lesions
exhibit a significant visual resemblance to one another because of their closeness in color,
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shape, and size; consequently, lesions are highly connected, resulting in inadequate feature
information. As a direct consequence, feature-based skin categorization methods developed
by hand are useless [50–54]. A strategy that is based on deep learning (DL) is helpful in
this specific scenario. Deep learning (DL) systems have a substantial capacity to extract
complex, detailed, task-specific, and practical features, which enables them to produce
an elegant model with enhanced performance without the hand-crafted features needed
by standard machine learning (ML) techniques [55,56]. This ability allows DL systems to
create a luxury model with improved performance. The detection of skin cancer with DL is
efficient in terms of cost, and the need for dermatoscopic examination may be reduced. As
a result, illnesses that might lead to skin cancer can be recognized in their earlier stages
using the approach described in this study.

This study demonstrates a novel, very effective, and precise DL model for the quick
and painless diagnosis of skin cancer using dermatoscopy in patients, including those
who may have a pathogenic infection. With a prediction accuracy of 97.56%, the proposed
hybrid concatenated SkinNetX model classifies the skin cancer picture dataset into two
different forms of cancer. The dataset contains photos of skin cancer. To speed up the
screening process for skin cancer, the suggested method might be combined with a der-
matoscopic examination. Therefore, the presented technique might allow us to circumvent
the delay in dermatoscopy. As a result, it can serve as an alternate technique for speedy
skin cancer diagnosis. In addition, automated categorization of lesions can assist medical
professionals in their day-to-day clinical practice and enable prompt and cost-effective
access to potentially life-saving diagnoses, even outside of the hospital setting.

The primary focus of this study is building a novel skin cancer detection and classifi-
cation system that leverages the strengths of MobileNetV2 and Xception algorithms. By
concatenating these two CNN architectures, we aim to achieve improved accuracy, robust-
ness, and generalization capabilities in identifying skin cancer. The main contributions are
as follows:

• Improved accuracy and robustness in skin cancer detection and classification
• Enhanced generalization capabilities, enabling accurate identification of skin cancer
• A comparative examination indicating the superiority of the suggested concate-

nated model over individual MobileNetV2 and Xception models, as well as other
existing approaches

• Real-world application with a user-friendly interface for efficient and reliable skin
cancer screening

The remaining parts of the manuscript are organized as described below. Section 2
discusses the existing works related to the present study that were considered. The section
also discusses in detail the categorization of datasets as benign or malignant, which presents
the approach that was applied in this particular research. The collected findings and the
metric assessment are shown in Section 3, which is followed by Section 4 Results and
Discussion. The primary observations and judgments are presented in Section 5. The study
is also concluded here, and future work is suggested and recommended.

2. Related Works

Several researchers have conducted studies on detecting and diagnosing various
diseases, such as Parkinson’s [57], hyperspectral anomaly [58], emotion detection [59], and
diabetic retinopathy [60]. More and more individuals are being diagnosed with skin cancer
due to the rapid increase in global air pollution and the reduction in the atmosphere’s
ozone. As a direct consequence, researchers have been working to build computerized
systems that can diagnose skin cancer based on pictures obtained from dermatoscopic
examinations. The approaches that originated from computer vision are ML and DL. Below
is a discussion of the many techniques that are offered in the relevant literature.

Most systems [61–64] extract characteristics from images using various image process-
ing techniques and then input those features into a categorization method [65].
Khan et al. [66] provided a strategy for identifying and categorizing melanoma and nevi.
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The author started by attempting to eliminate the noise using a Gaussian filter. For lesion
segmentation, K-mean clustering was used. A hybrid super feature vector was used to
extract textural and color data. Then, support vector machines, often known as SVMs,
were used for the categorization procedure. The accuracy of the suggested approach was
96% when applied to the ERMIS dataset. Deep learning (DL) and handmade features
were brought together in the novel approach introduced by Filali and colleagues [67].
The created technique attained an accuracy of 98% on the Ph2 dataset; however, it only
achieved an accuracy of 87.8% on the ISIC challenge dataset. A technique that was based on
measuring the similarity of features was utilized by Hu et al. [68], and SVM was then used
to perform the categorization. Abbas et al. [69] introduced a five-layer technique called
“DermoDeep” to discern between benign moles, known as nevi, and malignant moles,
known as melanoma. Their approach combined visual characteristics with a five-layer
model to get the most accurate classifications possible. Dalila et al. [70] retrieved three
different kinds of data, including texture, geometrical qualities, and color, and then used
ant colony-based segmentation to choose the most useful features. After that, an ANN
was used for the categorization process. A strategy provided by Almansour et al. in [71]
included the extraction of textual characteristics, followed by the use of an SVM as a
classifier. On 227 different photos, the given approach accomplished an accuracy of 90%.
Pham et al. [72] extracted ROIs using image enhancement methods to get their results. After
that, the SVM was used to classify the photos that had been preprocessed. The accuracy
that was achieved was 87.2%. Yu et al. [73] presented a strategy to improve the pictures to
extract ROIs and used a deep residual method to categorize the imageries. The accuracy
of the suggested scheme was determined to be 85.5% after testing. Recent efforts in the
cancer research domain have engrossed the categorization of melanomas using deep DL,
archived with an accuracy of 86.54%. A deep CNN design was suggested by Rokhana
et al. [74] to classify melanoma dermoscopy pictures into benign and malignant skin lesions.
On the ISIC-archive repository, the provided method was reviewed for its effectiveness.
The strategy that was suggested achieved a sensitivity of 91.97%, an accuracy of 84.76%,
and a specificity of 78.71%. The classification strategy employed by Xie et al. [75] was
based on the ensemble model. An ensemble model that is built on three different classifiers
was created by Liberman et al. [76] to identify mole pictures as either non-melanomas or
melanomas. Zhou and colleagues [77] introduced a novel approach that is founded on
spiking NNs with time-dependent spike plasticity. A DCNN architecture was constructed
by Hosny et al. [78] for melanoma categorization. The methodology that will be given was
evaluated using three distinct datasets. The technique employed by Mukherjee et al. [79]
was called CNN malignant lesions detection (CMLD), and it was based on CNN. In the
MED-NODE and Dermofit datasets, the created model attained an accuracy of 90.14% and
90.58%, respectively. Deep neural networks were used in the method that Esteva et al. [80]
developed to identify skin problems at an early stage and categorize skin cancer. Cakmak
et al. [81] provided a model for detecting melanoma that was built on a deep NN and
given the name Nasnet Mobile. The provided method was tested for its effectiveness on the
HAM10000 dataset. To address the issue of unequal class composition, many augmentation
strategies were used. The recommended approach’s accuracy was 89.20% without DA and
97.90% with DA when used with the Nasnet-Mobile network. Brinker et al. [20] catego-
rized the SC as either melanoma or nevi by employing a pre-trained architecture that was
given the label ResNet50. The suggested model achieved a sensitivity ratio of 77.9% and a
specificity ratio of 82.3%, correspondingly. Han et al. [82] used the ResNet152 approach to
categorize several skin lesions. Melanoma, seborrheic keratosis, and nevi had a specificity
of 87.63% and a mean sensitivity of 88.2%, respectively, when it came to being diagnosed
with the condition. When attempting to categorize skin lesions, Hosny et al. [83] modified
AlexNet such that its last three layers consisted of fully linked layers, softmax, and an
output layer. The accuracy accomplished by the recommended technique was 96.86 percent.
When classifying skin lesions, Esteva et al. [84] made use of a pre-trained model that was



Bioengineering 2023, 10, 979 6 of 26

given the name Inception-v3. By using several augmentation methods, they expanded the
testing dataset.

3. Materials and Methods
3.1. Dataset Description

We used an SC dataset that was accessible to the general audience. The dataset
was being analyzed for the following stated motives: (1) to increase the dataset scope for
training drives; (2) to reduce overfitting and unfairness; and (3) to contain two classifications
(Cancer, and Non-cancer). Integrating the datasets was another factor that contributed to
the model’s efficacy. The dataset contains 288 photos, of which 84 are cancerous and 204
are not cancerous (https://www.kaggle.com/datasets/kylegraupe/skin-cancer-binary-
classification-dataset; retrieved on 16 June 2023). The photos are saved in JPG format and
vary in the number of pixels they possess.

3.2. Methodology
3.2.1. Motivation

It is possible that DL algorithms may be used successfully to identify skin cancer. DL
methods have been used for similar problems, such as breast cancer classification [85],
Parkinson’s ailment categorization, and the detection of pneumonia utilizing chest radio-
graph images. Inspired by the success of the DL-built network in identifying BC in specific
photos, this research offers a SkinNetX model for identifying and categorizing skin cancer.
The study’s ultimate goal is to recommend a DL model to better identify skin cancer from
dermatological pictures. The proposed model uses the following data to determine the
depth and input picture resolution: A deeper DL-based model is believed to boost the
model’s categorization effectiveness by encapsulating further nuanced and relevant deep
information. To further improve accuracy, several DL-based models have used depth
scaling. While expanding the network’s depth might potentially enhance accuracy, doing
so comes at the rate of an upsurge in computing intricacy. DL-based models use high-
resolution input images because of the improved performance they provide. Images with
resolutions between 224 by 224 to 299 by 299 may be detected by DL models, while models
with a higher resolution often have superior performance. Similarly, the proposed model
includes 24 layers and can handle pictures with a resolution of 224 × 224. Based on the
limitations of the available computing resources, we choose the SkinNetX architecture and
the appropriate input picture size.

3.2.2. Image Augmentation and Preprocessing

Normalizing images is a crucial step before feeding them into a CNN model. The
photos in both datasets have been scaled to accommodate the varying input sizes of the
various models. Algorithms based on DL are notorious for their high data needs. An
immense volume of data is necessary to train DL algorithms to a high level of accuracy.
Because of their dependence on data, they are challenging to use in under-resourced areas
or fields. Not all domains have enough data to train a DL system, but we were able to fill
in the blanks using the DA procedure developed in this paper. All of the images in the
training set were randomly rotated by an angle 30 degrees and translated up to 30 pixels
in both the vertical and horizontal directions. Random translations between [0.9 and 1.1]
were used to produce more pictures. Consequently, a DL algorithm might be trained on
very little data to get satisfactory outcomes without overfitting the data’s widely held class.

3.2.3. Deep Learning (DL)

Machine learning methods are comparable to AI strategies since they attempt to
mimic human learning processes. Conventional machine learning algorithms require
preprocessing activities such as feature extraction and a rigorous feature selection procedure
before beginning the learning and classification stage. Whether or not these methods are
successful depends heavily on the qualities used to make distinctions across classes. Unlike

https://www.kaggle.com/datasets/kylegraupe/skin-cancer-binary-classification-dataset
https://www.kaggle.com/datasets/kylegraupe/skin-cancer-binary-classification-dataset
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traditional ML approaches, DL provides for the automated learning of feature sets for
different responsibilities [20]. The field of data science would be incomplete without
DL, which is also a component of predicting and statistics. To interpret visual data, a
DNN known as a CNN, is employed. A CNN uses a DL approach called weighted
convolutional recurrent networks to discriminate between objects in an input picture. Due
to its remarkable accuracy, CNNs can classify and identify images [86,87].

3.2.4. SkinNetX Model

Image classification is the emphasis of the proposed approach, which is a deep learning
approach. Figure 2 demonstrates the abstract view of the suggested SkinNetX approach
comprising three core components. The recommended technique is more complicated than
a conventional CNN.
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Fusing MobileNetV2 with Xception creates a more robust and precise model than
any of its components could achieve on their own. The “ImageNet” dataset provides the
MobileNetV2 model with its first pre-trained weights, allowing it to use the information
gained through analyzing a considerable body of photos. Layers are added to the model
after the output has been generated, including a global average pooling layer, a dense
layer with ReLU activation, and a dropout layer. However, MobileNetV2’s final layers are
left out.

The Xception model is likewise set up using “ImageNet” pre-trained weights, and
the last fully linked layer is left out. Like MobileNetV2 output, it passes through many
additional processing stages. Combining the two models’ results may teach us more
generalizable characteristics about the pictures we feed them. After the combined output
is sent through the concatenated layer, a dense layer with softmax activation is added
for classification.

The performance of both the MobileNetV2 and Xception models may be improved
by making some layers non-trainable (frozen) and hence unmodifiable throughout the
training process. This strategy helps customize the model to meet the needs of a given
picture classification challenge while using the previously acquired information.

An Adam optimizer, a loss function based on categorical cross-entropy, and an accu-
racy measure are used to create the approach. Then, the process is trained on a labeled
dataset to achieve the highest possible accuracy while minimizing the loss. For context,
a summary of the model is printed out, detailing its structure in terms of layers and the
number of parameters.

Finally, an early stopping callback is implemented to monitor the validation loss
and bring back the optimal weights if the loss does not decrease after a certain number
of iterations. Keeping the top-performing model like this helps avoid overfitting. The
attributes of the SkinNetX is shown in Table 1.

Table 1. Attributes of the suggested SkinNetX Model.

Layer Type Number of Filters

MobileNetV2

GlobalAveragePooling2D

Dense 256

Dropout 0.5

Dense 512

Xception

GlobalAveragePooling2D

Dense 256

Dropout 0.5

Dense 512

Concatenate

Dense 2

The suggested model has many layers that cooperate in the picture categorization
task. The MobileNetV2 convolutional layer takes input photos and generates their features.
After this layer, we apply GlobalAveragePooling2D to the feature maps to make them more
manageable in terms of space. The 256-filter dense layers are fully connected layers that can
pick up sophisticated data patterns. Overfitting may be avoided using the dropout layer,
which sets a percentage of input units to 0 at random throughout the training procedure.
The results from the MobileNetV2 and Xception levels are combined in the concatenate layer.
The Xception layer is a convolutional layer that, like MobileNetV2, helps to extract more
features from the photos. The last dense layer, equipped with 512 filters, acquires additional
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pattern knowledge from the combined data. A dense layer with two filters generates the
output probabilities for image classification and utilizes the softmax activation function.
Together, MobileNetV2 and Xception contribute to the overall accuracy of this model’s
picture classification. Figure 3 shows the architecture of the proposed SkinNetX model.
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3.3. Transfer Learning (TL)

DCNN approaches are still widely employed in contemporary research, providing
novel solutions for skin cancer detection. However, a widespread problem is a deficiency
in the volume of training data necessary to operate deep CNN models successfully [88].
A procedure identified as transfer learning (TL) is used as a solution because compiling a
comprehensive dataset on skin cancer is time-consuming [88]. The CNN models used in
TL are first trained on big datasets, and then they are fine-tuned using smaller datasets that
the user specifies. The minute training data are absent, and this method is advantageous
because of its effectiveness. Similar to training from the beginning, the amount of time spent
on training is drastically reduced when using pre-trained models that already understand
fundamental characteristics. Memory and computational resources are also reduced to a
minimum by TL. Pre-trained algorithms, such as those trained on the ImageNet dataset,
which includes millions of photos spanning various categories, are used extensively in
different TL techniques.

On the other hand, the pre-trained technique used in this investigation was trained not
on the ImageNet dataset but on skin cancer ultrasound pictures. TL is applied extensively
in a variation of computer vision responsibilities, including the diagnosis of skin cancer.
During the study, nine distinct CNN models were calibrated using the information about
skin cancer. For SC recognition and classification, five pre-trained CNN models were used.
Table 2 contains detailed information on the number of parameters and layers included in
the various CNN designs.
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Table 2. Pre-trained cutting-edge CNN models’ layers, parameters, and size.

Model Depth Parameters (M) Size (MB)

AlexNet 11 60 227

DenseNet121 242 8.1 33

MobileNetV2 105 3.5 14

Xception 81 22.9 88

InceptionV3 189 23.9 92

ResNet50V2 103 25.6 98

3.3.1. Xception Model

The Xception network has taken up the duties formerly performed by Inception.
XceptionNet is the name given to the extreme form of Inception [89]. In the XceptionNet
network, conventional convolution layers have been swapped out for depthwise separable
convolution layers. CNN feature maps enable decoupling spatial and cross-channel correla-
tions, while XceptionNet’s mapping of spatial and cross-channel correlations is included in
the network’s core functionality. XceptionNet eventually superseded the main architecture
of Inception [90]. The XceptionNet model’s total of 36 convolution layers is capable of being
segmented into a total of 14 separate modules. After the initial and final layers have been
eliminated, there is still a continuous relationship between each of the layers that remain.
The original image must first be translated into determining the probability contained
across several input channels to provide a unified image [90]. The subsequent strategy
takes advantage of the 11 depthwise convolutions. As an alternative to three-dimensional
maps, displays showing relationships could be used.

3.3.2. MobileNetV2

The MobileNetV2 model is a competent and lightweight CNN technique developed
specifically for mobile and embedded settings [91]. By separating the spatial convolution
from the depthwise convolution, this network may reduce computational costs without
sacrificing performance. The MobileNetV2 model comprises 88 discrete levels. Both
convolutional and fully linked layers are present [65]. About 3.5 million parameters make
up the MobileNetV2 model. The weights and biases acquired during training are reflected
in these parameters. The MobileNetV2 model occupies approximately 14 MB of space.
When deploying the model on resource-constrained devices, it is vital to consider the size
shown by this metric, as it shows the memory needed to hold the model’s parameters [92].
In summary, the MobileNetV2 model strikes a nice compromise between model size and
performance, making it appropriate for applications with limited computing resources,
such as mobile devices or embedded systems.

3.3.3. AlexNet Model

AlexNet claims that there are 11 tiers to the entire system. The substantial amount
of underlying network layers facilitates feature extraction. Furthermore, a wide range of
elements operates to improve effectiveness generally. AlexNet’s initial stage is a convo-
lutional one. The final layer is a convolution layer following the maximum pooling and
regularizing layers. When the softmax layer is used, categorization is complete [93].

3.3.4. DenseNet121 Model

DenseNet121 was first released in 2017 by Huang et al. [87] Layer connections in
DenseNet models tend to be many. DenseNet121 gets its name from having 121 layers.
DenseNet fixes the problem of the diminishing gradient and boosts the network-wide
gradient flow. In conventional CNN architectures, data can only be fed in from the layer
above it. All inputs from previous DenseNet layers are available to the current layer.
This structure permits dense or skipped connections between layers, facilitating direct
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information flow and gradient propagation. As a result, DenseNet can make more use of
layer data and boost feature reuse.

The convolutional layers of DenseNet121’s dense blocks are many. Each deep layer’s
feature maps are merged into one massive map that is then passed on to the next. The
feature maps and spatial dimensions suffer when transition layers are present between
dense blocks. These transform layers use pooling and 1 × 1 convolutional layers to compact
feature maps. DenseNet121 uses a softmax activation layer, a fully connected layer, and
a global average pooling layer as its final layers. The fully connected layer provides
classification after the global average pooling layer reduces the spatial dimensions to a
vector. DenseNet topologies are widely used because they are more efficient and have less
overfitting and gradient flow issues. DenseNet121 has shown promising results in image
classification, object recognition, and segmentation benchmark datasets [94].

3.3.5. InceptionV3 Model

In 2015, scientists at Google developed InceptionV3. Images may be sorted into cate-
gories and recognized using inception models. ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) results showed that InceptionV3 was the best system available at its
release. The Inception algorithm compensates for the trade-off between computing speed
and network depth. An Inception module is used in InceptionV3 to mix convolutional
filters of varying sizes. These filters collect data at various scales, allowing the network to
better use available processing power [95].

As the network becomes more profound, the stacked Inception modules in InceptionV3
can pick up on more abstract features. Gradient flow is improved during training using
convolutional layers, pooling layers, fully connected layers, and auxiliary classifiers. Images
may be sorted, identified, and segmented using InceptionV3. Its effectiveness and efficiency
help study and implement deep learning [95].

3.4. Hyperparameter Setting

Because hyperparameters influence the learning process and are the fundamental
component of the model, they must be provided before any model can be trained. This is
because hyperparameters are the model’s most significant component. Finding the proper
criteria to meet may be accomplished in several different ways. We use ratios of 80/10/10
to choose which skin cancer pictures will be used for training and validation and which
will be used for testing. The batch size is the number of training samples tallied in a single
forward and backward pass. When the batch size increases, the amount of memory space
needed also increases.

A hyperparameter identified as the learning rate (LR) determines the degree to which
the weights of the suggested approaches are modified in response to changes in the loss
gradient. We make our way down the hill more leisurely as the value decreases. A low
LR might be an excellent option to guarantee that we do not pass over specific regions.
However, it might accelerate convergence in the long run, especially if we get stuck on a
plateau area. This is especially true if we cannot move off the plateau. The number of times
the machine learning algorithm has iteratively gone through the whole training dataset is
referred to as the “epoch” in this context. Batches are a standard method for organizing
datasets, mainly when the total quantity of data to be processed is substantial. Some people
use the word “iteration” to refer to one batch processed by the model; however, this is
an imprecise term. When training a neural network with sample data, one of the most
significant challenges is avoiding overfitting. When preparing a NN approach with more
epochs than required, the training process will mostly learn patterns specific to the trial
data used for training. Because of this, the model cannot work correctly when applied to a
new dataset.

The performance of this technique is satisfactory on the training set (the data from the
samples) but unsatisfactory on the test set. In other words, if the model is overadjusted
to the data used for training, it will lose its capacity to generalize. Mini-batch regression
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is a variant of the technique identified as gradient descent in which the training dataset
is divided into fewer batches. These batches are then utilized to calculate the technique
error and update the coefficients. Mini-batch gradient descent is an example of an itera-
tion of the gradient descent process. By adding up the gradient across each mini-batch,
implementations can further limit the gradient’s variation.

To strike a balance between the efficiency of batch gradient descent (BGD) and the
robustness of stochastic gradient descent, the miniature BGD technique was developed. In
DL, gradient descent is the preferred method since it yields several benefits.

We employed a grid search technique to determine the optimum hyperparameters
for the recommended DL model, which gives a high level of accuracy with a minimal
margin for error. Stochastic gradient descent, often known as SGD, was used throughout
the training process of DL models that had previously been trained with TL. We worked
with a mini-batch size of 32 images and a learning rate of 0.001 per picture. In addition,
to prevent overfitting, each DL model was trained for one hundred epochs before it was
put through its pace in the TL tests designed to recognize and categorize various types
of SC. All our trials were conducted on a computer that had an Intel (R) Core (TM) i5
and 16 gigabytes of random-access memory (RAM). Jupiter Notebook in Anaconda was
the software that we used for the implementation. The optimal values for each of the
categorization experiment’s parameters are shown in Table 3.

Table 3. Parameters Used for Model Training.

Parameter Values

Learning rate 0.0001

Optimizer SGD

Epochs 100

Verbose 1

Activation function ReLU

Iteration per epoch 12

Early stopping Patience = 80

The hyperparameters outlined in Table 3 are essential to the training and to the overall
performance of the SkinNetX model suggested in this study. The use of a learning rate of
0.0001 signifies the adoption of a fine-tuning methodology, which mitigates substantial
modifications to the model’s parameters and the risk of overfitting when using pre-trained
networks. Stochastic gradient descent (SGD) as the optimizer confers advantages to the
model due to its simplicity and effective handling of big datasets. Training the model over
100 epochs makes it possible to run through the whole dataset many times, facilitating the
acquisition of knowledge from a wide range of samples and perhaps achieving convergence
toward an optimal answer. The rectified linear unit (ReLU) activation function is widely
favored because of its straightforwardness and computational effectiveness. By incorpo-
rating nonlinearity into the hidden layers of the model, ReLU enables neural networks to
acquire intricate patterns successfully. Furthermore, implementing early stopping with a
patience value of 80 guarantees that the training procedure will be terminated if there is a
lack of substantial performance improvement over a prolonged duration. This approach
serves to mitigate the risk of overfitting and conserves computing resources.

The hyperparameters generally exhibit a well-calibrated configuration to achieve a
harmonious equilibrium between efficient learning from the available data and mitigat-
ing the risk of overfitting. The selection of hyperparameters demonstrates a meticulous
evaluation of the model’s structure and the dataset’s attributes. However, it is essential to
recognize that hyperparameter tuning is often iterative and exploratory. The efficacy of
these selections is typically confirmed by testing conducted on a particular dataset. Addi-
tional information about the hyperparameter-tuning methods, including cross-validation
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or other optimization strategies, would provide a deeper understanding of the resilience of
the proposed SkinNetX model’s proposed configuration.

3.5. Performance Evaluation Metrics

Accuracy, precision, recall, and the F1-score were the metrics the study relied on to
assess the effectiveness of the models applied in this investigation. The following formula
can determine these:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
FN

FN + TP
(3)

F1-score = 2 ∗ (precision × recall)
(precision + recall)

(4)

The term “true positive” (TP) refers to the positive data that have been adequately
anticipated and estimated. The most significant value is found along the diagonal.

True negative (TN): The analysis of the negative data shows that the data are, in fact,
negative. A TN is the total of all the values in the confusion matrix, except for the row and
column that correspond to the related class.

A false positive (FP) occurs when data that should have been negative are evaluated
as positive. It is the sum of all the values in the column that pertains to each class, except
for TP.

The interpretation of positive facts as having a negative impact is one example of a
false negative. It is the sum of all the values in the row that pertain to each class, except
for TP.

4. Results and Discussion
4.1. Performance Evaluation of SkinNetX Model

The performance of the suggested DL model in terms of detection (two-class classifi-
cation) is being evaluated with the help of photos of skin cancer in this experiment. The
dataset was partitioned into training, validation, and testing sets for this experiment. For
this experiment, 15% of the data was used for testing the model, 10% for validating the
model, and 75% for training. To be more exact, we utilized all 408 SC dermatoscopy photos,
of which 311 were used for training, 56 for validation, and 41 for testing. There were
204 cancer images and 204 non-cancer (benign) images. The parameters supplied in Table 1
are used in the training set to practice the SC detection and classification provided by the
suggested framework. Throughout the 12 epochs, the proposed DL model went through a
total of 1200 iterations, with an average of 100 iterations occurring throughout each epoch.

At epoch 100, the recommended SkinNetX obtained maximum classification accuracy
of 97.56%, a precision of 93.33%, a recall of 100%, and F1-score values of 96.55%, proving
the efficacy of our approach in identifying SC. To further demonstrate the effectiveness
of the suggested strategy during training and validation, we have plotted accuracy and
loss in Figure 3. The loss function reflects the accuracy with which the framework makes
predictions. Starting at epoch 12, our model’s loss and accuracy remain approximately the
same for the training process, and starting at epoch 39, our model has stayed roughly the
same for the validation process. In other words, it is still superior at predicting SC at epochs
lower than 100. Figure 4 shows the suggested DL methods and the training and validation
graphs of the already-trained models. Figure 5 displays the SkinNetX and state-of-the-art
pre-trained DL detections’ confusion matrices from the testing phase. The recommended
approach was classified incorrectly with just two images. Figure 6 shows the ROC-AUC
curve for all the implemented techniques, and it can be seen that the proposed SkinNetX



Bioengineering 2023, 10, 979 14 of 26

technique outperformed with an AUC of 0.97 for both cancer and non-cancer classes. The
second best is Xception with an AUC of 0.95 for both data classes. MobileNetV2 and
DenseNet121 both had the third-best AUC value of 0.95. The precision–recall curve for
all the implemented techniques is shown in Figure 7 with SkinNetX having the highest
value of averaged precision (AP), thereby outperforming the other pre-trained techniques.
Figure 8 shows the prediction of the test dataset, and it is seen that out of the ten (10)
samples predicted, all of them were predicted correctly.

Our proposed technique may improve SC recognition and categorization from der-
matoscopy pictures. Our suggested method successfully represents the dermatoscopy
picture by extracting the most distinctive, resilient, and sophisticated deep characteristics
for precise and reliable detection. The recommended approach is straightforward because
of its fully integrated learning architecture, eliminating the need for a separate feature
extraction step.
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4.2. Comparative Evaluation Using Cutting-Edge Pre-Trained DL Models

Overfitting issues are frequently encountered in DL methods during evaluation with
limited training and testing images; employing TL techniques and fine-tuning may assist
in mitigating this issue. This often occurred because it was more effective for assessing
with fewer but diverse instances of training and testing pictures. All TL simulations were
trained and validated utilizing the equivalent TL parameters as listed in Table 4 for SC
identification and classification. These parameters were used throughout the training and
validation processes. We used 408 dermatoscopy photos of BC to identify BC correctly. As
can be seen in Table 4, which provides a summary of the individual findings obtained by
several TL algorithms while categorizing SC pictures, every TL classifier was successful in
producing acceptable results. We investigated and evaluated the TL algorithms by using
evaluation metrics such as accuracy, precision, recall, an area under the curve (AUC), and
F1-measure.

Table 4. Pre-trained Models Experimental Results.

Model Accuracy Precision Recall F1-Score Misclass AUC

Proposed Model 97.56 93.33 100 96.55 0.0244 97.00

Xception 85.37 93.33 73.68 82.35 0.1463 96.00

MobileNetV2 90.24 93.33 82.35 87.50 0.0976 95.00

AlexNet 80.49 80.00 70.59 75.00 0.1951 92.00

InceptionV3 82.93 70.00 93.33 80.00 0.1707 91.00

DenseNet121 95.12 93.33 93.33 93.33 0.0488 95.00

ResNet50V2 77.50 92.86 61.90 74.29 0.2250 86.00

For this study, we split the dataset into three parts—training, validation, and testing—
using 75% of the data to develop models, 10% for validation, and 15% for testing. The
suggested study comprised a variety of deep learning-based categorization methods,
including Alexnet, MobileNetV2, InceptionV3, Xception, DenseNet121, and the proposed
DL. As can be seen in Figure 4 of the recommended approach’s confusion matrix, the score
is high across the board for SC categories.

In terms of accuracy, it is seen that SkinNetX performed at a 97.56% level, ResNet50V2
performed at a 77.50% level, and AlexNet performed at an 80.49% level, making it the
second-worst performer. Regarding accuracy, DenseNet121 came in second with a score of
95.12%. The accuracy of MobileNetV2 was 90.24%, Xception was 85.37, and InceptionV3
was 82.49%. The results are also superior to those obtained by using already-trained ap-
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proaches. Table 4 shows the model classification results in the same period. Regarding
accuracy, precision, recall, F1-measure, and the area under the curve (AUC), the SkinNetX
model is superior to all other pre-trained models. The SkinNetX has the least misclassi-
fication rate of 0.0244, followed by DenseNet121 with the second-least misclassification
of 0.0488 and MobileNetV2 with the third-least misclassification of 0.0976. The accuracy
and loss values are shown in Figure 4 when the proposed model is trained and verified.
The graph in Figure 4 illustrates that, as indicated in Table 4, the custom model provides
exceptionally high accuracy results.

4.3. Comparative Studies with Recent Research

In this study, we compared the performance of the best deep neural network, Skin-
NetX, with other methods for classifying SC tumors into cancerous and non-cancerous
categories. We compared the work that was suggested to state-of-the-art deep learning
(DL) approaches [96–98] in more detail.

Tembhurne et al. [96] developed an innovative method for extracting characteristics
from photographs of the skin, which was then used in skin cancer diagnosis. They combined
the Cnoyrlet transform with LBP histograms and VGG19 in their analysis. They were able to
achieve an accuracy level of 93%. A unique technique for the categorization of skin lesions
in metadata-embedded photos using a deep CNN (Inception-ResNet-v2) was presented by
Mehr and Ameri [97] in 2022. The suggested method successfully distinguished between
malignant and benign lesions with a rate of accuracy that reached 94.5%. A lightweight
skin cancer classification model based on deep learning approaches was developed by
Huang et al. [98] in 2021 to assist first-line medical treatment. When we used the DenseNet
121 model for classification, we achieved an accuracy of 89.5% for the binary categories
(benign vs. malignant).

This part offers a comprehensive analysis and comparison of numerous tactics based
on their accuracy. Table 5 includes accuracy on its list of performance parameters, although
it is the research parameter employed in every relevant study the most. As far as we
know, the recommended DL approach surpasses the previously published state-of-the-art
methods. The capacity of the suggested approach to extract more stable and distinguishable
deep features for classification is one factor contributing to achieving the best results. In
addition to that, we used a dataset that was combined and balanced. The comparison
outcomes revealed that the presented strategy was more successful than the other strategies.
In addition, the classification process, which requires more intricate computing, necessitated
hand-crafted engineering. Regarding accuracy, the recommended model performed better
than the presented strategies, as shown in Table 5.

Table 5. Comparative Evaluation with Existing Systems.

Authors Models Accuracy

Tembhurne et al. [96] Cnoyrlet transform with LBP histograms and VGG19 93%

Mehr and Ameri [97] Inception-ResNet-v2 94.5%

Huang et al. [98] DenseNet121 89.5%

Proposed SkinNetX Model Concatenation of MobileNet and Xception Models 97.56%

5. Discussion

The result was reached by analyzing the validation data, which included two skin
cancer datasets. To put the deep models that were used in this study into practice, we relied
on the Keras library [99]. Due to its flexibility to operate on top of other deep learning
frameworks, such as TensorFlow, Keras is becoming more popular. Models are trained
using a computer system with 16 gigabytes of random-access memory (RAM), a Corei7
processor, and a one-terabyte hard drive.
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We examined the performance of seven different models, including ResNet50V2, Xcep-
tion, AlexNet, MobileNetV2, DenseNet121, InceptionV3, and SkinNetX, in categorizing skin
cancer into cancer and non-cancer categories. These models are listed in alphabetical order
below. It was discovered that ResNet50V2, Xception, AlexNet, MobileNetV2, DenseNet121,
InceptionV3, and SkinNetX each had a categorical accuracy of 77.50%, 85.37%, 80.49%,
90.24%, 95.12%, and 82.93%, respectively. SkinNetX had a categorical accuracy of 97.56%.
The SkinNetX model has been shown to have the highest accuracy.

Figure 7 displays, for each of the seven models, the training–validation accuracy and
the training–validation loss curves. At the beginning of the training process, during the
first few epochs, the validation accuracy is higher than the training accuracy, or the training
loss is lower than the validation loss. There are a few different ways that this might be
explained. In the first place, since we included the dropout layer in the architecture while
fine-tuning the model to make our system less susceptible to over-fitting, these dropout
layers block the neurons when the model is being trained to simplify the model. When
testing a model in Keras, dropout layers are turned off throughout the process. This gives
the network access to all of the computing capacity it needs to make a prediction, which
may result in improved training accuracy for a few epochs. At the same time, the model
is being evaluated [100]. Second, the training loss is calculated by taking the average of
the losses occurring over all training data batches. The loss over the most recent batches
is often larger when compared with the loss over the batches that began an epoch since
the model is developing over time. In a different approach, the training loss for a model is
determined after each epoch, which often results in a smaller loss. This can potentially lead
to a smaller training loss than the validation loss.

A weighted average of recall, precision, and F1-score is also examined to verify the
performance of models with the number of pictures for each class of validation data. This
evaluation is conducted to check how well the models do their job. We performed some
calculations, and the results showed that SkinNetX had a weighted average recall, precision,
and F1-score of 100%, 93.33%, and 96.55%, accordingly. Similarly, the weighted averages of
recall, accuracy, and F1-score for the models ResNet50V2, Xception, AlexNet, MobileNetV2,
and DenseNet121, as well as InceptionV3, were analyzed. The outcomes of the seven
distinct models that were used for this study are presented in Table 4. These results include
accuracy, a weighted average of recall, precision, and F1-score.

The SkinNetX model, as suggested, demonstrated improved predictive accuracy
within the medical field. This improvement may be attributed to its capacity to extract
more effective feature representations from pictures of skin lesions. This capability is aided
by using transfer learning and fine-tuning techniques applied to preexisting models. The
enhanced applicability of the model to various kinds of skin lesions may be attributed
to its capacity to withstand variations in medical imaging datasets, such as changes in
lighting conditions and picture quality. Using an expanded and heterogeneous dataset,
in conjunction with meticulous hyperparameter optimization, might have enhanced its
overall performance.

The suggested SkinNetX has notable benefits, namely in its ability to attain a com-
mendable accuracy level of 97.56% when categorizing tumors associated with skin cancer.
Ensuring trustworthy and precise diagnoses is paramount in medical applications, necessi-
tating high precision. SkinNetX demonstrated superior performance compared with other
pre-trained models, such as ResNet50V2, AlexNet, DenseNet121, MobileNetV2, Xception,
and InceptionV3, as well as previously reported cutting-edge methodologies. This suggests
that SkinNetX has promise for yielding superior outcomes compared with current methods.
Transfer learning (TL) enables SkinNetX to exploit acquired knowledge from diverse tasks
and datasets, hence aiding in alleviating overfitting concerns and diminishing the need
for extensive training datasets. The model is said to extract consistent and discernible
deep characteristics for categorization. This has the potential to enhance the differenti-
ation between malignant and benign skin lesions, enhancing the overall efficacy of the
model. Finally, a balanced dataset may contribute to the model being trained on repre-
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sentative samples from many classes, improving its capacity to generalize to novel and
unfamiliar data.

One disadvantage of the suggested approach is that it relies on pre-trained deep
learning algorithms. As a result, implementing the system requires substantial computing
resources for training and inference. This constraint hinders the adoption of the approach
in resource-constrained environments and low-end devices. There exists apprehension over
the capacity to extrapolate findings to novel and unfamiliar skin lesions that lie outside the
confines of the available datasets.

6. Conclusions

A unique SkinNetX deep learning model for SC detection and classification is pre-
sented in this study. A total of 157 layers are included in the architecture that has been
delivered, some of which include convolutional layers, dense layers, and a fully linked
layer. According to our observations, the suggested model achieved the best classification
accuracy of 97.56%. In addition, we examined how well a few other deep learning models
worked, and the experiment results revealed that our model performed far better than the
others. In addition to that, we used the test dataset to verify the model that was presented.
The suggested model achieved the most significant possible level of accuracy throughout
testing, which was 97.56%. The TL method used in this research for SC detection employed
four pre-trained DL models.

On a standard dataset that included 204 cancer and 204 non-cancer (benign) der-
matoscopy pictures, we tested the efficacy of five different DL-based models and compared
their results. A disadvantage of this study is that there are only a limited number of photos
in the SC dermatoscopy imaging dataset that is publicly accessible. This affects how well
DL models perform. This study can be enhanced further by adding more photographs to
the collection. In addition, as the proposed model extracts more detailed, accurate, and
discriminating characteristics, testing with the dataset indicates that there are relatively
few photos of cancer SC and a substantial number of photographs of normal skin. This
contrasts with the fact that there are many images of normal skin. Before dividing the
pictures obtained from a dermatoscopy of the skin into cancerous and non-cancerous types,
the data on skin cancer should first be subjected to a successful segmentation method. After
the photos have been segmented, the algorithm that has been suggested may utilize them to
detect and distinguish malignant and non-cancerous images reliably. The direction of future
studies may focus on answering therapeutically relevant questions. In addition, shortly,
we want to investigate models such as ViT for use in SC detection. The successful use of
enhanced DL algorithms may serve radiologists and oncologists in correctly identifying SC
using MRI, dermatoscopy, and CT images. However, the results that were published in this
research may help experts make the best selection of their models, eliminating the need for
an exhaustive search. Utilizing deep neural networks solves many of the issues associated
with model training. It enables us to develop accurate models for SC diagnosis, which aids
in the early identification and treatment of the condition.
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